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Abstract—The increasing demand for high-volume multimedia services through mobile user equipment (UEs) has imposed a
significant burden on mobile networks. To cope with this growth in demand, it is necessary to extend the 5G network’s ability to meet
quality-of-service (QoS) requirements. The integration of Multi-access Edge Computing (MEC) with 5G technology, 5G-MEC, emerges
as a pivotal solution, offering ultra-low latency, ultra-high reliability, and continuous connectivity to support various latency-sensitive
applications for UEs. Despite these advancements, the mobility of UEs introduces significant spatio-temporal uncertainties, posing a
major challenge on optimizing content delivery routes and directly impacting both latency and service continuity for UEs. Addressing
this challenge necessitates suitable approaches for selecting optimal 5G-MEC components, with the goal of minimizing latency and
reducing the frequency of handovers, ultimately ensuring a seamless content delivery experience. This paper proposes two
learning-based approaches to tackle the problem of 5G-MEC component selection to facilitate QoS-aware content delivery in the
absence of complete information about the dynamics of the 5G-MEC environment. First, we design an online sequential
decision-making approach, called QCS-MAB, to decide on the content delivery routes in real-time while achieving a bounded
performance. We then propose a deep learning approach, called QCS-DNN, to efficiently solve large-scale 5G-MEC component
selection problems. We evaluate the effectiveness of our proposed approaches through extensive experiments using a real-world
dataset. The results demonstrate that both QCS-MAB and QCS-DNN achieve near-optimal latency and significantly reduced handover
times, significantly enhancing the 5G-MEC content delivery experience.

Index Terms—Multi-access Edge Computing, 5G, Mobility, Content Delivery, Online sequential decision-making, Deep Learning

✦

1 INTRODUCTION

THE proliferation of connected devices is projected to
surpass 500 billion by 2030, causing a massive surge in

data traffic [1]. The global data traffic is expected to grow 3.5
times between 2022 and 2028, reaching a monthly volume
of 472 exabytes (EB) by the end of 2028. Content delivery
constitutes a significant portion of this traffic. According to
Ericsson [2], video traffic is projected to make up 80 per-
cent of total mobile data traffic by 2028, necessitating strict
low-latency and high-speed data transmission to enhance
Quality of Service (QoS). This growing data traffic also
translates into tangible economic impacts and significantly
affects the user experience. For example, a 100ms increase
in latency can reduce Amazon’s sales by 1%, and Google
has reported a 20% decrease in traffic due to an additional
0.5-second delay in search page generation. Similarly, if a
trading platform is 5ms slower than its competitors, a broker
could lose $4 million in revenues per millisecond [3]. These
examples show the crucial need for innovations in network
efficiency and the urgency for the improvement of latency
issues.

To meet the unprecedented content delivery demand re-
quiring low-latency, Fifth-Generation (5G) networks unfold
new opportunities for faster content delivery, promising
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speeds nearly a hundred times faster than 4G. However,
the limited transmission capacity of wireless backhaul links
may hinder 5G’s ability to cope with the explosive growth of
traffic [4]. Traditionally, to cope with the rapidly increasing
traffic, frequently accessed content has been collected and
cached on the cloud. The stored content can be fetched
from the cloud when requested by User Equipments (UEs).
However, this solution is not practical for real-time services
as it results in high latency when delivering data from
the cloud. Therefore, there is a need for a more efficient
solution that can provide low-latency content delivery in
5G networks.

Multi-access Edge Computing (MEC) offers a decentral-
ization of the conventional cloud paradigm by positioning
computing, storage, and caching closer to UEs at the edge of
the network [5], [6]. This shift is instrumental in achieving
extremely low latency and high throughput, essential for
meeting the rigorous QoS requirements. Content caching
and delivery at the MEC helps alleviate the heavy burden
on data transmission. MEC significantly degrades dupli-
cated content transmissions from backhaul links, improving
experienced latency for users. This leads to a decrease in
backhaul capacity demands by up to 35% [7]. Therefore, the
European 5G Infrastructure Public Private Partnership (5G
PPP) recognized MEC as one of the main technologies for
5G networks [8].

The 5G and MEC integration, known as 5G-enabled
MEC or 5G-MEC, combines the advanced capabilities of 5G
network components and MEC infrastructure for efficient
content delivery. MEC consists of Edge Application Servers
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Fig. 1: Framework: 5G-MEC component selection for con-
tent delivery.

(EASs), which are localized, small-scale data centers or
clusters closer to the users. The 5G architecture, known as
3rd Generation Partnership Project (3GPP) 5G Radio Ac-
cess Network (RAN) or Next-Generation RAN (NG-RAN),
features advanced components structured within the RAN
and 5G Core Network (5GC). The RAN is comprised of
next-generation base stations, or gNodeBs (gNBs), which
are segmented into three integral units: the Radio Unit
(RU), which interfaces with mobile devices; the Distributed
Unit (DU), which processes data at or near the cell site;
and the Centralized Unit (CU), which serves as the control
center for multiple DUs. This tri-partite structure can be
deployed in various configurations (either co-located or
distributed across different locations), accommodating the
diverse needs of network operators. The Protocol Data Unit
(PDU) Session Anchor (PSA) User Plane Function (UPF),
called PSA UPF, is a core network function that plays a
key role in building the content routing path from the
EAS, where the content is hosted, to a UE requesting the
content [9]. Each gNB’s connection to a PSA UPF facilitates
UE access to cached content on an EAS.

The main challenge in 5G-MEC lies in the component
selection problem, which involves choosing the most suitable
gNB components, PSA UPF, and EAS that ensures the
optimal path for UEs to retrieve content rapidly. This is
crucial for real-time services and applications. The goal is
to determine the most efficient route that minimizes latency
from the gNB RU to the EAS hosting the desired content, as
illustrated in Fig. 1.

The mobility of users introduces additional complexity
in optimizing the content delivery path in 5G-MEC, chal-
lenging service continuity [10], [11]. Even though caching at
5G-MEC can offer fast content delivery to nearby users, un-
predictable user mobility can negatively impact the caching
strategies and the content delivery process, leading to in-
creased experienced latency for users. Therefore, it is impor-
tant to consider user mobility when selecting the optimal

5G-MEC components. This ensures to determine the effi-
cient routing paths for content delivery, from where the con-
tent is cached to users. Selecting the optimal combination of
the 5G-MEC components to accommodate such mobility is a
complex problem and requires a deep understanding of the
network architecture, user mobility, and application require-
ments. A significant obstacle in this optimization process is
the lack of complete information. The current state-of-the-art
approaches often result in sub-optimal decisions, leading to
poor QoS and system performance.

