
Enrique VivoniArizona State University | ASU · School of Sustainable Engineering and the Built Environment
Enrique Vivoni
PhD
Fulton Professor of Hydrosystems Engineering and Director, Center for Hydrologic Innovations at Arizona State University
About
318
Publications
62,785
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
10,360
Citations
Citations since 2017
Introduction
Our research group at Arizona State University studies hydrological processes in natural and urban environments and their interactions with ecological, atmospheric and geomorphic phenomenon. We are part of the School of Sustainable Engineering and the Built Environment, Global Futures Laboratory, and School of Earth and Space Exploration. Thus, we are integrating scientific, engineering and sustainability principles in water resources. http://hydrology.asu.edu/
Additional affiliations
Education
August 1993 - June 2003
Publications
Publications (318)
Woody plant encroachment (WPE) into grasslands is a global phenomenon that is associated with land degradation via xerification, which replaces grasses with shrubs and bare soil patches. It remains uncertain how the global processes of WPE and climate change may combine to impact water availability for ecosystems. Using a process-based model constr...
The oasis effect refers to the impact of advected energy on the surface energy balance leading to enhanced evapotranspiration. In this study, we utilize a 1-yr record of water, energy, and carbon dioxide (CO 2) fluxes to study the occurrence and signature of the oasis effect in an irrigated turf grass of an arid urban region. Days with the oasis ef...
Irrigation water use associated with agricultural activities and urban green spaces provides substantial cooling effects and ameliorates heat in central Arizona. In this arid and semiarid area, evaluating the effect of irrigation on land surface temperature (LST) for different types of land use can improve decision making related to water resources...
Determining the flow regime of non‐perennial rivers is critical in hydrology. In this study, we developed a new approach using CubeSat imagery to detect streamflow presence using differences in surface reflectance for areas within and outside of a river reach. We calibrated the approach with streamflow records in the Hassayampa River of Arizona ove...
Net primary productivity in arid and semiarid regions is controlled by water availability for which rainfall has been a commonly used proxy at annual scales. However, the hydrological partitioning occurring through the water balance can also shape both seasonal and annual net ecosystem productivity. In this study, we used 10 years of water and carb...
Studies of climate change impacts in the Colorado River Basin have focused on the Upper Basin, finding that warming has exacerbated streamflow declines since 2000. Presently, it is unclear if the predicted high degree of interannual precipitation variability across the basin could overwhelm impacts of future warming and how this might vary in space...
As the major water resource in the southwestern United States, the Colorado River is experiencing decreases in naturalized streamflow and is predicted to face severe challenges under future climate scenarios. To better quantify these hydroclimatic changes, it is crucial that the scientific community establishes a reasonably accurate understanding o...
Flash flooding affects a growing number of people and causes billions of dollars in losses each year with the impact often falling disproportionally on underdeveloped regions. To inform post-flood mitigation efforts, it is crucial to determine flash flooding extents, especially for extreme events. Unfortunately, flood hazard mapping has often been...
As the major water resource in the southwestern United States, the Colorado River is experiencing decreases in naturalized streamflow and is predicted to face severe challenges under future climate scenarios. To better quantify these hydroclimatic changes, it is crucial that the scientific community establishes a reasonably accurate understanding o...
Irrigation in agricultural and urban settings is responsible for nearly 80% of the water use in the Phoenix Metropolitan Area. Over the last three decades, there has been a continuous decrease in cropland area and its water consumption. Meanwhile, urbanization has increased outdoor irrigation to maintain residential areas and parks. Given these tre...
Large amounts of water are consumed by urban parks in arid regions such that efficient irrigation practices are needed. In Phoenix, Arizona, extensive turf grass areas are supported using flood or sprinkler irrigation that also require fertilizers. Residential green waste compost has the potential to serve an alternative fertilizer if its higher co...
