Eoin L BrodieLawrence Berkeley National Laboratory | LBL · Ecology Department
Eoin L Brodie
PhD
About
440
Publications
89,854
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
38,463
Citations
Publications
Publications (440)
Snowmelt in high-elevation watersheds triggers a microbial bloom and crash that affects nitrogen (N) export. Predicting watershed N dynamics as snowpack declines is a challenge because the mechanisms that underlie this microbial bloom and crash are uncertain. Using a multi-omic approach, we show that the dynamic molecular properties of dissolved or...
Microbes drive fundamental ecosystem processes such as decomposition. Environmental stressors are known to affect microbes, their fitness, and the ecosystem functions that they perform, yet understanding the causal mechanisms behind this influence has been difficult. We used leaf litter on soil surface as a model in situ system to assess changes in...
Microbes drive the biogeochemical cycles of earth systems, yet the long-standing goal of linking emerging genomic information, microbial traits, mechanistic ecosystem models, and projections under climate change has remained elusive despite a wealth of emerging genomic information. Here we developed a general genome-to-ecosystem (G2E) framework for...
Microbes drive fundamental ecosystem processes such as decomposition. Environmental stressors are known to affect microbes, their fitness, and the ecosystem functions that they perform, yet understanding the causal mechanisms behind this influence has been difficult. We used leaf litter on soil surface as a model in situ system to assess changes in...
Quantifying the temperature sensitivity of methane (CH4) production is crucial for predicting how wetland ecosystems will respond to climate warming. Typically, the temperature sensitivity (often quantified as a Q10 value) is derived from laboratory incubation studies and then used in biogeochemical models. However, studies report wide variation in...
Mountainous watersheds are characterized by variability in functional traits, including vegetation, topography, geology, and geomorphology, which determine nitrogen (N) retention, and release. Coal Creek and East River are two contrasting catchments within the Upper Colorado River Basin that differ markedly in total nitrate (NO3⁻) export. The East...
Objectives
We aim to estimate geographic variability in total numbers of infections and infection fatality ratios (IFR; the number of deaths caused by an infection per 1,000 infected people) when the availability and quality of data on disease burden are limited during an epidemic.
Methods
We develop a noncentral hypergeometric framework that acco...
Soil microbiomes are highly diverse, and to improve their representation in biogeochemical models, microbial genome data can be leveraged to infer key functional traits. By integrating genome-inferred traits into a theory-based hierarchical framework, emergent behaviour arising from interactions of individual traits can be predicted. Here we combin...
Background
Viruses impact nearly all organisms on Earth, including microbial communities and their associated biogeochemical processes. In soils, highly diverse viral communities have been identified, with a global distribution seemingly driven by multiple biotic and abiotic factors, especially soil temperature and moisture. However, our current un...
Drying-rewetting cycles are ubiquitous across natural and managed ecosystems. These cycles are known to mobilize carbon (C) in soils producing dramatic pulses in microbial respiration. While many factors contribute to these pulses, the drying-rewetting history of soils affecting carbon emissions remains unclear, especially in irrigated soils where...
Metagenomes encode an enormous diversity of proteins, reflecting a multiplicity of functions and activities 1,2 . Exploration of this vast sequence space has been limited to a comparative analysis against reference microbial genomes and protein families derived from those genomes. Here, to examine the scale of yet untapped functional diversity beyo...
The coffee berry borer (Hypothenemus hampei) is the most devastating insect pest of coffee worldwide with its infestations decreasing crop yield by up to 80%. Caffeine is an alkaloid that can be toxic to insects and is hypothesized to act as a defence mechanism to inhibit herbivory. Here we show that caffeine is degraded in the gut of H. hampei, an...
To comprehensively represent the diverse traits found in soil microbiomes in biogeochemical models, it is crucial to leverage information from microbial genomes. This can be achieved by incorporating microbial traits into a theory-based hierarchical framework, allowing for emergent behavior to occur through trait interactions. Here, we combined the...
Microorganisms are the primary engines of biogeochemical processes and foundational to the provisioning of ecosystem services to human society. Free‐living microbial communities (microbiomes) and their functioning are now known to be highly sensitive to environmental change. Given microorganisms' capacity for rapid evolution, evolutionary processes...
