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a b s t r a c t

A spatially resolved stochastic cluster dynamics (SRSCD) model is introduced to describe radiation-
induced defect evolution in metals. The stochastic nature of the method allows SRSCD to model more
chemical species and more mobile defects than rate theory methods without loss of computational effi-
ciency, while reaching larger timescales and simulating larger volumes than object-oriented kinetic
Monte Carlo (OKMC) methods. To comprehend the capabilities of the method and access new under-
standing of defect evolution, SRSCD is used in three scenarios. In the first, the results of Frenkel pair
implantation are found to match those of rate theory in both spatially homogeneous and spatially
resolved media. Next, to study spatial resolution effects and correspondence to OKMC, the results of
20 keV cascade implantation into copper is simulated and an acceptable match with OKMC is found.
Finally the method is used to study the problem of helium desorption in thin iron foils. The model is com-
pared with available experimental measures and is found to be in good agreement. The ability of SRSCD
to include many mobile species of defects allows a detailed analysis of the mechanisms of helium release
from the free surface of the iron foils. As a result new dominant mechanisms of helium release are dis-
cussed as well as their operating regimes.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Polycrystalline materials that take advantage of nanometer
scale properties, such as ODS steels and nano-laminates, have
demonstrated radiation damage resistance beyond that of current
generation nuclear materials [1,2]. However, the complex micro-
structure of such materials makes modeling their behavior increas-
ingly difficult. For example, radiation damage in nano-layered
metals such as Cu–Nb cannot be modeled using spatially homoge-
neous methods due to the dependence of their behavior on their
layered geometries and high interface density [3,4]. In addition,
even standard polycrystalline materials have spatial inhomogene-
ities in the form of grain boundaries and dislocations that affect
radiation damage evolution [5–8]. However, these are treated as
homogeneous sink terms in most rate theory simulations [9,10].
In order to predict the performance of next-generation materials
in various reactor environments, radiation damage models must
be both microstructure-dependent and extend over long spatial
and temporal domains.

The two commonly used methods for simulating spatially re-
solved time-evolution of radiation damage in metals are the object
kinetic Monte Carlo method (OKMC) [10–13] and spatially re-
solved rate theory methods [14–18], using finite element or finite
difference algorithms for the spatial dependence. Each of these
methods presents challenges due to computational demands.
OKMC simulations limit the number of assumptions made about
defect evolution by following individual defects as they diffuse sto-
chastically throughout a material. However, due to the fact that the
simulation follows each defect’s diffusion pathway, simulations of
reactor-relevant irradiation conditions can become computation-
ally prohibitive using this method. Displacement damage in OKMC
simulations is typically limited to less than 1 dpa and the mini-
mum concentration of defects that can be simulated is limited to
one defect per simulation cell volume [10]. Spatially resolved rate
theory assumes spatial homogeneity within each volume element
and thus does not track individual defect movements. In contrast
to OKMC, rate theory simulations can reach dpa levels of 100 or
more and can model arbitrarily small defect concentrations [10].
However, the number of rate equations to be solved increases
exponentially with the number of species modeled [19]. Increased
numbers of mobile defect species, such as glissile interstitial loops,
also dramatically increases the complexity of the rate equations to
be solved. The effects of impurities, alloying elements, and multi-
species gas implantation on microstructural evolution have been
shown to be significant [20–23], but these simulations are fre-
quently not within the scope of feasible rate theory simulations.

An alternative approach to solving spatially homogeneous
problems of this type, first proposed for any chemical species by
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Gillespie [24] and developed further for radiation defects in metals
by Marian and Bulatov [19], avoids many of these problems. In this
approach, called stochastic cluster dynamics, the rate equations of
traditional rate theory are treated in a homogeneous volume ele-
ment, but the populations of defects are limited to integer popula-
tions within the volume. The reactions between defects such as
clustering and dissociation are treated stochastically, using a
Monte Carlo algorithm. Thus, the migration of individual defects
is ignored and the simulation is able to include large numbers of
mobile species which can interact without exponentially increas-
ing computational time.

In order to modify this approach for problems in which nano-
and micro-scale spatial dependence is necessary, the present work
amends the method of stochastic cluster dynamics by creating sev-
eral volume elements. Inside each element, the population of de-
fects is assumed to be homogeneously distributed, but migration
can occur between elements based on diffusion rates, defect con-
centrations, and element sizes. Gillespie [24] in fact proposes
including spatial dependence in this way. Thus, free surfaces, inho-
mogeneous defect implantation, and other effects can be studied.
This approach will be referred to as spatially resolved stochastic
cluster dynamics (SRSCD).

The document is organized as follows: First, for the sake of com-
parison with rate theory [10] and validation, SRSCD is used to sim-
ulate the evolution of defects in a homogeneous system implanted
with Frenkel pairs. This system is then modified to model a thin foil
with free surfaces, and the results of SRSCD are compared to spa-
tially resolved rate theory and shown to match. Second, in order
to assess the correspondence of SRSCD with OKMC [13], implanta-
tion and evolution of 20 keV cascades in Cu is studied. The spatial
resolution of the model is shown to be necessary for reasonable
agreement between OKMC and SRSCD. Finally, SRSCD is used to
identify the dominant mechanisms of helium desorption in thin
iron foils as a function of temperature and foil thickness. Simula-
tions are compared to available experimental data [25] and spa-
tially resolved rate theory [15]. The ability of this simulation to
include more mobile defect species than the rate theory simulation
allows a more detailed analysis of the mechanism of helium re-
lease from the foil. This reveals new regimes in which the domi-
nant mechanism for helium release changes from migration of
mobile HeV2 and He2V3 clusters to dissociation of interstitial he-
lium from larger HemVn clusters.

2. Rate equations and SRSCD formulation

In an infinite, isotropic medium, the evolution of the defect pop-
ulations can be modeled by tracking individual defect locations
and behaviors, or by using a mean field approximation [10]. The
use of a mean field approximation allows the simulation to ignore
individual defect behavior, thus reducing the computation time,
but assumes spatial homogeneity of defects. In this section, the
rate equations for mean field rate theory (MFRT) are described
and adapted to the model of the present work.

2.1. Rate theory background

Here we will present the rate equations for a simple MFRT mod-
el containing only two mobile species – vacancies and interstitials
– and no helium. This model is taken from Stoller et al. [10]. The
evolution of the atomic fraction of SIA (i) or vacancy (v) clusters
size n is given by:

dCvn

dt
¼ KvnðtÞ þ Jvðn� 1; tÞ � Jvðn; tÞ

dCin

dt
¼ KinðtÞ þ Jiðn� 1; tÞ � Jiðn; tÞ

ð1Þ
where Kvn and Kin are the generation rate of vacancy and self-inter-
stitial clusters of size n, Jv(n � 1, t) and Ji(n � 1, t) are the rate of va-
cancy and interstitial clusters of size n � 1 converting to size n, and
Jv(n, t) and Ji(n, t) are the rate of vacancy and interstitial clusters of
size n converting to size n + 1. Care should be taken here to note
that Cvn(t) and Cin(t) are atomic fractions, which are unitless. Other
formulations of MFRT use concentration formulated in defects per
volume, and constants are adjusted accordingly [14,19]. In a simple
model with only Frenkel pair implantation and no migration of
clusters, Kn = 0 for all n except n = 1. The reactions that are ac-
counted for in the growth and annihilation of vacancy and intersti-
tial clusters are as follows:

1. Vn + V ? Vn+1 and In + I ? In+1 cluster growth
2. Vn ? Vn�1 + V and In ? In�1 + I thermally activated cluster

dissociation
3. Vn + I ? Vn�1 and In + V ? In�1 vacancy-interstitial annihilation

Taking these reactions into account, the cluster growth terms in
Eq. (1) are expressed as

Jvðn; tÞ ¼ PvnðtÞCvnðtÞ � Qvðnþ1ÞðtÞCvðnþ1ÞðtÞ
Jiðn; tÞ ¼ PinðtÞCinðtÞ � Qiðnþ1ÞðtÞCiðnþ1ÞðtÞ

ð2Þ

where Pvn and Pin are the rates of Vn + V and In + I clustering respec-
tively, and Qvn and Qin are the rates of recombination and dissocia-
tion of vacancy and interstitial clusters of size n. Assuming
thermally activated, 3D diffusion, spherical vacancy clusters, and
interstitial clusters in the form of circular dislocation loops, the
clustering and dissociation rates are given by [10,26]:

PvnðtÞ ¼ xn1=3DvCvðtÞ
PinðtÞ ¼ Zintx2Dn1=2DiCiðtÞ

QvnðtÞ ¼ Qi
vn þ Qv

vn ¼ xn1=3 DiCiðtÞ þ Dve
�

Ev
b
ðnÞ

kbT

 !

Q inðtÞ ¼ Qv
in þ Q i

in ¼ x2Dn1=2 DvCvðtÞ þ Die
�

Ei
b
ðnÞ

kbT

 !
ð3Þ

Here, Cv,i and Dv,i are the concentration and diffusion rates of
free vacancies and interstitials, respectively. Zint is a constant
reflecting the preference of interstitial clusters to absorb other
interstitials, commonly taken as Zint = 1.15. Ev ;i

b ðnÞ is the binding
energy of a vacancy or interstitial to a cluster size n � 1, kb is Boltz-
mann’s constant, and T is the temperature. The constants x and
x2D are geometric constants determined by the sink strength of
spherical and circular absorbers [9,10],

x ¼ 48p2

X2

� �1=3

x2D ¼
4p
Xb

� �1=2
ð4Þ

where X is an atomic volume and b is the Burgers vector of a dislo-
cation loop.

The rate equations for the time evolution of mobile point de-
fects are more complicated due to the large number of available
interactions. The rate equations for single vacancies and single
interstitials are as follows [10]:

dCv

dt
¼ Kv � lRðDi þ DvÞCiðtÞCvðtÞ

�
X1
n¼2

PvnðtÞCvnðtÞ þ Qv
inðtÞCinðtÞ � Qv

vnðtÞCvnðtÞ
� �

� 2Pv1ðtÞCvðtÞ þ Qv
v2ðtÞCv2ðtÞ
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dCi

dt
¼ Ki � lRðDi þ DvÞCiðtÞCvðtÞ

�
X1
n¼2

PinðtÞCinðtÞ þ Q i
vnðtÞCvnðtÞ � Q i

inðtÞCinðtÞ
h i

� 2Pi1ðtÞCiðtÞ þ Q i
i2ðtÞCi2ðtÞ ð5Þ

where lR is a coefficient for the recombination of point defects, gi-
ven by lR ¼

4pðrvþriÞ
X . The final terms in each expression represent the

fact that the reactions v + v, 2v and i + i, 2i add or remove two
point defects for each reaction.

Rate equations can vary widely based on the number of defect
types present in the system, which defect types are allowed to mi-
grate, and the allowed reactions of the model chosen. As noted by
others [19], the number of rate equations required increases expo-
nentially with the number of defect species due to the need to sim-
ulate mixed-species clusters. The complexity of the equations also
increases as the number of migrating defects of a given species in-
creases. Although grouping schemes exist in rate theory for large
clusters in order to speed computation [27], rate theory simula-
tions are commonly limited to a small number of species and mo-
bile defects.

2.2. Reaction rates

In the following sections, it will become useful to discuss the
reaction rate of a specific reaction, for example v + 3v ? 4v, instead
of the entire rate equation governing the population of a single de-
fect type. It can be seen from above that the rate of combination of
a mobile point defect i and a sink is given by

reaction rate ¼ k2DiCiðtÞ ð6Þ

where the sink strength k2 has units 1
m2 and represents the inverse of

the square of the mean free path travelled by the point defect before
it is absorbed by the stationary defect. It can be seen that the above
equations are expressed in this form, with k2 depending on many
factors, including the size and shape of the sinks, whether the sink
is also migrating, and the type of migration (1D vs 3D).

When many sink types are present in a system, sink strengths are
not independent and have been shown to increase when other sinks
are present in high concentrations [28]. This effect is most likely to
be significant in the sink strengths of grain boundaries and free sur-
faces due to the large number of defects within the grains or metal
layers. Large planar sinks therefore should not be treated as homo-
geneously distributed sinks with constant sink strength k2.

In this simulation, planar sinks act as ‘primary’ sinks. These
sinks are simulated using boundary conditions on the system by
setting the concentration of all defect types equal to 0 at a free sur-
face or perfectly absorbing grain boundary. All other defects (he-
lium, vacancies, and self-interstitials and their clusters) are
simulated as homogeneously distributed ‘secondary’ sinks with
sink strength k2. This approach has been used in other simulations
of sink strength and defect evolution in metals [17,28,29].

2.2.1. 3D-migrating defects
To calculate the sink strength of defects and defect clusters, it

will first be useful to note that for a spherical cluster size n, the ra-
dius is given by

r ¼ 3nX
4p

� �1=3

ð7Þ

and for a circular interstitial dislocation loop size n, the radius is gi-
ven by

r ¼ nX
pb

� �1=2

ð8Þ
where X is the atomic volume and b is the Burgers vector.
For a point defect migrating in three dimensions interacting

with a spherical (immobile) sink j, the sink strength is given by [9]:

k2 ¼ 4prjCj

X
ð9Þ

Thus, the reaction rate for a point defect to interact with a
spherical sink is

reaction rate ¼ xn1=3
j DiCiCj ð10Þ

For a point defect interacting with a circular (immobile) sink j,
the sink strength is given by [10]:

k2 ¼ 2prjCj

X
ð11Þ

Thus, the reaction rate for a point defect to interact with a cir-
cular sink is

reaction rate ¼ x2Dn1=2
j DiCiCj ð12Þ

The reaction rates presented above correspond to the clustering
terms in the rate equations presented in the previous section.

In the previous equations, interstitial clusters are treated as cir-
cular dislocation loops, and their cross-section for interaction with
migrating point defects is adjusted accordingly. However, these de-
fects are assumed to be immobile in most rate theory simulations.
By contrast, atomistics studies have shown that the small disloca-
tion loops formed by self-interstitial clusters are in fact very mo-
bile, undergoing one-dimensional glide motion with migration
energy less than 0.1 eV [11,30]. The following rate equations will
account for interactions of multiple mobile defects of varying
geometry and migration dimensionality.