Remote sensing-based evapotranspiration (ET) products have been evaluated primarily using data from northern middle latitudes; therefore, little is known about their performance at low latitudes. To address this bias, an evaluation dataset was compiled using eddy covariance data from 40 sites between latitudes 30° S and 30° N. The flux data were ob...
Woody plant encroachment typically limits the forage productivity of managed rangelands and alters a panoply of semiarid ecosystem processes and services. Intervention strategies to reduce woody plant abundance, collectively termed “brush management”, often lack observations to quantify and interpret changes in ecosystem processes. Furthermore, com...
Woody plant encroachment typically limits the forage productivity of managed rangelands and alters a panoply of semiarid ecosystem processes and services. Intervention strategies to reduce woody plant abundance, collectively termed “brush management”, often lack observations to quantify and interpret changes in ecosystem processes. Furthermore, com...
Plain Language Summary
Currently, we cannot forecast flooding depths and extent in real‐time at a high level of detail in urban areas. This is the result of two key issues: detailed and accurate flood modeling requires a lot of computing power for large areas such as a city, and uncertainty in precipitation forecasts is high. We present an innovati...
In drylands, most studies of extreme precipitation events examine effects of individual years or short-term events, yet multiyear periods (>3 y) are expected to have larger impacts on ecosystem dynamics. Our goal was to take advantage of a sequence of multiple long-term (4-y) periods (dry, wet, average) that occurred naturally within a 26-y time fr...
This study proposes a methodology that combines the advantages of the event-based and continuous models, for the derivation of the maximum flow and maximum hydrograph volume frequency curves, by combining a stochastic continuous weather generator (the advanced weather generator, abbreviated as AWE-GEN) with a fully distributed physically based hydr...
Background
In arid and semiarid shrublands, water availability directly influences ecosystem properties.
However, few empirical tests have determined the association between particular soil and
hydrology traits with biodiversity and ecosystem biomass at the local scale.
Methods
We tested if plant species richness (S) and aboveground biomass (AGB) w...
The dependence of arid and semiarid ecosystems on seasonal rainfall is not well understood when sites have access to groundwater. Gradients in terrain conditions in northwest México can help explore this dependence as different ecosystems experience rainfall during the North American monsoon (NAM), but can have variations in groundwater access as w...
Ecosystems across the United States are changing in complex and surprising ways. Ongoing demand for critical ecosystem services requires an understanding of the populations and communities in these ecosystems in the future. This paper represents a synthesis effort of the U.S. National Science Foundation‐funded Long‐Term Ecological Research (LTER) n...
Increasing urban tree cover is an often proposed mitigation strategy against urban heat as trees are expected to cool cities through evapotranspiration and shade provision. However, trees also modify wind flow and urban aerodynamic roughness, which can potentially limit heat dissipation. Existing studies show a varying cooling potential of urban tr...
Woody plant encroachment is a global phenomenon whereby shrubs or trees replace grasses. The hydrological consequences of this ecological shift are of broad interest in ecohydrology, yet little is known of how plant and intercanopy patch dynamics, distributions, and connectivity influence catchment‐scale responses. To address this gap, we establish...
The net ecosystem production and evapotranspiration (ET) of arid and subtropical ecosystems is poorly understood by the lack of measurements of CO2 and water vapor fluxes. Moreover, the contributions related to the fluxes in the different strata (i.e. understory) have been poorly studied. The present investigation estimates ET and CO2 fluxes of a s...
Evapotranspiration is the second largest component of the hydrological cycle after rainfall precipitation in semiarid regions such as northwestern Mexico. In this study, we partitioned the evapotranspiration (ET) flux using stable isotopes of water in the soil-plant-atmosphere continuum in combination with eddy covariance flux measurements. We cons...
Urbanization modifies land surface characteristics with consequent impacts on local energy, water, and carbon dioxide (CO 2) fluxes. Despite the disproportionate impact of cities on CO 2 emissions, few studies have directly quantified CO 2 conditions for different urban land cover patches, in particular for arid and semiarid regions. Here, we prese...