This paper addresses the 5G-MEC component selection
problem for content delivery, considering uncertain user
mobility and incomplete information. We first devise a novel
integer programming (IP) model to formulate this problem
aiming to obtain the optimal solution when we have com-
plete information. Then, we propose two learning-based ap-
proaches that aim to learn the optimal components for min-
imizing the experienced content delivery latency for users
throughout their network interaction. Our first proposed ap-
proach, QCS-MAB, is an online sequential decision-making
approach formulated as Multi-Armed Bandit (MAB) to
learn the optimal content routing paths for UEs considering
their uncertain mobility. QCS-MAB uses currently observed
information to dynamically select a proper routing path
for delivering requested contents to UEs at each time slot
and reduce experienced latency. Online sequential decision-
making is especially ideal when complete information is
not available initially and data is received in a sequential
manner, making it an effective decision-making technique.
However, online sequential decision-making may take time
for exploration to reach near-optimal results in large-scale
environments. Therefore, we propose a second approach
using deep learning, called QCS-DNN, employing a fully
connected deep neural network to provide near-optimal so-
lutions in real-time utilizing historical data for massive-scale
problems when complete information is unavailable. We
perform extensive experiments to evaluate the effectiveness
of the proposed approaches using a real-world dataset.

The rest of the paper is organized as follows. In the
next section, we present an overview of existing studies in
this scope. We formulate the problem in Section 3. We then
describe the proposed online sequential decision-making
approach, QCS-MAB, in Section 4. We describe our deep
learning approach, QCS-DNN, in Section 5). The experimen-
tal results are described in Section 6. Finally, we summarize
our results and introduce potential future research direc-
tions.

2 RELATED WORK

We provide a summary of the most relevant studies, cate-
gorize them by their research focus, and identify existing
research gaps.

Latency. Several studies have focused on optimizing latency.
Solozabal et al. [12] introduced a 5G-MEC-based architec-
ture for Mission-Critical Push-to-Talk (MCPTT) services,
emphasizing the importance of meeting delay requirements.
Guo et al. [13] proposed a cross-stratum resource protection
approach in fog-computing-based radio over fiber networks
(F-RoFN) for 5G services, leveraging software-defined net-
working for control. Sharghivand et al. [14] addressed time-
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constrained service handoffs in 5G-MEC to maintain QoS,
by introducing a path planning approach and payment
function. Rahimi et al. [15] proposed a hybrid architecture
combining technologies such as Device-to-Device (D2D)
communication, Massive MIMO, SDN, and NFV, and con-
sisting of MEC and Edge Cloud, to support scalability, relia-
bility, and ultra-low latency. However, it is important to note
that the research in this area has been limited, particularly
in developing efficient and adaptable solutions for dynamic
network environments. Our work expands upon this by
focusing on a broader application of latency optimization in
5G-MEC by introducing novel learning-based approaches
that address the challenges of rapidly changing network
conditions and user mobility.

Other optimization objectives. Beyond addressing latency,
the literature has considered various optimization criteria,
such as energy consumption, spectrum utilization, and cost-
efficiency. Kiani et al. [16] tackled the issue of energy con-
sumption by introducing an edge computing-aware NOMA
technique. Nadeem et al. [17] integrated D2D, MEC, and
network slicing to enhance spectrum utilization, perfor-
mance and scalability. Ning et al. [18] focused on a 5G-
MEC health monitoring system for the Internet of Medical
Things (IoMT) to minimize the system-wide cost. Bishoyi et
al. [19] considered the interaction between the MEC server
and users in a Stackelberg game, addressing joint cost and
energy-efficient task offloading for the MEC-enabled health-
care system. Huang et al. [4] focused on joint optimization
of caching, transcoding, and wireless resource allocation to
enhance adaptive video streaming in MEC. Ei et al. [20]
studied a UAV-enabled MEC system, formulating a joint re-
source allocation and offloading problem to minimize total
energy consumption. Zhong et al. [21] introduced a multi-
user cost-efficient crowd-assisted delivery and computing
framework, utilizing MEC for efficient virtual reality video
processing and content delivery. While these studies address
various optimization objectives, a significant research gap
exists in aligning these objectives with latency minimization
and user perspectives on efficiency, especially in highly
dynamic and competitive environments characterized by
factors such as high mobility, fluctuating network condi-
tions, and competition over resources.

Caching. Content caching is a well-known method to im-
prove content delivery performance in 5G-MEC. Zhang et
al. [22] proposed a mobility-aware cooperative edge caching
architecture for content-centric 5G networks, utilizing edge
resources to enhance caching capability. Tang et al. [23]
introduced a cooperative caching scheme to extend the
virtual cache capacity and to minimize delivery delays
in user-centric delivery schemes in 5G CDNs. Markakis
et al. [24] proposed a unified communication, computing,
and caching solution for 5G, bringing various functions,
services, and contents closer to UEs. Hou et al. [25] designed
a proactive caching mechanism that leverages transfer learn-
ing for predicting content popularity, potentially optimizing
cache resources. Huang et al. [26] studied the spatio-fine-
grained and generalized consequent content delivery ser-
vices hotspots prediction in ultra-dense 5G networks. How-
ever, these models should provide practical solutions for
real-time content delivery while dynamically adapt caching
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Huang et al. [4] ✓ ✓ ✓
Zhong et al. [21] ✓ ✓ ✓ ✓ ✓ ✓
Zhang et al. [22] ✓ ✓ ✓ ✓ ✓ ✓

Tang et al. [23] ✓ ✓ ✓ ✓
Markakis et al. [24] ✓ ✓ ✓ ✓

Hou et al. [25] ✓ ✓ ✓ ✓
Huang et al. [26] ✓ ✓ ✓ ✓ ✓ ✓
Blasco et al. [27] ✓ ✓ ✓ ✓

Yu et al. [28] ✓ ✓ ✓ ✓ ✓ ✓
Ren et al. [29] ✓ ✓ ✓ ✓ ✓

Zhai et al. [30] ✓ ✓ ✓ ✓ ✓ ✓
Pang et al. [31] ✓ ✓ ✓ ✓ ✓
Dong et al. [32] ✓ ✓ ✓ ✓
Chen et al. [33] ✓ ✓ ✓ ✓ ✓ ✓
Qiao et al. [34] ✓ ✓ ✓ ✓

Our Study ✓ ✓ ✓ ✓ ✓ ✓ ✓

TABLE 1: Comparison with existing research

strategies to uncertain changes based on user mobility and
network changes. Further research is necessary to develop
learning-based approaches that can effectively determine
the best paths for routing cached content. Our approaches
contribute to this domain.