The first modification of Eqs. (10) and (12) occurs when the
point defect and the sink are both mobile, spherical defects. In that
case, the interaction radius becomes the sum of the two radii of the
spherical objects, and the relative diffusion rate is the sum of the
two diffusion rates of each defect. This is the same as the sum of
the rate at which mobile defect i encounters stationary defect j
and mobile defect j encounters stationary defect i. Thus the reac-
tion rate for two spherical defects interacting is

reaction rate ¼ x n1=3
i þ n1=3

j

� �
ðDi þ DjÞCiðtÞCjðtÞ ð13Þ
2.2.2. 1D-migrating defects
Next, we will treat the case of migrating circular dislocation

loops. Since these loops migrate in one dimension, their cross-sec-
tion for interaction with other defects is different than the case of
3D diffusion. For the case of a point defect migrating in 1D interact-
ing with stationary spherical sinks with absorption cross section r,
the inverse of the average distance travelled before being trapped
at a sink is given by [31]:

1
k
¼ cr ¼ Cr

X
ð14Þ

where the volume concentration of sinks c has been changed to the
atomic concentration divided by atomic volume C

X. Using r = pr2 for
the absorption cross section of a spherical sink, the sink strength
k2 ¼ 1

k2 is given by [32]:

k2 ¼ pr2C
X

� �2

ð15Þ

We next consider a circular dislocation loop i migrating and
interacting with an (immobile) point defect sink j. The interaction
radius used here is the radius of the circular dislocation loop.
Substituting Eq. (8) into Eq. (15), the reaction rate becomes:
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reaction rate ¼ ni

b

� �2
DiCiðtÞCjðtÞ2 ð16Þ

Note that the reaction rate is quadratic in concentration of the
sinks. The fact that we are using the radius of a circular object in
the formula for sink strength of a spherical object means that our
reaction rate is an upper estimate for the reaction radius of this
reaction. However, the form of the reaction rate should remain
the same and only vary by a constant due to the shape of the de-
fects involved.

The reaction rate for a circular dislocation loop i interacting
with a sessile spherical cluster j is given by the same formula, using
the reaction radius as the sum of the radii of the circular loop and
the spherical cluster. This reaction rate is given by

reaction rate ¼ ni

b

� �1=2
þ

9pn2
j

16X

 !1=6
2
4

3
5

4

DiCiðtÞCjðtÞ2 ð17Þ

Note that the form of this reaction is the same as Eq. (16), with
only a change in the radius term accounting for the size of the
spherical cluster.

If both the circular dislocation loop i and the spherical defect j
migrate, one in 1D and the other in 3D, the reaction rate becomes
the sum of the reaction rates for the two types of migration. In this
case, we take the sum of the rate for a 1D migrating circular loop to
react with a sessile spherical cluster and the rate for a 3D migrating
spherical cluster to react with a sessile loop. Thus the reaction rate
becomes:

reaction rate ¼ ni

b

� �1=2
þ

9pn2
j

16X

 !1=6
2
4

3
5

4

DiCiðtÞCjðtÞ2

þ x2Dn1=2
i þxn1=3

j

� �
DjCiðtÞCjðtÞ ð18Þ

Here, the first term accounts for the migration of the dislocation
loop and the second term accounts for the migration of the spher-
ical defect. Both terms use the sum of the radii of the dislocation
loop and the spherical defect as the reaction radius.

Finally, the reaction rate for two 1D-migrating dislocation loops
to interact is again found by summing the rates for each individual
loop interacting with the other while the other is stationary. Again,
the radius used in the reaction is the sum of the radii of the two
loops. Thus, the reaction rate for two 1D-migrating dislocation
loops i and j to combine is given by:

reaction rate ¼
ðn1=2

i þ n1=2
j Þ

4

b2 ðDiCjðtÞ þ DjCiðtÞÞ � CiðtÞCjðtÞ ð19Þ
2.2.3. Mixed 3D–1D migration
Small SIA clusters have been found to migrate in one dimension

along close-packed directions but with occasional changes be-
tween equivalent close-packed directions [11]. Direction changes
occur according to an Arrhenius law such that the migration
behavior transitions between one-dimensional at low tempera-
tures and three-dimensional at higher temperatures. Assuming
1D and 3D sink strengths are known, the sink strength due to a gi-
ven sink type i for a defect migrating with this mixed 1D–3D char-
acter has been derived by Trinkaus et al. [33]:

k2
i ¼

k2
ið1DÞ

2
1þ 1þ 4

l2k2
1D

12 þ
k4

ið1DÞ

k4
ið3DÞ

0
BB@

1
CCA

1=20
BB@

1
CCA ð20Þ

where k2
1D is the total sink strength for all sinks using 1D migration,

k2
ið1DÞ and k2

ið3DÞ are the 1D and 3D sink strengths of sink i, and l is the
average distance travelled in one dimension before a direction
change.

It was verified in this work that the sink strength calculated in
this way reproduces the 3D sink strength in the limit of frequent
direction changes and sparse sinks and reproduces the 1D sink
strength in the limit of infrequent direction changes. In this work,
sink strengths calculated in this way are only used in the simula-
tions of helium desorption from thin iron films, as discussed in la-
ter sections.
2.3. Reaction rates for discrete elements

The central idea of stochastic rate theory is to solve these rate
equations stochastically in a finite volume element. Given a vol-
ume element with volume V, if the concentration of defects in
the volume is C (in atomic fraction), then the total number of de-
fects in that volume is N ¼ CV

X . This number is an integer value,
and reaction rates for defects not present in the volume are not
calculated.

Given an initial set of defects within a volume element, assum-
ing spatial homogeneity within that element, the reaction rates for
any two defects to combine or any one defect to dissociate are gi-
ven by the same reaction rates as above, which are converted to
rates for a finite volume element by multiplying them by V

X:

dC
dt

� �
V
X

� �
¼ dN

dt
ð21Þ

Converting concentration C into NX
V and multiplying all reaction

rates by V
X, we convert all reaction rates to finite-volume rates with

units s�1. Table 1 shows these rates. It should be noted that other
formulations of stochastic rate theory [19] have used concentra-
tion rate equations that are in units of defects/m3, so these equa-
tions are only multiplied by V.

2.4. Spatially resolved rate equations

So far, reaction rates have been derived for a single finite vol-
ume element which is assumed to be spatially homogeneous
throughout. This is an approximation of an infinite medium. How-
ever, a physically representative prediction of defect evolution in a
heterogeneous microstructure, e.g. polycrystals, nano-structured
materials, and nano-laminates, can only be accessed through a spa-
tially resolved method. Indeed, the behavior of defects in the
neighborhood of grain boundaries, dislocations, and hetero-inter-
faces is known to be different from the bulk [4–8,17,34–36]. While
traditional approaches use averaging arguments to treat the im-
pact of grain boundaries and dislocations in homogeneous models,
it is likely that in nano-structured materials this approximation
can no longer be made. In addition, defect populations resulting
from cascade implantation have been shown to depend on the spa-
tial resolution of the initial cascade state [11,13,14]. It is therefore
necessary to develop a method that can simulate both large time-
scales and the spatially resolved structures of nano-structured
materials.