The gut is continuously invaded by diverse bacteria from the diet and the environment, yet microbiome composition is relatively stable over time for host species ranging from mammals to insects, suggesting host-specific factors may selectively maintain key species of bacteria. To investigate host specificity, we used gnotobiotic Drosophila, microbi...
Viruses, including phages, impact nearly all organisms on Earth, including microbial communities and their associated biogeochemical processes. In soils, highly diverse viral communities have been identified, with a global distribution seemingly driven by multiple biotic and abiotic factors, especially soil temperature and moisture. However, our cu...
The root anatomical phenotype root cortical aerenchyma (RCA) decreases the metabolic cost of soil exploration and improves plant growth under drought and low soil fertility. RCA may also change the microenvironment of rhizosphere microorganisms by increasing oxygen availability or by reducing carbon rhizodeposition. We tested the hypothesis that pl...
Aim
Soil nitrogen (N) cycling is critical to the productivity of terrestrial ecosystems. However, the impact of global change factors (GCFs) on the microbial mediators of N cycling pathways has yet to be synthesized, and it also remains unclear whether the response of the abundance of N‐cycling genes can predict changes in their corresponding proce...
High-throughput RNA sequencing offers broad opportunities to explore the Earth RNA virome. Mining 5,150 diverse metatranscriptomes uncovered >2.5 million RNA virus contigs. Analysis of >330,000 RNA-dependent RNA polymerases (RdRPs) shows that this expansion corresponds to a 5-fold increase of the known RNA virus diversity. Gene content analysis rev...
The incidence of esophageal adenocarcinoma (EA) has drastically increased in the United States since 1970s for unclear reasons. We hypothesized that the widespread usage of antibiotics has increased the procarcinogenic potential of the orodigestive microbiota along the sequence of gastroesophageal reflux (GR), Barrett's esophagus (BE) and EA phenot...
Efficient biochemical transformation of belowground carbon by microorganisms plays a critical role in determining the long-term fate of soil carbon. As plants assimilate carbon from the atmosphere, up to 50% is exuded into the area surrounding growing roots, where it may be transformed into microbial biomass and subsequently stabilized through mine...
Recent evidence suggests that, similar to larger organisms, dispersal is a key driver of microbiome assembly; however, our understanding of the rates and taxonomic composition of microbial dispersal in natural environments is limited. Here, we characterized the rate and composition of bacteria dispersing into surface soil via three dispersal routes...
Remote sensing approaches have revolutionized the study of macroorganisms, allowing theories of population and community ecology to be tested across increasingly larger scales without much compromise in resolution of biological complexity. In microbial ecology, our remote window into the ecology of microorganisms is through the lens of genome seque...
Soil microorganisms have adapted to compete and exploit different metabolic niches in their physically and chemically diverse environment via evolution and acquisition of distinct physiological and biochemical traits. As the interface for most carbon and nutrient exchange between plants and microorganisms, the rhizosphere has received substantial a...
Small genes (<150 nucleotides) have been systematically overlooked in phage genomes. We employ a large-scale comparative genomics approach to predict >40,000 small-gene families in ∼2.3 million phage genome contigs. We find that small genes in phage genomes are approximately 3-fold more prevalent than in host prokaryotic genomes. Our approach enric...
The perennial native switchgrass adapts better than other plant species do to marginal soils with low plant-available nutrients, including those with low phosphorus (P) content. Switchgrass roots and their associated microorganisms can alter the pools of available P throughout the whole soil profile making predictions of P availability in situ chal...
Soil microorganisms shape global element cycles in life and death. Living soil microorganisms are a major engine of terrestrial biogeochemistry, driving the turnover of soil organic matter — Earth’s largest terrestrial carbon pool and the primary source of plant nutrients. Their metabolic functions are influenced by ecological interactions with oth...
Peatlands are climate critical carbon (C) reservoirs that could become a C source under continued warming. A strong relationship between plant tissue chemistry and the soil organic matter (SOM) that fuels C gas emissions is inferred, but rarely examined at the molecular level. Here we compared Fourier transform infrared (FT-IR) spectroscopy measure...