Learning. Machine learning approaches have gained pop-
ularity for caching content on the edge under conditions
of partial or incomplete information. Blasco et al. [27] ap-
plied a multi-arm bandit (MAB) approach to learn the
popularity distribution of content. Yu et al. [28] proposed a
deep reinforcement learning approach within an intelligent
ultradense edge computing environment for real-time and
low-overhead computation offloading and resource alloca-
tion. Ren et al. [29] utilized deep reinforcement learning
agents to select the suitable collaborative computing nodes
and a double deep Q-learning approach to guarantee load
balancing. Zhai et al. [30] studied service deployment in 5G-
MEC using deep reinforcement learning, considering user
request patterns and resource constraints. Pang et al. [31] de-
signed a cooperative edge caching framework with a deep-
learning-based caching approach. Dong et al. [32] proposed
a deep learning framework for improving energy efficiency
of ultra-reliable and low-latency communications (URLLC)
and delay-tolerant services in MEC. Chen et al. [33] devel-
oped a URLLC mobile-traffic flow prediction algorithm us-
ing an LSTM-based deep-learning algorithm. Qiao et al. [34]
proposed a distributed resources-efficient federated learn-
ing for a proactive content caching policy to enhance con-
tent caching efficiency and reduce resource consumption.
However, it is important to note that these studies neglect
to consider the spatial-temporal dynamics and uncertainties
introduced by user mobility, which can significantly impact
caching performance and network optimization.

Summary. A detailed comparison of the most relevant
studies and our work is presented in Table 1. Note that
hybrid computing refers to the use of edge computing in
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combination with cloud computing. While existing studies
provide valuable insights into various aspects of 5G-MEC,
there remains a gap in research focusing on the optimization
of component selection from EASs to UEs, considering
latency, user mobility, and network dynamics. We tackle
this challenge by developing learning-based approaches
that can efficiently learn component selection for UEs, op-
timizing content delivery performance. The advantage of
our approaches lies in their ability to adaptively learn and
optimize routing paths in real-time with partial information
considering the complex interplay of network dynamics,
user mobility, and QoS requirements.

3 SYSTEM MODEL

We consider a time-slotted format, where the time horizon
is defined as a series of time slots T = {1, . . . , T}. This
temporal structure is vital for analyzing the dynamics of
user mobility within the network. We denote a set of UEs
by N = {1, . . . , N}. The location of each UE n ∈ N , at
each time is defined by ltn. As shown in Fig. 1, the network
area under consideration is served by several gNBs denoted
by G = {1, . . . , G}, where each gNB is connected to a PSA
UPF. This connection allows a UE to acquire content from
an EAS, where the content is cached [9]. In other words, the
PSA UPF builds the content delivery routing path between
each UE and the content on the EAS. Each PSA UPF is co-
located with an EAS. We denote a set of co-located pairs of
PSA UPFs and EASs as E = {1, . . . , E}, where each pair
is indexed by i and collectively referred to as EAS Ei for
simplicity in notation.

Communication between UEs and gNBs occurs wire-
lessly through the RAN, while communication between
gNBs and PSA UPFs is facilitated through a wired network,
typically a Local Area Network (LAN). This distinction
introduces four different types of transmission speeds as
indicated below. We define dtng as the 5G wireless trans-
mission speed between UE n ∈ N and its corresponding
gNB g ∈ G at time slot t. Additionally, dgd and dgc represent
the transmission speed in Fronthaul and Midhaul links,
respectively. The speed of transmitting content between
gNB g and Ei (Backhaul) is denoted by dgi.

Each UE n ∈ N , located at ltn, requests (requires) a
content of size ctn at time slot t. To fulfill this request, a
set of 5G-MEC components needs to be selected to route
the content from an EAS to the UE, taking into account
the movement of the UE. As UE moves, the initially chosen
route and components may no longer be optimal, and thus
necessitating a new set of components to be selected to
ensure desired QoS. More specifically, when a UE moves
far away from its gNB, a reselection of 5G components is
needed to avoid a QoS violation. Dealing with UE mobility
can be supported in two ways: through path rerouting to
the same EAS or by migrating the content to a new EAS.
If the targeted content for UE n is migrated from Ei to Ej

at time slot t, the UE will experience a migration latency
of stij . Inefficient routing and migration can lead to increased
data movement over the network, which increases operation
costs of the system and deteriorates the quality of experience
of users significantly. Our objective is to develop 5G-MEC

component selection approaches that meet the ultra-low
latency requirements of UEs.

3.1 Optimization Model (Full Knowledge)

When a priori knowledge of all components of 5G-MEC
is available at all time slots, the optimization problem can
be formulated in an offline configuration. This serves as a
benchmark to evaluate the obtained results and also helps
to explain the system model. To formulate the optimization
problem mathematically, we first define the decision vari-
ables as follows:

• xt
ng is 1 if gNB g (composed of gNB RU, gNB DU,

and gNB CU) is allocated to UE n at time slot t, and
0, otherwise.

• ytnij is 1 if the allocated content for UE n is migrated
from Ei to Ej at time slot t, and 0, otherwise.