It was noted by the original author of stochastic rate theory
[24] that the system could approximate spatial resolution by cre-
ating several volume elements instead of a single one. Within
each volume element, the system is assumed to be ‘well-mixed’
and therefore spatially homogeneous, but differences in numbers
of defects occur between elements. The reaction rates of combina-
tion and dissociation are calculated within each element accord-
ing to the rate equations presented above. To calculate the
reaction rates of migration between elements, we begin with a
standard gradient-driven diffusion equation (in units of atomic
fraction):



Table 1
Reaction rates for vacancy and interstitial reactions in a finite volume element, size V.
Ni indicates the absolute number of species i present in the volume. All rates are in
units of s�1. 3D SIA indicates that the SIA cluster is approximated as a sphere that
migrates in three dimensions, 1D SIA indicates that the SIA cluster is approximated as
a circular dislocation loop that migrates in one dimension. In the migration reaction,
species X migrates from volume element i to j, with boundary surface area Aij and
separation Lij.

Reaction Reaction rate (s�1)

Clustering reactions
Vn + Vm ? Vn+m xðn1=3 þm1=3ÞðDVn þ DVmÞNVnðtÞNVmðtÞ XV
Vn + Im ? Vn�m or Im�n

(3D SIA)
xðn1=3 þm1=3ÞðDVn þ DImÞNVnðtÞNImðtÞ XV

Vn + Im ? Vn�m or Im�n

(1D SIA)
m
b

� 	1=2 þ 9pn2

16X

� �1=6

 �4

DImNImðtÞNVnðtÞ2 X2

V2

þ x2Dm1=2 þxn1=3
� 	

DVnNImðtÞNVnðtÞ XV
In + Im ? In+m (3D + 3D

SIA)
Zintxðn1=3 þm1=3ÞðDIn þ DImÞNInðtÞNImðtÞ XV

In + Im ? In+m (3D + 1D
SIA) Z4

int
m
b

� 	1=2 þ 9pn2

16X

� �1=6

 �4

DImNImðtÞNInðtÞ2 X2

V2

þ x2Dm1=2 þxn1=3
� 	

DInNImðtÞNInðtÞ XV
In + Im ? In+m (1D + 1D

SIA) Z4
int

n1=2þm1=2ð Þ4
b2 DInNImðtÞ þ DImNInðtÞð ÞNInðtÞNImðtÞ X

2

V2

Dissociation reactions
Vn ? V + Vn�1 xn1=3DV e�

Eb ðnÞ
kb T NVnðtÞ

In ? I + In�1 (3D SIA)
xn1=3DIe

�Eb ðnÞ
kb T NInðtÞ

In ? I + In�1 (1D SIA)
x2Dn1=2DIe

�Eb ðnÞ
kb T NInðtÞ

Migration reactions
Xi ? Xj (cell i to cell j) DX Aij

Ni
X ðtÞ�Nj

X ðtÞ
VLij

Implantation reactions
0 ? V + I ðdpa rateÞ V

X

� 	
0 ? (cascade) dpa rate

Ndisplaced

� �
V
X

� 	
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dC
dt
¼ r � ðD � rCÞ þ f ðx; tÞ ð22Þ

where f(x, t) accounts for all of the terms discussed in the previous
sections.

To convert this equation to a reaction rate for a finite volume,
we first integrate over the volume element and apply the diver-
gence theorem. Neglecting f(x, t), this gives:Z

V

dC
dt

dV ¼ �
I

S
ðD � rCÞ �~ndS ð23Þ

where the second integral is now a surface integral over the bound-
ary of the element. Multiplying by 1

X, the left hand side of Eq. (23) is
now dN

dt where N is the absolute number of defects of this type in the
volume element. We will refer to this element as i and its neighbors
as j, with j 2 [1,6]. Assuming the element is rectangular, diffusion is
isotropic and constant, and approximating rC using the neighbor-
ing volume elements, we approximate the surface integral and get:

dNi

dt
¼

X
neighbors

DAijðNj � NiÞ
VLij

� �
ð24Þ

where Aij is the area of the facet connecting elements i and j and Lij

is the distance between the centers of the two elements. Thus the
reaction rate for a defect migrating from element i to element j is
given by

reaction rate ¼ DAij
Ni � Nj

VLij
ð25Þ

This reaction is treated similar to all other reactions listed
above, with a rate (in units of s�1) for a single defect to migrate
from volume element i to j. This approach mirrors that of a fi-
nite-element or finite-difference approximation for spatial resolu-
tion of mean field rate theory equations, which has been carried
out for some systems [14,15,17,18]. The reaction rate associated
with inter-element diffusion is included in Table 1.

Using spatially resolved finite volumes in this way, materials
such as thin films with free surfaces can be approximated by hold-
ing the concentration of defects outside the material equal to zero
at the boundaries on one axis and applying periodic boundary con-
ditions on other axes. Cascade implantation can also be simulated
by implanting all cascade products into one volume element. The
optimal method for representing cascade damage in this scheme
is still an open question, since cascades are not spatially homoge-
neous and the local density of defects in a cascade is very high.

2.5. Monte Carlo algorithm

In order to solve the rate equations presented here in a stochas-
tic way, reactions are chosen and time is iterated in a stochastic
manner, instead of using a standard finite-difference time iteration
formulation as in the case of rate theory. It has been proven [24]
that this approach correctly solves the master equation for the
time evolution of the entire system.

Given an initial set of defects in the system, all possible reac-
tions and their rates can be calculated using the rates in Table 1.
Thus, unlike mean field rate theory, only reaction rates for defects
present in the system are calculated and only integer numbers of
defects are treated. Each reaction l has a reaction rate al in the
system. Therefore, the total reaction rate for the system (in reac-
tions per second) for all reactions is

a ¼
X
l

al ð26Þ

Thus, as in standard Monte Carlo techniques, the probability
that the first reaction after time t in the system will occur between
time t + s and t + s + ds is given by

P1ðsÞds ¼ ae�asds ð27Þ

and the probability that the next reaction will be reaction l is

P2ðlÞ ¼
al

a
ð28Þ

Therefore, in the simulation, the amount of time that passes be-
fore the next reaction is carried out is chosen stochastically by
choosing a random number r1 2 (0,1) and iterating time by
timestep

s ¼ 1
a

ln
1
r1

� �
ð29Þ

and reaction l is carried out, with l chosen by choosing a second
random number r2 2 (0,1) and finding l such that

Xl�1

m¼1

am < r2a <
Xl
m¼1

am ð30Þ

A derivation of this algorithm can be found in [24]. After each
timestep, the number of defects in the cell is updated for each de-
fect type involved in the reaction chosen. The reaction rates for all
relevant reactions are subsequently updated. Thus, if a defect type
disappears from the cell during a reaction, all reaction rates associ-
ated with that defect type are removed from the list of possible
reactions that the system can choose. This greatly reduces the
amount of computation required compared to mean field rate the-
ory, and allows arbitrarily sized defects to migrate without creat-
ing rate equations that are unmanageable.

Due to the spatial resolution of the system, rates for reactions
are calculated within each cell and between each adjacent cell
for migration reactions. However, the time iteration is carried out



Table 2
Material and experimental parameters used in the simulation of Stoller et al. [10].
Interstitials were assumed perfectly bound to interstitial clusters and could not
dissociate.