Mortality rates during the COVID-19 pandemic have varied by orders of magnitude across communities in the United States. Individual, socioeconomic, and environmental factors have been linked to health outcomes of COVID-19. It is now widely appreciated that the environmental microbiome, composed of microbial communities associated with soil, water,...
Background: During a pandemic, estimates of geographic variability in disease burden are important but limited by the availability and quality of data.
Methods: We propose a framework for estimating geographic variability in testing effort, total number of infections, and infection fatality ratio (IFR). Because symptomatic people are more likely to...
Roots are a primary source of organic carbon input in most soils. The consumption of living and detrital root inputs involves multi-trophic processes and multiple kingdoms of microbial life, but typical microbial ecology studies focus on only one or two major lineages. We used Illumina shotgun RNA sequencing to conduct PCR-independent SSU rRNA comm...
Current knowledge of the mechanisms driving soil organic matter (SOM) turnover and responses to warming is mainly limited to surface soils, although over 50% of global soil carbon is contained in subsoils. Deep soils have different physicochemical properties, nutrient inputs, and microbiomes, which may harbor distinct functional traits and lead to...
Permafrost thaw is a major potential feedback source to climate change as it can drive increased release of greenhouse gases carbon dioxide (CO2) and methane (CH4). This carbon release from decomposition of thawing soil organic material can be mitigated by increased net primary production (NPP) caused by warming, increasing atmospheric CO2, and pla...
In studying problems like plant‐soil‐microbe interactions in environmental biogeochemistry and ecology, one usually has to quantify and model how substrates control the growth of, and interaction among, biological organisms (and abiotic factors, e.g., adsorptive mineral soil surfaces). To address these substrate‐consumer relationships, many substra...
Maize-forage grasses intercropping systems have been increasingly adopted by farmers because of their capacity to recycle nutrients, provide mulch, and add C to soil. However, grasses have been shown to increase nitrous oxide (N2O) emissions. Some tropical grasses cause biological nitrification inhibition (BNI) which could mitigate N2O emissions in...
Increased drought and temperatures associated with climate change have implications for ecosystem stress with risk for enhanced carbon release in sensitive biomes. Litter decomposition is a key component of biogeochemical cycling in terrestrial ecosystems, but questions remain regarding the local response of decomposition processes to climate chang...
Current knowledge of the mechanisms and responses of soil organic matter (SOM) turnover to warming is mainly limited to surface soils, although over 50% of global soil carbon is contained in subsoils. Deep soils have different physicochemical properties, nutrient inputs and microbiomes, which may harbor distinct functional traits and lead to differ...
Switchgrass is a deep-rooted perennial native to the US prairies and an attractive feedstock for bioenergy production; when cultivated on marginal soils it can provide a potential mechanism to sequester and accumulate soil carbon (C). However, the impacts of switchgrass establishment on soil biotic/abiotic properties are poorly understood. Addition...
Microorganisms have evolved several mechanisms to mobilize and mineralize occluded and insoluble phosphorus (P), thereby promoting plant growth in terrestrial ecosystems. However, the linkages between microbial P-solubilization traits and the preponderance of insoluble P in natural ecosystems are not well known. We tested the P solubilization trait...
Snowmelt dynamics are a significant determinant of microbial metabolism in soil and regulate global biogeochemical cycles of carbon and nutrients by creating seasonal variations in soil redox and nutrient pools. With an increasing concern that climate change accelerates both snowmelt timing and rate, obtaining an accurate characterization of microb...
The U.S. Department of Energy's (DOE) Colorado East River Community Observatory (ER) in the Upper Colorado River Basin was established in 2015 as a representative mountainous, snow‐dominated watershed to study hydrobiogeochemical responses to hydrological perturbations in headwater systems. The ER is characterized by steep elevation, geologic, hydr...
Some insects form symbioses in which actinomycetes provide defense against pathogens by making antimicrobials. The range of chemical strategies employed across these associations, and how these strategies relate to insect lifestyle, remains underexplored. We assessed subsocial passalid beetles of the species Odontotaenius disjunctus, and their fras...