• ztni is 1 if the targeted content for UE n is located at Ei

at time slot t, and 0, otherwise.
• ktngi is 1 if gNB g and Ei are allocated to UE n at time

slot t, and 0, otherwise.
We formulate the 5G-MEC component selection problem as
an Integer Program (IP) as follows:

Minimize D =
∑
t∈T

∑
n∈N

∑
i∈E

∑
j∈E

ytnijs
t
ij+

∑
t∈T

∑
n∈N

∑
g∈G

∑
i∈E

ktngic
t
n(

1

dtng
+

1

dgd
+

1

dgc
+

1

dgi
) (1)

Subject to:∑
g∈G

xt
ng = 1 ∀n ∈ N , t ∈ T (2)

∑
i∈E

ztni = 1 ∀n ∈ N , t ∈ T (3)

∑
i∈E

∑
j∈E

ytnij ≤ 1 ∀n ∈ N , t ∈ T (4)

ztni + zt+1
nj − 1 ≤ yt+1

nij ∀n ∈ N , i, j ∈ E , t ∈ T (5)

xt
ng + ztni − 1 ≤ ktngi ∀n ∈ N , g ∈ G, i ∈ E , t ∈ T (6)

ktngi ≤ xt
ng ∀n ∈ N , g ∈ G, i ∈ E , t ∈ T (7)

ktngi ≤ ztni ∀n ∈ N , g ∈ G, i ∈ E , t ∈ T (8)

xt
ng ∈ {0, 1} ∀n ∈ N , g ∈ G, t ∈ T (9)

ytnij ∈ {0, 1} ∀n ∈ N , i, j ∈ E , t ∈ T (10)

ztni ∈ {0, 1} ∀n ∈ N , i ∈ E , t ∈ T (11)

ktngi ∈ {0, 1} ∀n ∈ N , i ∈ E , g ∈ G, t ∈ T (12)

The objective function in Eq. (1) minimizes the total sum
of handover latency and content delivery latency over the
entire time horizon. The first term calculates the handover
latency. The second term calculates the content delivery
latency, as indicated by ktngi, when a specific routing path
is chosen. Content delivery latency is the total sum of
latencies incurred while delivering content through dif-
ferent components of the 5G network. For example, ctn

dt
ng

represents the content delivery latency when a requested
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TABLE 2: Notations

Symbol Description

T Set of time slots, indexed by t
N Set of UEs, indexed by n
G Set of gNBs, indexed by g
E Set of co-located pairs of PSA UPFs and EASs,

index by Ei

dtng Wireless transmission speed between UE n
and its corresponding gNB g at time slot t

dgd Transmission speed in Fronthaul
dgc Transmission speed in Midhaul
dgi Transmission speed between gNB g and Ei

ltn Location of UE n at time slot t
ctn Content size requested by UE n at time slot t
stij Handover latency from Ei to Ej at time slot t
xt
ng Decision variable indicating if gNB g is allocated

to UE n at time slot t
ztni Decision variable indicating if targeted content

for UE n is located at Ei at time slot t
ytnij Decision variable indicating if content for UE n

is migrated from Ei to Ej at time slot t
ktngi Decision variable indicating if gNB g and Ei are

allocated to UE n at time slot t
Rt

n Set of routing paths available for UE n at time t
Hn History of selected routing paths for UE n
qtn Routing path chosen for exploration
ptn Routing path for exploitation (optimal path

among explored ones)
β Weight of exploration parameter
Dn,pt

n,t
Observed latency for UE n on routing path ptn
at time t

p̄tn Selected routing path for UE n at time slot t
χn,pt

n,t
Count of times routing path ptn has been selected
for UE n until time slot t

Rn,T Learning Regret

content is delivered from gNB g to UE n. Constraints (2)
ensure each UE connects to only one gNB at any time
slot for accessing edge content. Constraints (3) ensure that
at each time there is an EAS at which the UE’s targeted
content is located. Constraints (4) guarantee that the han-
dover between EASs happens at most once between two
consecutive time slots for each UE. Constraints (5) are to
set the handover decision variables according to whether
a content migration/handover happens or not. Constraints
(6) set the routing path decision variables based on whether
a routing path composed of gNB and EAS is selected or not.
Constraints (7)-(8) ensure that routing decision variables are
not set to one if the corresponding gNB and EAS are not
selected. Finally, constraints (9)-(12) ensure that all decision
variables are binary. Table 2 presents a summary of symbols
and notations in the paper.

3.2 Learning (Partially Known Information)

In a dynamic 5G-MEC environment, several key pieces
of information are typically unknown or partially known,
significantly influencing decision-making processes. This

Fig. 2: MAB Model

uncertainty primarily pertains to dynamic network condi-
tions (e.g., transmission speed or handover latency), user
mobility patterns (e.g., future location of a user), and real-
time content demands, which are crucial for optimizing
content delivery routes.

Online sequential decision-making is a promising tech-
nique for handling dynamic and uncertain information as
data arrives sequentially. This approach is ideal when com-
plete information is not initially available for making deci-
sions, allowing for adaptive responses to constant changes
in data. Unlike traditional batch learning methods which
require extensive memory or data storage, online sequential
decision-making processes small data portions at a time,
offering time and cost efficiency, making it well-suited for
real-time MEC requirements. A central challenge in this
context is the exploration-exploitation trade-off, which can
be effectively addressed through methods such as Multi-
Armed Bandits (MAB). MAB is particularly useful when
faced with scenarios involving multiple available actions or
decisions with incomplete information about the rewards
associated with each action. However, it is important to note
that this approach has limitations in handling large-scale
datasets.

The advent of neural networks has made it possible to
analyze any data. Neural networks are effective in solving
complex problems and can discover and model nonlinear
and complex relationships. They are suitable for environ-
ments where not all information and patterns are known
beforehand. Neural networks can uncover hidden patterns,
make predictions, and generalize to unseen data. As they
gather more information, the performance of neural net-
works improves, while traditional machine learning algo-
rithms eventually reach a point where more data does
not improve performance. After learning from the initial
inputs and their relationships, neural networks can also
infer unseen relationships on unseen data, thus making the
model generalize and predict unseen data. A Deep Neural
Network (DNN) is a neural network with multiple hidden
layers and nodes in each layer, which can be used to train
and predict outputs from complex data.

In this regard, we design two QoS-Aware 5G-MEC Com-
ponent Selection (QCS) approaches based on the above
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Fig. 3: Component selection using multi-armed bandit learning

learning approaches for content delivery to efficiently solve
the component selection problem, both in small and large
cases, when there is limited information. We will describe
these approaches in the next two sections.

4 QOS-AWARE 5G-MEC COMPONENT SELECTION
BASED ON MULTI-ARMED BANDIT

Multi-Armed Bandit (MAB) [35] is a mathematical frame-
work for modeling decision-making problems where an
agent interacts with an environment to maximize the total
reward over time. It is inspired by a whimsical scenario
of a gambler who must choose which slot machine to
play to maximize their winnings. It refers to determining
which arm of a K-slot machine to pull to maximize the
total reward in a series of attempts. In MAB, the agent
chooses an action from a finite set of actions and collects
a non-deterministic reward depending on the action taken.
The goal of the agent is to maximize the total collected
reward over time. The agent must make decisions based on
incomplete information, resulting in a dilemma known as
Exploration vs. Exploitation. Exploration refers to collecting
new information leading to better decisions in the future;
while Exploitation refers to choosing the best option given
current information. MAB is ideal for modeling many real-
world learning and optimization problems with uncertain
information about the actions and their rewards.