Parameters used
Temperature 373 K
Atomic volume 1.189 � 10�2 nm3

Burgers vector 0.2876 nm
dpa Rate 4 � 10�7 dpa/s

Diffusion and binding parameters
v Formation energy Ev

f 1.6 eV

v Diffusion prefactor Dv
0 6.02 � 1010 nm2/s

v Migration energy Ev
m .65 eV

vn Binding energy Ev
b ðnÞ Ev

f þ ð:2� Ev
f Þ

n2=3�ðn�1Þ2=3

22=3�1

� �
i Diffusion prefactor Di

0
6.02 � 1010 nm2/s

i Migration energy Ei
m

.3 eV
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Fig. 1. Vacancy and vacancy cluster concentrations as a function of dpa for the work
of Stoller et al. [10], rate theory carried out in this work, and SRSCD.
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for the entire system at once. Thus, only one possible reaction is
chosen from among all volume elements in the system per
timestep.

3. Comparison with rate theory: Frenkel pair implantation

Validation of the SRSCD model described above has been car-
ried out through a series of simulations comparing the results of
this model with those of others. The first model chosen for com-
parison with SRSCD is that of Stoller et al. [10] which compares
the results of MFRT with OKMC. In order to simplify the rate
equations used, this model treats only single vacancies and sin-
gle interstitials as mobile. Circular SIA clusters are immobile in
this model, so all migration is in 3D and only the corresponding
reaction rates with 3D migration are used (see Table 1). In this
simulation, Frenkel pairs are implanted homogeneously in an
infinite, initially defect-free medium at a constant rate. The va-
cancy and vacancy cluster populations are recorded as a function
of dpa.

To further validate the results of SRSCD, the simulation was
carried out in this work using both SRSCD and MFRT to verify
that the rate equations and constants were being applied cor-
rectly. The diffusion and binding parameters for this simulation
are shown in Table 2. The concentration of vacancies and va-
cancy clusters was plotted as a function of dpa and compared
to the results of Stoller et al. [10]. Note that spatial resolution
was disregarded in the SRSCD model in this simulation due to
the spatial homogeneity of the problem. The results of these
simulations are shown in Fig. 1.

It can be seen that all three sets of results are in good agree-
ment. Due to the fact that the MFRT and SRSCD results carried
out in this work agree, any differences between these results and
the results of Stoller et al. are assumed to be minor. The details
of matching these results to the published results of Stoller et al.
were considered out of the scope of this work and were not pur-
sued further.

In this simulation and all SRSCD simulations presented in this
article, error bars represent simple standard deviations of the re-
sult. The variation of the result between simulations depends on
the total volume simulated, so standard deviation should not be
interpreted as a physical result here. The choice of simulation vol-
ume was made in each case to balance computational time with
precision of results.

It should also be noted that the rate theory results carried out in
this study were not extended beyond 10�3 dpa, because of compu-
tational limitations. The stochastic method, due to its increased
computational efficiency, was able to easily reach the larger
10�2 dpa range.

Demonstration of the spatially resolved capabilities of the
SRSCD model developed here was carried out by modifying the
simulation from an infinite medium to a single-crystal layer of
material with thickness 400 nm and free surfaces on either side.
The free surfaces are treated as infinite sinks for all migrating de-
fects, so that any defect that migrates out of the free surface is lost
from the system. This spatially-resolved system was evolved to a
much smaller dpa of 10�6 due to computational limitations of
MFRT. The spatial resolution in the rate theory model was carried
out through the use of a finite difference approximation, and in the
SRSCD model through the use of the method described above. The
spatially resolved profiles of self-interstitial and vacancy concen-
trations are shown in Fig. 2.

It can be seen that the results of SRSCD and spatially resolved
rate theory agree. Again, the ability of the rate theory results to
reach large dpa and timescales was severely limited by the need
for small enough timesteps for the solution to converge. However,
since SRSCD chooses timesteps and does not compute rates for
cluster populations that are not present in the material, this meth-
od could easily reach much larger dpa ranges.

4. Comparison with kinetic Monte Carlo: Cascade implantation
in Cu

One of the main benefits of SRSCD is the ability to allow many
species to migrate and cluster, instead of limiting the number of
mobile species as in rate theory. Object-oriented kinetic Monte
Carlo simulations also have the ability to take into account the
migration of larger defects and one-dimensional migration, and
thus the performance of SRSCD compared to OKMC is of interest,



134 A.Y. Dunn et al. / Journal of Nuclear Materials 443 (2013) 128–139
since SRSCD is significantly faster but necessitates more
approximations.

To compare the performance of this method to OKMC, the re-
sults of cascade implantation in Cu were compared to those of
Caturla et al. [13]. In these simulations, 20 keV cascades from a
database produced using molecular dynamics simulations are im-
planted into copper at 10�4dpa/s. Unlike the simulations described
in the previous section, vacancy clusters up to size 4 and SIA clus-
ters up to size 60 are mobile, with large self-interstitial clusters
migrating in one dimension. Additionally, implanted cascades have
spatial distributions that impact the clustering properties of the
defects produced in the cascades. This is important early in the
annealing of a given cascade, as the spatial orientation of the cas-
cades impacts the subsequent time evolution of the system.

The simulation parameters are listed in Table 3. All simulation
parameters used in this work are the same as reported by Caturla
et al. [13]. Migration energies of vacancy clusters are taken Sabo-
chick and Yip [37], single-interstitials from Corbett et al. [38],
and small SIA clusters from Schober and Zeller [39]. Larger intersti-
tial clusters are assumed to maintain the same migration energy
but decrease their prefactor as the size of the cluster grows. The
binding energy of vacancy clusters is found by fitting the values
for small vacancy clusters from Sabochick and Yip [37] to a fitting
function, using the formation energy of a vacancy as the binding
energy of an infinite sized cluster. The binding energy of small
SIA clusters is taken from Schober and Zeller [39], while the bind-
ing energy of larger SIA clusters is assumed to be the formation
plus migration energy of a single SIA.

In accordance with Caturla et al., interstitial clusters of size
n = 1 � 4 are treated as spherical defects that migrate in 3D, while
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Fig. 2. Spatially resolved vacancy and interstitial concentration profiles at 10�6 dpa.
larger interstitial clusters are treated as circular dislocation loops
that migrate in 1D. This dimensionality applies only to the reaction
rates between defects and not the actual migration between vol-
ume elements in the simulation. In this case, only 3D migration
can be considered. Since FCC and BCC metals have 6 and 4 options
for close-packed migration directions (h110i and h111i respec-
tively) but only 3 independent axes for migration directions exist,
migration between volume elements cannot be restricted such that
each face of a volume element permits only one direction of migra-
tion. True one-dimensional migration could be achieved in a sim-
ple cubic crystal, which has close-packed directions in the h100i
directions, but this is not within the scope of this work.

The limitation of long-range migration to 3D is a main limita-
tion of the SRSCD model compared to OKMC. The effect of this lim-
itation is expected to be more strongly felt in systems that are
spatially anisotropic, such as thin films, than systems that are spa-
tially homogeneous over large distances such as the simulation of
Caturla et al. In the latter case, the reaction rates between defects
are more important than whether defects migrate from one cell to
another in a given direction because the overall arrangement of de-
fects is homogeneous.