Background
Despite their widespread distribution and ecological importance, protists remain one of the least understood components of the soil and rhizosphere microbiome. Knowledge of the roles that protists play in stimulating organic matter decomposition and shaping microbiome dynamics continues to grow, but there remains a need to understand the...
Physical samples are foundational entities for research across biological, Earth, and environmental sciences. Data generated from sample-based analyses are not only the basis of individual studies, but can also be integrated with other data to answer new and broader-scale questions. Ecosystem studies increasingly rely on multidisciplinary team-scie...
Snowmelt dynamics are a significant determinant of microbial metabolism in soil and regulate global biogeochemical cycles of carbon and nutrients by creating seasonal variations in soil redox and nutrient pools. With an increasing concern that climate change accelerates both snowmelt timing and rate, obtaining an accurate characterization of microb...
Carbohydrate rich substrates such as lignocellulosic hydrolysates remain one of the primary sources of potentially renewable fuel and bulk chemicals. The pentose sugar d-xylose is often present in significant amounts along with hexoses. Saccharomyces cerevisiae can acquire the ability to metabolize d-xylose through expression of heterologous d-xylo...
Recent studies in snowmelt-dominated catchments have documented changes in nitrogen (N) retention over time, such as declines in watershed exports of N, though there is a limited understanding of the controlling processes driving these trends. Working in the mountainous headwater East River Colorado watershed, we explored the effects of riparian ho...
Roots are the primary source of organic carbon inputs to most soils. Decomposition is a multi-trophic process involving multiple kingdoms of microbial life, but typically microbial ecology studies focus on one or two major lineages in isolation. We used Illumina shotgun RNA sequencing to conduct PCR-independent SSU rRNA community analysis ("communi...
Some insects form symbioses in which actinomycetes provide defense against pathogens by making antimicrobials. The range of chemical strategies employed across these symbioses, and how these strategies relate to insect social behavior and mechanisms of symbiont transmission, remains underexplored. Here, we assess subsocial passalid beetles Odontota...
Young women in sub-Saharan Africa are disproportionally affected by HIV infection and unintended pregnancies. However, hormonal contraceptive (HC) use may influence HIV risk through changes in genital tract microbiota and inflammatory cytokines. To investigate this, 130 HIV negative adolescent females aged 15–19 years were enrolled into a substudy...
Modern microbial and ecosystem sciences require diverse interdisciplinary teams that are often challenged in “speaking” to one another due to different languages and data product types. Here we introduce the IsoGenie Database (IsoGenieDB; https://isogenie-db.asc.ohio-state.edu/ ), a de novo developed data management and exploration platform, as a s...
In recent years, the availability of airborne imaging spectroscopy (hyperspectral) data has expanded dramatically. The high spatial and spectral resolution of these data uniquely enable spatially explicit ecological studies including species mapping, assessment of drought mortality and foliar trait distributions. However, we have barely begun to un...
This study investigates the isolated decomposition of spruce and lodgepole conifer needles to enhance our understanding of how needle litter impacts near-surface terrestrial biogeochemical processes. Harvested needles were exported to a subalpine meadow to enable a discrete analysis of the decomposition processes over 2 years. Initial chemistry rev...
Soil microbial biomass can reach its annual maximum pool size beneath the winter snowpack and is known to decline abruptly following snowmelt in seasonally snow-covered ecosystems. Observed differences in winter versus summer microbial taxonomic composition also suggests that phylogenetically conserved traits may permit winter- versus summer-adapte...
Drought represents a significant stress to microorganisms and is known to reduce microbial activity and organic matter decomposition in Mediterranean ecosystems. However, we lack a detailed understanding of the drought stress response of microbial decomposers. Here we present metatranscriptomic and metabolomic data on the physiological response of...
Soil bacterial communities are altered by anthropogenic drivers such as climate change-related warming and fertilization. However, we lack a predictive understanding of how bacterial communities respond to such global changes. Here, we tested whether phylogenetic information might be more predictive of the response of bacterial taxa to some forms o...
Microbial activity increases after rewetting dry soil, resulting in a pulse of carbon mineralization and nutrient availability. The biogeochemical responses to wet-up are reasonably well understood and known to be microbially mediated. Yet, the population level dynamics, and the resulting changes in microbial community patterns, are not well unders...