We propose a QoS-aware 5G-MEC component selection
approach based on the MAB algorithm for content delivery.
This approach, called QCS-MAB, works by considering each
potential routing path as an arm. It then selects the path
(arm) with the highest expected reward, which is based on
the observed QoS. QCS-MAB uses Bayesian techniques to
dynamically update its beliefs about the expected reward
for each path and make decisions in real-time. QCS-MAB is
designed as an online sequential decision-making solution
for each UE to determine the optimal routing path by se-
lecting gNB and EAS that minimizes latency for the content

delivery over time. The obtained routing path, denoted by Z
is selected in real-time and independently from other UEs.

QoS-MAB balances the tradeoff between exploration and
exploitation by considering potential new routing paths to
discover a range of possible new latencies while considering
previously known optimal routing paths. QoS-MAB contin-
uously updates its estimates of the value of each routing
path over time. The core idea is that QCS-MAB chooses an
unselected routing path for each UE for every time slot and
observes its average latency per unit of received content.
During time slots with no new unselected routing path for
exploration, the UE selects a routing path that has the high-
est preference over others so far. QCS-MAB also reduces
the complexity of learning by only considering routes that
can deliver the UE’s requested content and are in closer
proximity. This approach is expected to provide near real-
time solutions for highly mobile users and is lightweight,
making it suitable for real-time decisioning in MEC.

QCS-MAB is primarily based on the UCB1 (Upper Con-
fidence Bound) strategy [35], which sets a balance between
exploration and exploitation in the selection of routing
paths. UCB1 allocates a counter for each routing path to
specify the number of times that route has been selected.
It decides the priority of every route based on its obtained
mean latency and the number of times that route has been
selected, taking into account both exploitation and explo-
ration. Figures 2-3 provide further details on our proposed
QCS-MAB approach.

4.1 QCS-MAB Approach
The pseudo-code of our proposed approach is presented
in Algorithm 1. For every UE n, the information about the
current location ltn, the routing paths Rt

n in close proximity
of the UE, the amount of received content ctn, and the weight
of exploration parameter β are available at each time slot
(Line 1). The history of the selected routing paths for every
UE n is maintained and denoted by Hn, which is initially
set to an empty set (Line 2).
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QCS-MAB first checks if there is an unselected routing
path ∈ Rt

n (Line 4). If such a route exists, QCS-MAB
selects it once as the path chosen, denoted by qtn, for
exploration for UE n at time slot t(Line 5) and appends
it to the history set (Line 6). QCS-MAB then observes the
perceived latency by UE n on this new routing path qtn
at time slot t (Line 7). The sample mean latency per unit
of the received content, D̄n,qtn,t

, for routing path qtn is then
updated (Line 8). This allows for comparison of the average
experienced latency per unit of content for each routing
path. The parameter χn,qtn,t

represents the number of times
that the newly selected routing path qtn has been selected
for UE n until time slot t. It is initially is set to 1 for each
newly selected routing path and used in the calculation of
the average latency per unit of content by that routing path
(Line 9).

If there is no unselected routing path, QCS-MAB selects
the optimal routing path ptn among the already explored
routing paths, representing the up to this point optimal
path (Line 11). The parameter β balances exploitation and
exploration and assigns a value to the less selected routing
paths. The first term of the formula gives higher value to the
already best routing paths with the lowest average latency,
which represents exploitation. As the routing path, p, is
selected less often over time, the second term becomes
more significant, leading to exploration of less observed
routing paths. The value of β adjusts the weight between the
first term (exploitation) and the second term (exploitation).
When a new routing path is selected, QCS-MAB observes
the new latency Dn,pt

n,t
(Line 12) and updates the mean

latency per unit of content D̄n,pt
n,t

by calculating the average
of past and newly observed latencies, then increments the
count of times the path has been selected χn,pt

n,t
(Lines 13-

14). This adaptive iterative process enables QCS-MAB to
continuously refine the selection of routing paths for each
UE at every time slot. The algorithm outputs the optimal
routing path p̄tn for each UE at each time slot, based on the
accumulated data and learning. QCS-MAB progressively
improves the selected routing paths as more knowledge
about different routing paths and network conditions is
gained over time, leading to improved QoS.

4.2 Regret Analysis

We assess the performance loss of each UE during the
learning process of QCS-MAB by measuring the learning
regret to quantify the efficiency and effectiveness of the
obtained routing paths selected over time. The learning
regret is a combination of sampling regret and handover
regret, as described in [36]. The sampling regret refers to
the expected loss in reward due to the lack of perfect
knowledge about the optimal strategy. It is calculated as the
expected difference between the total rewards if an optimal
routing path was used and the actual total rewards that was
realized using selected routing path. Therefore, it captures
the regret incurred due to not knowing the best routing path
a priori. On the other hand, the handover regret indicates
the expected handover latency for a UE due to handovers
between different routing paths. Handover regret is a critical
component in dynamic environments like 5G-MEC, where
UEs frequently switch between different routing paths.

Algorithm 1 QoS-Aware 5G-MEC Component Selection
based on Multi-Armed Bandit (QCS-MAB)

1: Input: ltn,Rt
n, c

t
n, β at the beginning of each time slot for

UE n, ∀t ∈ T

2: Hn = ∅
3: for all t ∈ T do
4: if ∃ q ∈ Rt

n such that q ̸∈ Hn then
5: Select qtn = q

6: Hn = Hn ∪ qtn
7: Observe latency Dn,qtn,t

on path qtn

8: Update mean latency D̄n,qtn,t
=

Dn,qtn,t

ctn
9: χn,qtn,t

= 1
10: else
11: Select ptn = argmin

p∈Hn

(D̄n,p,t − β
√

2 ln t
χn,p,t

)

12: Observe new latency Dn,pt
n,t

on path ptn

13: Update D̄n,pt
n,t

=
χn,ptn,t×D̄n,ptn,t+

D
n,ptn,t

ctn

χn,ptn,t+1

14: χn,pt
n,t

= χn,pt
n,t

+ 1
15: end if
16: Update and store the optimal path p̄tn for UE n at t
17: end for