Increasing urbanization is likely to intensify the urban heat island effect, decrease outdoor thermal comfort, and enhance runoff generation in cities. Urban green spaces are often proposed as a mitigation strategy to counteract these adverse effects, and many recent developments of urban climate models focus on the inclusion of green and blue infr...
Surface soil moisture plays a crucial role on the terrestrial water, energy, and carbon cycles. Characterizing its variability in space and time is critical to increase our capability to forecast extreme weather events, manage water resources, and optimize agricultural practices. Global estimates of surface soil moisture are provided by satellite s...
Increasing urbanization is likely to intensify the urban heat island effect, decrease outdoor thermal comfort and enhance runoff generation in cities. Urban green spaces are often proposed as a mitigation strategy to counteract these adverse effects and many recent developments of urban climate models focus on the inclusion of green and blue infras...
Earth systems models require gridded land surface properties to compute fluxes of water, energy, and carbon within the landscape and to the atmosphere. However, most parameter sets contain time-invariant properties despite their known variability. Here we present new MODerate Resolution Imaging Spectroradiometer (MODIS)-based land surface parameter...
A limited understanding of how extreme weather events affect groundwater hinders our ability to predict climate change impacts in drylands, where channel transmission losses are often the primary recharge mechanism. In this study, we investigate how potential changes to precipitation intensity and temperature will affect the water balance of a typi...
In a study by Murray and Lohman (M&L), the authors suggest that remote sensing data are useful for monitoring land subsidence due to aquifer system compaction. We agree. To infer aquifer dynamics, we provide a more detailed and joint analysis of deformation and groundwater data. Investigating well data in the Tulare Basin, we find that groundwater...
RESUMEN El dióxido de carbono (CO 2) es uno de los principales gases de efecto invernadero (GEI) cuyo incremento en la atmósfera está asociado con el calentamiento global. Con el objetivo de promover estudios de síntesis que lleven a un mejor entendimiento de los procesos relacionados con el ciclo del carbono en ecosistemas terrestres y costeros de...
The application of physics-based distributed hydrologic models (DHMs) at hyperresolutions (~100 m) is expected to support several water-related applications, but is still prevented by critical data, model validation, and computational challenges. In this study, we address some of these challenges by applying the TIN-based Real-time Integrated Basin...
Accurate characterization of precipitation P at subdaily temporal resolution is important for a wide range of hydrological applications, yet large-scale gridded observational datasets primarily contain daily total P. Unfortunately, a widely used deterministic approach that disaggregates P uniformly over the day grossly mischaracterizes the diurnal...
Identifying floodplain boundaries is of paramount importance for earth, environmental and socioeconomic studies addressing riverine risk and resource management. However, to date, a global floodplain delineation using a homogeneous procedure has not been constructed. In this paper, we present the first, comprehensive, high-resolution, gridded datas...
In this research, we examined temporal variations in soil water content (θ), infiltration patterns, and potential recharge at three sites with different mountain block positions in a semiarid Mediterranean climate in Baja California, Mexico: two located on opposing aspects (south-(SFS) and north-facing slopes (NFS)) and one located in a flat valley...
An improved understanding of the drivers controlling infiltration patterns in semiarid regions is of key importance, as they have important implications for ecosystem productivity, retention of resources and the restoration of degraded areas. The infiltration depth variability (ΔInf) in vegetation patches at the hillslope scale can be driven by dif...
The linkages between land and water use are often neglected when considering resource management. Here, we examined regional changes in land and water use along the US–Mexico border in the decades following the North American Free Trade Agreement, using bi-national land cover maps from 1992–2011, a process-based hydrology and irrigation model drive...
One of the most pressing global challenges for sustainable development is freshwater management. Sustainable water governance requires interdisciplinary knowledge about environmental and social processes as well as participatory strategies that bring scientists, managers, policymakers, and other stakeholders together to cooperatively produce knowle...