In the simulation of Caturla et al., the effect of grain boundaries
on stopping the long-range migration of fast-moving SIA clusters is
accounted for by removing 1D-migrating SIA clusters that migrate
a distance greater than 1 lm from the simulation cell [13]. To
match this in the SRSCD simulation, interstitial clusters that mi-
grate from one cell to another are removed from the system with
a probability given by the ratio of the volume element size to the
grain size. The results are weakly dependent on the grain size
chosen.

This approximation for the effects of grain boundaries was
tested by comparison with two other models of grain boundary
behavior. In the first model, all defect types can be removed from
the system when migrating from one volume element to another,
instead of only 1D-migrating SIA clusters. Allowing the simulation
to remove all defect types in this way did not significantly change
the results, due to the fact that the vast majority of defect
Table 3
Material and experimental constants used in the simulation of Caturla et al. [13] for
Cu.

Parameters used
Temperature 340 K
Atomic volume 1.17 � 10�2 nm3

Burgers vector .36 nm
dpa Rate 1� 10�4 dpa=s
Grain size 1 lm

Diffusion rates D ¼ D0e�
Em
kb T

Single vacancy Em = .72 eV, D0 ¼ 2:5� 1013 nm2=s
2-v Cluster Em = .55 eV, D0 = 3.6 � 1013 nm2/s
3-v Cluster Em = .56 eV, D0 ¼ 1:2� 1013 nm2=s
4-v Cluster Em = .38 eV, D0 ¼ 1:4� 1013 nm2=s
Larger vacancy cluster (n > 4) (immobile)
Single interstitial Em = .13 eV, D0 = 2 � 1011 nm2/s
2-i Cluster Em = .11 eV, D0 ¼ 1� 1011 nm2=s
3-i Cluster Em = .2 eV, D0 ¼ 6:6� 1010 nm2=s
4-i Cluster Em = .1 eV, D0 ¼ 5� 1010 nm2=s
Larger interstitial cluster (n > 4) Em = .1 eV, D0 ¼ 2�1011

n nm2=s

Binding energies
2-v Cluster Ev

b ð2Þ ¼ :05 eV
3-v Cluster Ev

b ð3Þ ¼ :15 eV
4-v Cluster Ev

b ð4Þ ¼ :28 eV
5-v Cluster Ev

b ð5Þ ¼ :65 eV
Larger vacancy cluster (n > 5) Ev

b ðnÞ ¼ 1:2� 2:121ðn2=3 � ðn� 1Þ2=3Þ eV
Small interstitial cluster Ei

bð2� 4Þ ¼ 1:16 eV
Larger interstitial cluster (n > 4) Ei

bðnÞ ¼ 2:62 eV
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migration is in the form of 1D-migrating SIA clusters. In the second
model, the grain boundary was simulated by placing free surfaces
1 lm apart (assuming the grain boundary acts as an infinite
absorber), which trapped all incident defects. Using free surfaces
to simulate a grain boundary decreased the concentration of va-
cancy clusters slightly compared to the results obtained by simply
removing the defects from the system, but the results remained
similar. The results reported here represent the grain boundary
model in which 1D-migrating SIA clusters are removed from the
system as described above in order to match most closely the
parameters of Caturla et al.

Glissile dislocation loops of SIAs with unequal Burgers vectors
can interact to form immobile clusters or larger glissile dislocation
loops, depending on the temperature and the geometry of the
interaction [40]. In order to reproduce the simulation parameters
of Caturla et al., this simulation assumes that if two dislocation
loops of SIAs cluster they are assumed to form a junction and thus
become immobile. These immobile interstitial clusters remain in
the system and can act as sinks for other defects but cannot
migrate.

In order to reproduce this simulation using SRSCD, 20 keV cas-
cades from Caturla et al. [13] were converted into a list of initial
defects for each cascade. These were then implanted into the vol-
ume elements in the simulation with a rate given by the dpa rate
and the number of defects in the cascade, according to the equation
in Table 1. Since the entire cascade was implanted at the same time
into a single volume element, and SRSCD assumes that defects are
homogeneously distributed within a volume element, the size of
the volume elements used determines the local concentration of
defects in a cascade. Therefore, the spatial resolution of this meth-
od is necessary because the volume element size must match
approximately the size of the cascade to provide the correct initial
concentration of defects.

The effect of changing the size of the volume element on the
profile of vacancy cluster concentrations is shown in Fig. 3. For
large meshes, the size of a volume element is much larger than
the size of a cascade and the simulation produces mesh-indepen-
dent results that do not match the results of OKMC. As the mesh
gets smaller, the initial defect concentration increases dramati-
cally, changing the initial clustering and annihilation rates for the
defects in a given cascade. The optimal mesh size for this simula-
tion was found to be approximately 10 nm, which is similar to
the size of a 20 keV cascade. It is therefore important to note that
implanting cascades in this way does not allow for mesh conver-
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the results of OKMC.
gence, as only a specific mesh size best approximates the OKMC re-
sults. Future work on this topic will focus on reproducing the
spatial correlations in cascades and allowing mesh convergence
for smaller mesh sizes.

Simulated cascade implantation in Cu was carried out using the
parameters listed in Table 3. Vacancy and cluster populations were
found as a function of dpa. The results of SRSCD and the compari-
son to the data of Caturla et al. [13] are shown in Fig. 4. The quan-
titative results of this simulation differ from those of Caturla, but
the qualitative trends match. The vacancy cluster concentration in-
creases linearly with dpa, the single vacancy concentration reaches
an early saturation and decreases slowly and the concentration of
visible clusters also increases linearly with dpa. The vacancy clus-
ter population profile also qualitatively matches the results of



Table 4
Material parameters used in experiment [25] and rate theory [15] studies of helium
desorption from Fe foils.

Anneal temp (K) He concentration (ppm) Sample thickness (lm)

559 1.39 2.5
577 0.013 20.6
667 0.109 2.6
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Caturla et al., although the concentration of small vacancy clusters
of size <10 differs from the results of Caturla.

The differences between the results of this model and the OKMC
simulation are due to the spatial correlations that exist in 20 keV
cascades in Cu that cannot be included in such a model. Specifi-
cally, Cu cascades have the property that a core region of vacancy
clusters is surrounded by interstitials [41]. This model cannot sim-
ulate this type of spatial correlation, and thus some information
about the initial annealing of Cu cascades may be lost. However,
the results obtained here match the results of OKMC more closely
than any results that can be obtained by traditional rate theory or
non-spatially resolved stochastic cluster dynamics. Both the sto-
chastic nature and the spatial resolution of this simulation allow
it to reproduce many aspects of this much more computationally
intensive OKMC simulation.
5. Helium desorption from Fe thin foils

5.1. Comparison of SRSCD to experiment

In order to further demonstrate the capabilities of SRSCD, the
annealing of iron foils implanted with helium was simulated. This
has been carried out both by experiment [25] and spatially re-
solved rate theory developed by Ortiz et al. [15]. In this experi-
ment, three iron foils varying in width from 2.5 lm to 20.6 lm
are implanted with helium and annealed. The material parameters
for the simulation are given in Table 4.

To simulate the experimental conditions, Ortiz et al. first im-
planted helium, vacancies, and self-interstitials homogeneously
in the material to the concentrations listed in Table 4, with 200
Frenkel pairs per helium atom introduced. The system was then al-
lowed to reach steady-state at 300 K and subsequently annealed at
high temperature. The boundaries of the iron foil were treated as
free surfaces (infinite sinks for all mobile point defects) and the
amount of helium released from the system as a function of time
was tracked.