The learning regret for UE n until time T is represented
by Rn,T and is defined as follows:

Rn,T = E[
T∑

t=1

Dn,p̄t
n,t

−Dn,p∗
n,t

]︸ ︷︷ ︸
sampling regret

+ E[hn,pt
n
]︸ ︷︷ ︸

handover
regret

where Dn,p̄t
n,t

and Dn,p∗
n,t represent the latencies experi-

enced by UE n using the chosen routing path p̄tn and the
optimal routing path p∗n, respectively. Furthermore, E[hn,pt

n
]

indicates the expected handover regret for UE n when using
the path ptn. In particular, hn,pt

n
captures the latency when

handover happens. This is the amount of regret QCS-MAB
experiences for not knowing the best arm (path) in advance.
This regret analysis provides a comprehensive measure of
the algorithm’s performance over time, taking into account
both the quality of routing decisions and the impact of
handovers.

5 QOS-AWARE 5G-MEC COMPONENT SELECTION
BASED ON DEEP NEURAL NETWORK

Deep Neural Networks (DNNs) have emerged as a powerful
approach in Machine Learning (ML) with an ability to
uncover complex patterns and deliver precise predictions
from data across diverse domains such as computer vision,
speech recognition, and big data analysis. Deep learning
(DL) algorithms, including DNNs, have capability to effi-
ciently process large and complex datasets, making them
particularly suitable for dynamic and multifaceted problems
like 5G-MEC component selection. In contrast to traditional
optimization algorithms that are typically designed to me-
thodically search for the optimal solution, DNNs are adept
at quickly finding near-optimal solutions in real-time. This
distinction is critical in large-scale or complex scenarios
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Fig. 4: A general framework for 5G-MEC component selection using fully connected DNN

where exhaustive searches for the absolute optimal solution
might be computationally prohibitive or time-consuming.
While MAB methods, such as QCS-MAB, are valuable for
their ability to adaptively learn optimal strategies through
sequential decision-making, they have their limitations. In
the initial stages of the learning process, MAB approaches
can lead to the selection of suboptimal routing paths, result-
ing in higher handover frequencies and content migrations
between EASs. MAB approaches also require a well-defined
reward system that often involve more complex implemen-
tation and training procedures. Given these considerations,
DNNs present a valuable alternative for 5G-MEC compo-
nent selection.

According to the universal approximation theorem of
DNNs [37], a DNN with at least one hidden layer can
approximate any continuous function to a high degree of
accuracy, given sufficient data and computational resources.
This theoretical foundation assures that DNNs can effec-
tively be suitable for the 5G-MEC component selection,
where the underlying system dynamics are too complex for
traditional modeling approaches. Moreover, choosing DNN
over other ML approaches such as Graph Neural Networks
(GNNs) [38] or Support Vector Machines (SVMs) [39] in
component selection is justified by its computational effi-
ciency, simplified model complexity, ease of implementa-
tion, focus on node-level features, and potential benefits
with larger labeled datasets.

To solve the 5G-MEC component selection using a DNN
(QCS-DNN), we model the network as a fully connected
neural network. The 5G-MEC architecture consists of three
layers (UEs, gNBs, and EASs), with fixed structures for
gNBs and EASs, while the location of UEs changes over
time.

5.1 Training and Evaluation of the QCS-DNN Model
QCS-DNN begins with data preprocessing, involving the
import of a dataset containing the selected features relevant

to the 5G-MEC component selection problem. To ensure
stability and convergence during training, we normalize the
input data using the StandardScaler, a crucial step that stan-
dardizes feature values and prevents any particular feature
from disproportionately influencing the learning process
due to variance in scale.

The dataset is then divided into training and testing
sets, with 80% of the data allocated for training and the
remaining 20% for testing, allowing the model to be evalu-
ated on unseen data. The target variable undergoes one-hot
encoding to make it suitable for multi-class classification.
Through numerical analysis, we establish a neural network
architecture for QCS-DNN consisting of four layers: three
hidden layers and one output layer. We choose the ReLU
activation function for the hidden layers due to its effi-
ciency in converging to optimal results and the Sigmoid
activation function for the output layer, which is particularly
suitable for multi-class classification tasks. Following the
architectural design, we compile the model, specifying the
categorical cross-entropy loss function and the Adam opti-
mizer. This compilation step readies the model for training
by defining the necessary parameters for gradient descent
and error computation. The training process is conducted
over 200 epochs, with a batch size of 8000, carefully chosen
through experimentation to balance model performance and
computational efficiency. The optimal 5G-MEC component
selection policies obtained from running the IP (per different
UEs) are used as labeled samples to train the DNN. These
policies, serving as ground truth labels, guide the model
during training. Once the training of the DNN is completed,
we evaluate its performance on the test samples. This eval-
uation assesses how well the model generalizes to unseen
20% samples we considered separately for the testing phase.

5.2 QCS-DNN Model Architecture
The QCS-DNN model’s architecture is an integral part of its
functionality, designed specifically for the 5G-MEC compo-
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nent selection problem. The QCS-DNN framework is illus-
trated in Fig. 4, comprises several layers, each contributing
to processing the input data and extracting meaningful pat-
terns. The inputs to the QCS-DNN include the content size
of each UE n ∈ N , the wireless transmission speed between
each UE n ∈ N and all the corresponding gNB g ∈ G
at different time slots, and the assigned routing path from
the previous time slot. We do not feed explicit information
about the UEs locations and 5G-MEC to QCS-DNN as the
impact of the UE locations is inherently reflected by the
wireless transmission speed and while other parameters of
the 5G-MEC are fixed. In addition, the hidden layers of
the model, denoted as X1, X2, ..., Xn, consists of neurons
that process these inputs. The weights Wu,v and Wv,w for
neuron Xv refer to the input and output data size (e.g.,
weights of the DNN model) of the neuron, respectively. This
determines the flow and transformation of data through the
network. After the input data is processed in these layers,
the extracted features generated by the last layer will be pro-
cessed by a classifier and recognized as the output, denoting
the path formed from the selected 5G-MEC components.

QCS-DNN model aims to offer a reliable and efficient
solution for 5G-MEC component selection, tailored to adapt
to the dynamic and complex nature of the environment.

