
Enrique Azuaje-Hualde- Doctor of Philosophy
- University of the Basque Country
Enrique Azuaje-Hualde
- Doctor of Philosophy
- University of the Basque Country
About
8
Publications
567
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
52
Citations
Introduction
Current institution
Publications
Publications (8)
Monitoring cell secretion in complex microenvironments is crucial for understanding cellular behavior and advancing physiological and pathological research. While traditional cell culture methods, including organoids and spheroids, provide valuable models, real-time monitoring of cell secretion of signaling molecules remains challenging. Integratin...
In recent years, innovative cell-based biosensing systems have been developed, showing impact in healthcare and life science research. Now, there is a need to design mass-production processes to enable their commercialization and reach society. However, current protocols for their fabrication employ materials that are not optimal for industrial pro...
Low cost and user-friendly paper microfluidic devices, combined with DNA-based biosensors with binding capacities for specific molecules, have been proposed for the developing of novel platforms that ease and speed-up the process of cell secretion monitoring. In this work, we present the first cellulose microfluidic paper-based analytical device fo...
The effect of cell–cell contact on gene transfection is mainly unknown. Usually, transfection is carried out in batch cell cultures without control over cellular interactions, and efficiency analysis relies on complex and expensive protocols commonly involving flow cytometry as the final analytical step. Novel platforms and cell patterning are bein...
Nowadays, there are strong efforts in developing new technology for rapid detection of specific DNA sequences for environmental monitoring, forensic analysis and rapid biomedical diagnosis applications. That is where microfluidic paper-based analytical devices are positioned as suitable platforms for the development of point of care analytical devi...
A great breadth of questions remains in cellular biology. Some questions cannot be answered using traditional analytical techniques and so demand the development of new tools for research. In the near future, the development of highly integrated microfluidic analytical platforms will enable the acquisition of unknown biological data. These microflu...