The Earth is a complex system comprising many interacting spatial and temporal scales. We developed a transdisciplinary data-model integration (TDMI) approach to understand, predict, and manage for these complex dynamics that focuses on spatiotemporal modeling and cross-scale interactions. Our approach employs human-centered machine-learning strate...
Feedback mechanisms between abiotic and biotic processes in dryland ecosystems lead to a strong sensitivity to interannual variations in climate. Under a future regime of higher temperatures but potentially increased rainfall variability, drylands are anticipated to experience changes in wind and water transport that will alter plant community comp...
The soil and water assessment tool (SWAT) model was applied for the first time in Cuba to assess the potential impacts of climate change on water availability in the Cauto River basin. The model was calibrated (and validated) for the 2001-2006 (2007-2010) period at a monthly timescale in two subbasins La Fuente and Las Coloradas, representative of...
According to the Intergovernmental Panel on Climate Change (IPCC), global temperatures have risen at an alarming pace since the early 20th century and this warming has been more pronounced since the 1970s. Temperature variations are significant because of their relation with thermal comfort and public health. In this study, we characterize the impa...
This work addresses the impact of climate change on the hydrology of a
catchment in the Mediterranean, a region that is highly susceptible to
variations in rainfall and other components of the water budget. The
assessment is based on a comparison of responses obtained from five
hydrologic models implemented for the Rio Mannu catchment in southern
S...
Channel transmission losses alter the streamflow response of arid and semiarid watersheds and promote focused groundwater recharge. This process has been primarily studied in dryland channels draining large areas that are displaced away from hillslope runoff generation. In contrast, small watersheds on arid piedmont slopes allow the investigation o...
This work addresses the impact of climate change on the hydrology of a catchment in the Mediterranean, a region that is highly susceptible to variations in rainfall and other components of the water budget. The assessment is based on a comparison of responses obtained from five hydrologic models implemented for the Rio Mannu catchment in southern S...
The sensitivity of semiarid ecosystems to climate change is not well understood due to competing effects of soil and plant-mediated carbon fluxes. Limited observations of net ecosystem productivity (NEP) under rising air temperature and CO2 and altered precipitation regimes also hinder climate change assessments. A promising avenue for addressing t...
For their investigation of the impact of irrigated agriculture on hydrometeorological fields in the North American monsoon (NAM) region, Mahalov et al. used the Weather Research and Forecasting (WRF) Model to simulate weather over the NAM region in the summer periods of 2000 and 2012, with and without irrigation applied to the regional croplands. U...
The impact of urbanization on water and energy fluxes varies according to the characteristics of the urban patch type. Nevertheless, urban flux observations are limited, particularly in arid climates, given the wide variety of land cover present in cities. To help address this need, a mobile eddy covariance (EC) tower was deployed at three location...
Accelerated climate change and associated forest disturbances in the
southwestern USA are anticipated to have substantial impacts on regional
water resources. Few studies have quantified the impact of both climate
change and land cover disturbances on water balances on the basin scale, and
none on the regional scale. In this work, we evaluate the i...
Participatory modeling workshops were held in Sonora, México, with the goal of developing water resources management strategies in a water-stressed basin. A model of the water resources system, consisting of watershed hydrology, water resources infrastructure, and groundwater models, was developed deliberatively in the workshops, along with scenari...
A critical hydrologic process in arid and semiarid regions is the interaction between ephemeral channels and groundwater aquifers. Generally, it has been found that ephemeral channels contribute to groundwater recharge when streamflow infiltrates into the sandy bottoms of channels. This process has traditionally been studied in channels that drain...
Evapotranspiration (ET) is an important water loss flux in ecosystem water cycles, and quantifying the spatial and temporal variation of ET can improve ecohydrological models in arid ecosystems. Plant neighbor interactions may be a source of spatial and temporal variation in ET due to their effects on the above- and belowground microclimate and inc...