6 EXPERIMENTAL RESULTS

This section compares the performance of our proposed
approaches, QCS-MAB and QCS-DNN, with other ap-
proaches.

6.1 Experimental Setup

We consider the following benchmarks:
• IP: We use IBM ILOG Concert Technology API for

C++ [40] to implement our IP model, presented in
equations (1-12). The IP model serves as a benchmark,
providing the optimal solution,

• Epsilon Greedy (ϵ-Greedy): This is an MAB approach
that balances exploration and exploitation based on
the ϵ probability,

• Nearest Neighbor (NN): This is a heuristic approach
that leverages the geographical proximity of the content
delivery routing path and chooses the physically closest
path, and

• Round Robin (RR): This is a heuristic approach that
cycles through available content delivery routing paths
in a predetermined order, ensuring that each path gets
an equal share of content delivery requests.

All approaches are implemented in C++, and the experi-
ments are conducted on a desktop PC with 2.80 GHz, 11th
Gen Intel(R) Core(TM) i7-1165G7 and 16 GB RAM.

We use different datasets to represent various compo-
nents of a 5G-MEC system. To determine the coordinates
of UEs at each time slot, we use three datasets with dif-
ferent mobility patterns, including subway trains, buses,
walking, rode trolleys, cars, and trucks, to evaluate the
performance of our proposed approaches. These datasets
are: 1) RioBuses [41], a dataset of mobility traces of buses
in Rio de Janeiro, Brazil; 2) Oviedo/asturies-er [42], which
contains mobility and connectivity traces extracted from

TABLE 3: Experiment Scenarios

Exp. # UEs # gNB # PSA UPF # EAS

1 12 2 2 2
2 25 2 2 2
3 50 6 2 2
4 100 8 3 3
5 150 8 4 4
6 200 10 5 5

GPS traces collected from the regional Fire Department
of Asturias, Spain; 3) mobilitymodels [43] a collection of
people mobility traces from five different sites - two univer-
sity campuses (NCSU and KAIST), New York City, Disney
World (Orlando), and North Carolina state fair. Each dataset
comprises a third of all coordinates of the applications, and
the datasets are mapped to the same geographic area for
consistency (coordinates of Oviedo/asturies-er and mobili-
tymodels datasets are mapped to the same geographic area
as RioBuses dataset). Some coordinates were in Geodetic
Coordinate system and were converted to the Cartesian for
consistency in the dataset. The contents requested by the
UEs at each time slot are obtained from [44] and scaled
ranging from 3-5GB. The time slot duration is set to 60
seconds.

ThousandEyes [45], a network intelligence company ac-
quired by Cisco, utilizes a dynamic monitoring technique to
gather important network metrics such as loss, latency, jitter,
and detailed path metrics with layer-3 hops. To model the
transmission speeds between links in a 5G network, we use
the latency between hops obtained from ThousandEyes. The
5G links are divided into three parts: Fronthaul, Midhaul,
and Backhaul. Fronthaul refers to the connectivity between
gNB RUs and gNB DUs; Midhaul to the communication
link between gNB DUs and gNB CUs; and Backhaul to the
connection between gNB CUs (with PSA UPFs) and EASs.
We place three hops between the source and target nodes
to model the transmission speeds in these links, resulting
in a path with five nodes from source to target. These
nodes are characterized as the gNB RU (source node), gNB
DU (second node), gNB CU (third node), PSA UPF (fourth
node), and EAS (fifth node), and together they form the 5G-
MEC framework depicted in Fig. 1.

Based on the latency values obtained from Thou-
sandEyes and data transmission size, we calculate the cor-
responding data transmission speeds in the links and scale
them up to characterize the speeds in 5G-MEC. Then, we
determine the minimum and maximum speeds in each
hop using these samples and use a uniform distribution to
simulate additional data for the experiments. Similarly, we
use the method described in [46] to model the wireless trans-
mission speed of the UEs connecting to the gNB RUs at each
time slot. Then, these values are scaled to be appropriate for
5G-MEC.

As shown in Table 3, six scenarios are designed for the
experiments. The parameter β in QCS-MAB and ϵ in ϵ-
Greedy are set to 10−4 and 0.3, respectively. We conduct a
sensitivity analysis on the value of β ranging between 10−5

to 10−2 to learn the best β value that results in minimizing
latency (see Fig. 7a).
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Fig. 5: Performance Analysis (* no bars for IP in Exp. 3-6 since IP was unable to determine any solution in feasible time)

6.2 Comparative Analysis

We use different metrics such as experienced latency, han-
dover time, content delivery time, handover ratio, and re-
gret analysis to compare QCS-DNN and QCS-MAB with IP,
ϵ-Greedy, NN, and RR algorithms. The time horizon T is
set to 1000 for Figs. 5a-5d. Due to the NP-hardness of the
problem, obtaining optimal results through IP is intractable.
In the experiments, the maximum feasible time for the
solver to find a solution is set to 120 minutes. However, the
solver was unable to obtain optimal solutions within this
time frame for most scenarios.

Comparative Analysis on Latency. Fig. 5a shows the average
latency per time slot for UEs, measured in seconds. The
results indicate that IP could not find a solution for Exp. 3-6
due to the NP-hardness of the problem. QCS-MAB performs
close to optimal results in Exp. 1-2 and has consistently
lower latency time in all experiments compared to ϵ-Greedy.
ϵ-Greedy uses a simple random technique to balance explo-
ration and exploitation. However, QCS-MAB intentionally
forms this tradeoff by considering the repetition of the
least observed routing paths and utilizes a more in-depth
formula to minimize latency. QCS-DNN outperforms QCS-
MAB in larger-scale experiments as it has more informa-
tion about the best routing paths for UEs under different
circumstances, enabling it to make better decisions consid-
ering the dynamic and changing behavior of UEs and 5G-
MEC. In general, our approaches outperform the NN and
RR algorithms significantly. These algorithms rely on static
content delivery decisions and lack adaptability to changing
conditions, resulting in suboptimal performance in dynamic

environments.