In the rate theory simulation by Ortiz et al. [15], the mobile spe-
cies were limited to He, single vacancies, single interstitials, and 2-
interstitial clusters. It is important to note that the rate equations
used by the authors differ from the rate equations presented here,
and can be found in [14]. Using rate theory, Ortiz et al. were able to
achieve good agreement between simulation results and experi-
ment, assuming some modified energies due to the effect of impu-
rities in the material.

In the SRSCD simulation, the same material parameters are
used, but all species which have been found to be mobile in iron
are allowed to migrate. In addition, HeV and HeV3 clusters have
been studied in Nb [17] but do not have migration data available
in Fe. For this simulation the migration values from Nb are used
for HeV and HeV3, but since these defects have relatively high
migration energy the impact of their migration on the simulation
results is negligible. The migration and binding energies of all clus-
ter types used in this simulation are given in Table 5.

In order to include helium in the rate equations presented
above, HeV clusters are assumed to be spherical with radius given
by the number of vacancies in the cluster. Helium clusters are also
assumed to be spherical, but the population of interstitial helium
clusters is never significant. Thus reaction rates for He + HeV,
V + HeV, HeV + HeV, and SIA + HeV (with the number of V greater
or equal to the number of SIA) are found using the same methods
as described above.

The binding of helium to single interstitials and self-interstitial
clusters is a problem that has not been fully addressed in the liter-
ature. Marian and Bulatov [19] and Becquart and Domain [46] have
studied defect evolution including He-SIA cluster formation, while
the work of others such as Ortiz et al. [15] neglects this effect. In
general, the availability of parameters governing the behavior of
He-SIA clusters is low. Therefore, this simulation was carried out
using only He-V clustering. In order to test the significance of this
choice, identical helium desorption simulations were performed
using the He-SIA parameters reported by Marian et al., assuming
that He-SIA clusters are stable and immobile. Although a large
number of He-SIA clusters appeared at the beginning of the anneal-
ing stage of the simulation, the change in the overall desorption re-
sults was minor. In addition, the physical mechanism of helium
desorption does not change in this case. A larger study of the effect
of He-SIA binding on defect accumulation in metals, with an im-
proved set of parameters such as binding and migration energies
of these defects, is warranted but outside the scope of this work.

In agreement with the results of Soneda and Diaz de la Rubia
[11], self-interstitial clusters of size 2 and 3 are assumed to migrate
with mixed 1D–3D character, and their reaction rates for combin-
ing with other defects are calculated using the sink strength from
Eq. (20). Although the frequency for direction changes is taken
from the work of Soneda, in order to keep the parameter set as con-
sistent as possible, the interstitial migration energies used are the
same as those used by Marian and Bulatov [19]. These vary signif-
icantly from the migration energies for small interstitial clusters
found by Soneda. However, when the simulation was repeated
with the migration energies of Soneda for small interstitial clus-
ters, the results did not change significantly. In addition, allowing
only 3D migration for small interstitial clusters also produced sim-
ilar results, although the migration energy of single vacancies had
to be adjusted to 0.68 eV to achieve agreement with experimental
results. This value is well within the range of values reported for
the migration of a single vacancy in Fe [11,19]. It is therefore ex-
pected that the mixed 3D–1D migration behavior of small intersti-
tial clusters does not have a major impact on the results of this
study.

The system is evolved for 1 s at 300 K and subsequently an-
nealed for 2 � 104 s at the higher temperature, with the boundaries
of the system free surfaces for the entire simulation. The boundary
conditions of the system during the low-temperature annealing
part of the simulation were shown to not strongly impact the re-
sults of the simulation. The amount of helium released from the
system and the types of helium clusters that leave the system
are recorded.

The results provided by SRSCD differ from the experimental re-
sults given the parameters listed in Table 5. Fig. 5 shows helium
desorption for the 559 K sample using SRSCD compared to experi-
ment. Although the qualitative results match, the model predicts
significantly more helium release than was measured in experi-
ment or simulated in the rate theory model of Ortiz et al. [15].

Assuming that the material has some impurity content, intersti-
tial clusters could be trapped and become immobile when interact-
ing with impurity atoms [47]. In the work of Ortiz et al. [15], the
migration energy of vacancies was used as a fitting parameter in
order for the rate theory results to match experiment. This varia-
tion of vacancy migration energy is explained by Ortiz to be the re-
sult of the presence of impurities in the iron foil. Therefore, in this
simulation, the mean free path for interstitial clusters to become
immobile was varied to fit the simulation results to experimental



Table 5
Migration and binding parameters used in spatially resolved stochastic rate theory simulation of Helium desorption from Fe foil. The diffusion of HeV and HeV3 clusters are taken
from the values found for Nb, which is assumed to be similar to the behavior of Fe. For the binding energy of vacancies to large HemVn clusters, the He was not taken into account.
A functional form for this binding energy exists [43] but does not apply to clusters where m� n. Most large HeV clusters in this simulation are of this type.

Migration parameters D ¼ D0e
�Em

kb T

Single vacancy Em = 0.6 eV, D0 ¼ 7:9� 1011 nm2=s [19]

2-v cluster Em = 0.66 eV, D0 = 3.5 � 1010 nm2/s [19]
Larger v clusters (immobile)
Single interstitial Em = 0.25 eV, D0 = 1.3 � 1010 nm2/s [19]
2-i Cluster Em = 0.36 eV, D0 = 3.516 � 1012 nm2/s [19]
3-i Cluster Em = 0.14 eV, D0 = 1.21 � 1011 nm2/s [19]
4-i Cluster Em = 0.15 eV, D0 = 1.32 � 1011 nm2/s [19]
n-i Cluster

DiðnÞ ¼ 8:98�1011

n�:61 e
�:06þ:07ðn�1:3 Þ

kb T nm2=s
[42]

Single-He Em = 0.077 eV, D0 ¼ 5� 1011 nm2=s [43]

2-He cluster Em = 0.055 eV, D0 ¼ 3� 1010 nm2=s [43]

HeV Em = 2.57 eV, D0 ¼ 1:15� 1012 nm2=s [17] (value for Nb)

HeV2 Em = 0.27 eV, D0 = 4.1 � 1010 nm2/s [44]
HeV3 Em = 1.42 eV, D0 = 1.15 � 1012 nm2/s [17] (value for Nb)
He2V Em = 0.33 eV, D0 = 1.16 � 1011 nm2/s [43]
He3V Em = 0.31 eV, D0 ¼ 2� 1010 nm2=s [43]

He4V Em = 0.28 eV, D0 ¼ 2:36� 109 nm2=s [43]

He2V3 Em = 0.55 eV, D0 = 7.82 � 109 nm2/s [43]

1D–3D Direction change v ¼ v0e
� Ev

kb T

2-i Cluster Ev = 0.088 eV, v0 = 2.86 � 1011 s�1 [11]
3-i Cluster Ev = 0.271 eV, v0 = 4.54 � 1011 s�1 [11]

Binding energies
Small clusters (n 6 4) Eb taken from Ortiz [15]
Vacancy clusters Ev

b ðnÞ ¼ 2:07� 3:01ðn2=3 � ðn� 1Þ2=3Þ [45]

Interstitial clusters Ei
bðnÞ ¼ 3:77� 5:05ðn2=3 � ðn� 1Þ2=3Þ [45]

HemVn (He binding) EHe
b ¼ 2:2� 1:55 log m

n

� 	
� :53 log m

n

� 	2 [43]

HemVn (V binding) Ev
b ðnÞ ¼ 2:07� 3:01ðn2=3 � ðn� 1Þ2=3Þ (Same as v clusters)
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results of Vassen et al. [25].
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results. The simulation results were shown to depend only weakly
on the actual value of the mean free path chosen and thus an opti-
mal value of mean free path was not found. Nonetheless, the re-
sults of the simulation using this method match the experiment
more closely.

