Enrico Salvati

Enrico Salvati
University of Udine | UNIUD · DPIA Dipartimento Politecnico di Ingegneria e Architettura

BSc MSc DPhil MIET CEng

About

87
Publications
33,048
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,136
Citations
Introduction
Enrico's research mainly focuses on the evaluation and modeling of residual stress across the scales, as well as fatigue and fracture problems in metallic materials. He is also interested in biomaterials with hierarchical structure (i.e. human teeth and bamboo) and shape memory effect in polymeric materials. He is continuously involved in industry-oriented projects in which he exploits his solid mechanics expertise in the design and performance assessment of engineering structures.
Additional affiliations
October 2018 - present
Lady Margaret Hall, University of Oxford
Position
  • Lecturer
January 2017 - present
University of Oxford
Position
  • PostDoc Position
September 2013 - December 2013
University of Plymouth
Position
  • Visiting researcher
Education
April 2014 - June 2017
University of Oxford
Field of study
  • Engineering Science - Solid Mechanics

Publications

Publications (87)
Article
Full-text available
The introduction of an overload or underload within a constant amplitude loading fatigue test leads to a retardation or acceleration of the Fatigue Crack Growth Rate (FCGR). The understanding of the causes of these effects is essential in the context of variable amplitude fatigue loading, since in principle any loading history can be represented as...
Article
Full-text available
Numerical modelling of the residual stresses and strains within mechanical components is of great importance for improving the quality and reliability of design for structural integrity. A particularly versatile and powerful approach is offered by direct and inverse eigenstrain modelling. The nature of the eigenstrain modelling approach is it not o...
Article
Full-text available
Mechanical failure frequently initiates at the grain level, at which intra-granular stresses are of paramount importance. Under cyclic loading conditions regions within grains that experience high values of tensile residual stress are more prone to damage processes that lead to the formation of slip bands, defects, micro-voids and fissures that lea...
Article
Full-text available
The family of additive manufacturing techniques has been attracting significant attention of manufacturers and researchers, due to its unrivalled flexibility to fabricate and repair geometrically complex objects. However, material shaping is not sufficient: wide adoption of additive manufacturing can only occur upon the achievement of satisfactory...
Article
Full-text available
Recent engineering design practice for materials and structures relies more and more on damage-tolerant criteria. Such a design approach is attained mainly by employing materials showing a certain level of fracture toughness. This work aims to explore a way to generate fracture toughness in materials that intrinsically shows no toughness at all, i....
Article
Full-text available
Background Over the past 20 years, the Contour Method (CM) has been extensively implemented to evaluate residual stress at the macro scale, especially in products where material processing is involved. Despite this, insufficient attention has been devoted to addressing the problems of input data filtering and residual stress uncertainties quantific...
Article
Full-text available
Hybrid Metal Extrusion & Bonding (HYB) is a relatively new solid-state welding method that distinguishes from the more traditional ones by utilising filler material addition to obtain joining. Regarding the mechanical properties, previous research has shown that HYB has the capability to outperform comparable fusion welds and match that of comparab...
Article
Full-text available
All solid state, thin film Li-NMC batteries produced by Physical Vapour Deposition have the potential to revolutionize the internet of things by integrating ultra-fast charging and high energy densities into small portable devices. In these systems, the integrity of the cathode-solid electrolyte interface is of particular importance, as it determin...
Article
Full-text available
Hybrid metal and extrusion bonding (HYB) is an emerging solid-state welding technique that was developed about ten years ago. HYB exploits the fundamental idea of the well-established friction stir welding (FSW) technology, but a filler material is employed to enhance control of the weld microstructure and mechanical properties of the joint. HYB an...
Article
Objective The aim of this study was to evaluate the influence of three different dental implant neck geometries, under a combined compressive/shear load using finite element analysis (FEA). The implant neck was positioned in D2 quality bone at the crestal level or 2 mm below. Methods One dental implant (4.2 × 9 mm) was digitized by reverse enginee...
Article
Full-text available
The Phase-Field method is an attractive numerical technique to simulate fracture propagation in materials relying on Finite Element Method. Its peculiar diffuse representation of cracks makes it suitable for a myriad of problems, especially those involving multiple physics and complex-shaped crack patterns. Recent literature provided linear relatio...
Article
Full-text available
AISI 316L stainless steels are widely employed in applications where durability is crucial. For this reason, an accurate prediction of its behaviour is of paramount importance. In this work, the spotlight is on the cyclic response and low-cycle fatigue performance of this material, at room temperature. Particularly, the first aim of this work is to...
Article
Full-text available
We report major advances in the analysis of synchrotron 3D datasets acquired from human healthy and carious dental enamel. Synchrotron tomographic data for three human carious samples and a non-carious reference tooth sample were collected with the voxel size of 325 nm for a total volume of 815.4 × 815.4 × 685.4 μm³. The results were compared with...
Article
Full-text available