Comparative Analysis on Handover Time. Fig. 5b shows the
average handover time of UEs per time slot in milliseconds.
QCS-MAB demonstrates comparable results with QCS-
DNN in Exp. 1-3 and significantly reduced handover time
compared to ϵ-Greedy. This improvement is because of the
selection of the best β value for QCS-MAB, which effectively
balances exploration and exploitation, leading to a reduction
in both handover time and latency. Likewise, QCS-DNN
outperforms ϵ-Greedy as it can make better decisions by
gathering extensive data on the most suitable routing paths.
ϵ-Greedy results in a higher handover time due to its ran-
dom nature caused by the value of ϵ. However, QCS-DNN
outperforms QCS-MAB significantly in larger-scale experi-
ments by making more informed decisions, thus reducing
the need for frequent handover. IP does not achieve the best
handover time in Exp. 1-2, as the minimization of handover
is not its direct objective (but the total latency is). The NN
algorithm consistently selects the closest route for content
delivery, effectively eliminating handovers. In contrast, the
RR algorithm leads to a large number of handovers due to
its cyclic allocation of requests to different content delivery
routes.

Comparative Analysis on Content Delivery Time. Fig. 5c shows
the results of the average content delivery time of UEs
per time slot. UEs experience better content delivery time
with QCS-MAB compared to ϵ-Greedy in all experiments.
In Exp. 1-2, QCS-MAB shows close to optimal results. This
is due to the fact that QCS-MAB effectively selects the
best routing paths or explores less selected ones. QCS-DNN
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Fig. 6: Regret Analysis

achieves the best results in larger experiments (Exp. 3-6) as
it can better determine the best routing paths for UEs based
on the additional information obtained. QCS-DNN and
QCS-MAB significantly outperform NN and RR algorithms
because they better adapt to changing conditions, enabling
them to make more efficient content delivery decisions.

Comparative Analysis on Handover Ratio. We measure the
handover ratio as the percentage of handover that occurs
for each UE per time slot. Fig.5d shows the handover ratio
for each approach. Although IP can only solve Exp. 1-2
within a feasible timeframe, it does not consistently achieve
the minimum handover ratio. QCS-DNN and QCS-MAB
show comparable handover ratios, both approaches tend
to experience higher ratios in larger experiments due to
the increased availability of routing path options, which
are leveraged to minimize latency. In comparison, ϵ-Greedy
consistently results in significantly higher handover ratios
across all experiments. NN has a handover ratio close to
zero because it consistently selects the closest content deliv-
ery route, eliminating the need for frequent handovers. In
contrast, RR has the worst handover ratio, close to one, due
to cyclically distributing the UE requests to different routes,
causing frequent connection switches and high handover
rates.

Comparative Analysis on Regret. The learning regret, which
represents the deviation percentage from the optimal result,
is compared in Fig. 6. The results from Exp. 6 were used to
assess the regret of QCS-DNN and QCS-MAB approaches.
QCS-DNN results in minimum regret, close to 0, in all time
slots (close to the actual values of the labels), significantly
outperforming other approaches. QCS-MAB shows a de-
creasing regret over time as there are more samples available
for learning. This indicates QCS-MAB’s ability to gradually
approximate optimal paths, despite initial deviations and a
higher frequency of handovers. However, ϵ-Greedy shows
a random and not-linear pattern. NN and RR algorithms
exhibit the highest regret and lack any reduction in regret
over time, primarily due to lack of adaptability and learning
capabilities.

6.3 Sensitivity Analysis

We conduct sensitivity analysis to evaluate the impact of
two parameters, β value and number of time slots T , on
the results while keeping the other parameters fixed to

investigate the sensitivity over each distinct parameter.

Sensitivity Analysis on Beta. In QCS-MAB, β determines
the weight of exploration versus exploitation. For Exp. 6
with T = 1000, we perform two sensitivity analyses on
the β value to investigate its impact on latency and han-
dover ratio. The results are presented in Figs. 7a and 7b,
respectively. It should be noted that the other approaches
are not sensitive to the value of β, we only present their
results. The results show that the best β for the latency is
the one that strikes the best balance between exploration
and exploitation, which in our case, is 0.0001. The results
also indicate that as β increases, the handover ratio also
increases. This is because a higher value of β causes a
higher chance for exploration, which in turn leads to more
handovers.

Sensitivity Analysis on Time Horizon. We carry out a sensi-
tivity analysis on the number of time slots (T ) for Exp. 6
to evaluate its impact on latency and handover ratio. The
results are presented in Figs. 7c and 7d, respectively. As
the number of iterations (time slots) increases, QCS-MAB
is able to make better decisions and learn which routing
paths result in optimal latency and lower handover ratio.
QCS-DNN maintains consistent latency across different time
slots due to sufficient initial information in the large-scale
experiment (Exp. 6), although its handover ratio increases
slightly. As expected, ϵ-Greedy does not exhibit meaningful
sensitivity when the number of time slots increases. Both the
NN and RR algorithms show insensitivity to the number of
time slots and consistently result in higher latency across
different numbers of time slots. NN consistently achieves
a handover ratio of 0, while RR consistently results in a
handover ratio of close to 1 for various time slots.

To sum up, the results demonstrate the effectiveness
of our proposed approaches, QCS-MAB and QCS-DNN,
in finding the optimal routing paths along with the corre-
sponding 5G-MEC components for UEs, ensuring efficient
high-speed content delivery with low latency, minimal han-
dover time, and optimal content delivery times. While QCS-
MAB performs well in smaller experiments, QCS-DNN
exhibits better results for larger experiments.

7 CONCLUSION AND FUTURE WORK

This paper tackled the critical challenge of component se-
lection in 5G-MEC, which plays a pivotal role in allevi-
ating backhaul congestion and enhancing QoS for UEs.
We proposed two learning-based approaches to learn the
optimal components that result in minimum latency for
UEs. First, we proposed QCS-MAB, a multi-armed bandit-
based approach that learns the optimal routing paths for
UEs over time based on a tradeoff between exploration
and exploitation. Then, we proposed QCS-DNN, a fully-
connected neural network that makes the optimal routing
path decisions based on historical data analysis. The ex-
perimental results indicate that our approaches outperform
traditional methods in terms of latency reduction and han-
dover ratio, showcasing their effectiveness in a 5G-MEC
context. Future research directions include investigating
methods to encourage cooperation among UEs to facilitate
content sharing among adjacent UEs, ultimately reducing
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Fig. 7: Sensitivity Analysis

routing path length and enhancing QoS. We intend to
explore GNNs to model complex interconnections within
the network infrastructure (virtual networks and network
slicing), potentially enhancing the efficiency of resource
allocation, network traffic management, and personalized
QoS in dynamic 5G-MEC environments.
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