It is interesting to note that if, instead of the mean free path de-
scribed above, interstitial diffusion is simply eliminated for all
clusters greater than size 2 in SRSCD, the results are almost identi-
cal to the use of a mean free path for interstitial cluster migration.
Thus the approach of Ortiz et al., which only considers single SIAs
and 2-interstitial clusters as mobile, treats interstitial migration in
much the same way as this simulation. This is due to the fact that
one-dimensionally migrating SIA clusters have a low cross-section
for interacting with other defects and are therefore likely to reach
the end of their mean free path and become sessile before interact-
ing with other defects. Therefore the main difference between the
models is the mobility of small HemVn clusters.

The results of the SRSCD simulation compared to experiment
are shown in Fig. 6. It should be noted that SRSCD necessarily de-
pends on a large number of binding and migration energies and
prefactors, some of which are not agreed upon in the literature.
The simulation results are most sensitive to binding and migration
energies of small clusters such as V2 and HeV2. Changing any of
these parameters changes the quantitative results of the simula-
tion while (generally) keeping the qualitative results the same.
5.2. He desorption through HemVn cluster migration

The mechanism for helium desorption from iron foils during
annealing was studied in these simulations. In the rate theory sim-
ulations of Ortiz et al. [15], HemVn clusters are not mobile. Helium
desorption therefore occurs either by substitutional replacement
by interstitials SIA + HeV ? He, which leaves a mobile interstitial
helium atom behind, or by He dissociation from HeV clusters. In
either case, only mobile He interstitials can leave the free surface
of the material. By contrast, studies of HemVn migration have
shown that small clusters are in fact mobile [17,43,44,48]. Helium
release from the free surfaces of a thin Fe foil through HemVn clus-
ter migration is a problem particularly well-suited to SRSCD, due to
the size and timescale of the system and the number of mobile spe-
cies involved. By allowing small HemVn clusters to migrate, new re-
gimes during which the dominant mechanism of helium
desorption changes can be found using SRSCD.

To study helium release from the free surface of the foil, every
instance of helium leaving the system through the free surface
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was recorded, along with the type of defect that carried the helium
out and the simulated time. The simulated annealing time was
then divided into intervals representing an order of magnitude in-
crease in annealing time. The rate of helium desorption per cm2 of
surface area for each of the three main mobile defects containing
helium (interstitial He, HeV2, He2V3) is then plotted for each inter-
val. The results of this analysis are shown in Fig. 7.

The mechanism for He release from the free surface of iron foils
in this simulation is dependent on both temperature and time. In
all simulations, HeV2 clusters dominate initial He release from
the system. Mobile HeV2 clusters are created first as vacancies
combine with HeV clusters at early times (before 10�3 s at 559 K)
and then as HeV3 clusters release vacancies (up to tens of seconds
at 559 K). Interstitial helium is very unlikely to reach the free sur-
face before interacting and combining with vacancy clusters, pre-
venting the release of interstitial helium at the free surfaces early
in the simulation.

As time evolves and average cluster sizes increase, the number
of HeV3 defects present in the system decreases and the creation of
HeV2 becomes less common. At this point, the presence of HemVn

clusters with m > n becomes likely enough that dissociation of he-
lium directly from these defects causes interstitial helium to be
once again present in the material. This helium diffuses out of
the material more easily than before, because the total defect den-
sity is less and interstitial helium is more likely to reach the free
surface before interacting with a vacancy or HemVn cluster. The
intermediate presence of He2V3 clusters comes about in a similar
manner to HeV2, as the timescale becomes longer and more clus-
tering and dissociation reactions become feasible. The mechanism
and timescale of helium release varies from sample to sample due
to the differences in initial defect density and temperature of
annealing. In the 667 K simulations, a small number of He2V clus-
ters also dissociate from the free surface near the end of the
simulation.

The migration and binding energies of small HeV clusters used
in this simulation likely vary from the actual values somewhat.
This is due to the fact that values for migration in Nb were used
in place of Fe for HeV and HeV3 clusters, and due to the fact that
other cluster types not allowed to migrate here may be mobile
(HeV4, for example). Because the rate of He desorption is very
dependent on the energetics of small HeV and V clusters, the qual-
itative results of this simulation should be emphasized over the
quantitative results. As the parameters describing the behavior of
helium, vacancies, and interstitials improve, the results of such
simulations should match reality more closely.

In the analysis of Ortiz et al. [15], the initial He release is caused
by self-interstitial clusters dissociating at the annealing tempera-
ture and creating interstitial He through substitution replacement
reactions with HeV clusters. The subsequent, long-time annealing
behavior is then caused by He dissociation from HemVn clusters.
However, their rate theory simulation does not account for mobil-
ity of small HeV clusters and therefore may not capture some of
the effects described here.
6. Conclusions

A spatially resolved stochastic cluster dynamics (SRSCD) meth-
od has been developed in order to simulate the evolution of radia-
tion damage in spatially non-homogeneous systems. This method
has the advantages over OKMC and MFRT methods that simula-
tions can be carried out in minutes to hours, length scales on the
order of tens of microns can be simulated, and arbitrary species
and mobile defects can be included in the simulation without
exponentially increasing computation time.
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SRSCD is first used to reproduce both spatially homogeneous
and single-crystal thin film implantation of Frenkel pairs, compar-
ing results in both cases to those of traditional rate theory using
the parameters of Stoller et al. [10]. Results are found to match
those of rate theory, and the amount of computation required in
this simulation is significantly lower using SRSCD.

Implantation of 20 keV cascades in Cu is also simulated using
SRSCD and compared to the results of OKMC [13]. The qualitative
results of the simulation match, but quantitative differences due
to the effects of the spatial correlations of defects within individual
cascades are found. The spatial resolution of SRSCD is found to be
necessary to provide reasonable agreement with OKMC. The vol-
ume element size must match the approximate size of the im-
planted cascades for initial clustering and recombination rates to
be correct. The best method for representing cascade damage in
a model such as this is still an open question that will be investi-
gated in future work.

The strength of SRSCD is demonstrated in simulations of helium
desorption from thin foils. These simulations are compared to
experiment and rate theory simulations [15,25]. Due to the ability
of SRSCD to include multiple mobile HemVn clusters, this simula-
tion is able to find new regimes during which helium desorption
is dominated by different mechanisms. Early helium desorption
is dominated by HeV2 migration, and later desorption consists of
interstitial helium dissociation from clusters and migration out of
the material.
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