Enamel caries is a highly prevalent disease that involves demineralisation of the enamel structure. In this study, we report the analysis of artificially demineralised human enamel slices etched using lactic acid (2 % v/v) in comparison with healthy enamel using correlative techniques of optical and electron microscopy, as well as scanning diffract...
Article
Full-text available
The thermal stability of Cu/W nano-multilayers deposited on a Si substrate using ion beam deposition was analyzed in situ by GISAXS and transmission EDX—a combination of methods permitting the observation of diffusion processes within buried layers. Further supporting techniques such as XRR, TEM, WAXS, and AFM were employed to develop an extensive...
Article
Full-text available
In order to understand the fracture resistance of nanocrystalline thin films, it is necessary to assess nanoscopic multiaxial stress fields accompanying crack growth during irreversible deformation. Here, a clamped cantilever with dimensions of 200 × 23.7 × 40 μm3 was machined by focused ion beam milling from a thin film composed of four alternatin...
Article
Nanostructured metallic multilayers with carefully designed mechanical and functional properties are omnipresent in cutting edge technological applications. To ensure the mechanical integrity of such coatings, the Mode I critical Stress Intensity Factor KIC is used to quantify their fracture toughness in order to avoid material failure by appropria...
Article
Modern advanced manufacturing technologies have made possible the tailored design and fabrication of complex nanoscale architectures with anomalous and enhanced properties, including mechanical and optical metamaterials; structured materials which are able to exhibit unusual mechanical and optical properties that are derived from their geometry rat...
Article
Full-text available
In the past years, a significant amount of effort has been directed at the observation and characterisation of caries using experimental techniques. Nevertheless, relatively little progress has been made in numerical modelling of the underlying demineralisation process. The present study is the first attempt to provide a simplified calculation fram...
Article
Full-text available
The performance and durability of Ni-rich cathode materials are controlled in no small part by their mechanical durability, as chemomechanical breakdown at the nano-scale leads to increased internal resistance and decreased storage capacity. The mechanical degradation is caused by the transient lithium diffusion processes during charge and discharg...
Article
Full-text available
Nylon-12 is an important structural polymer in wide use in the form of fibres and bulk structures. Fused filament fabrication (FFF) is an extrusion-based additive manufacturing (AM) method for rapid prototyping and final product manufacturing of thermoplastic polymer objects. The resultant microstructure of FFF-produced samples is strongly affected...
Article
Full-text available
The Tungsten Inert Gas (TIG) welding technique is extensively used to join various automobile and aerospace components, such as control arms, rotating blades, and vanes. Highly localized heating followed by rapid cooling during welding exert complex thermal and mechanical loading on the components and give rise to significant residual stress fields...
Article
Full-text available
Acid-induced enamel demineralisation affects many individuals either by exposure to acidic diets, acidic gas pollution (dental erosion) or to dental plaque acids (dental caries). This study aimed to develop in situ X-ray and light imaging methods to determine progression of enamel demineralisation and the dynamic relationship between acid pH and mi...
Article
Full-text available
Silver-based low-emissivity (low-E) coatings are applied on architectural glazing to cost-effectively reduce heat losses, as they generally consist of dielectric/Ag/dielectric multilayer stacks, where the thin Ag layer reflects long wavelength infrared (IR), while the dielectric layers both protect the Ag and act as an anti-reflective barrier. The...
Article
Full-text available
Nickel-based superalloys are frequently used under operating conditions that lead to the formation of an oxide layer. In this study, the mechanical properties of such a submicron oxide scale formed on a nickel-based superalloy were evaluated. The Poisson’s ratio and Young’s modulus of the layered oxide structure were determined to be respectively 0...
Article
Full-text available
The distinct molecular architecture and thermomechanical properties of polyurethane block copolymers make them suitable for applications ranging from textile fibers to temperature sensors. In the present study, differential scanning calorimetry (DSC) analysis and macroscopic stress relaxation measurements are used to identify the key internal proce...
Conference Paper
Full-text available
Shallow cracks are often observed in dental enamel, however do not normally lead to deep fractures. Previous work has highlighted the toughening mechanisms that operate in enamel during crack propagation, but very little is known about the deformation and stress fields arising around the propagating cracks during realistic loading conditions. This...
Article
Full-text available
As-received and cold-worked 55Ni-45Ti wt% Nitinol wire samples were subjected to various ageing treatments. Experiments show that the properties of as-received Nitinol, including microstructure, critical temperatures in thermally induced phase transformation, and salient values of stresses/strains in mechanically induced phase transformation, chang...
Article
Full-text available
Residual stresses in thin films and multi-layered coatings fabricated by physical vapour deposition largely affect their mechanical and thermal reliability during operation in numerous fields of applications. By changing the argon working pressure in between each multilayer planar DC magnetron sputter deposition step, it is possible to control the...
Article
Full-text available
The design and production of multifunctional materials possessing tailored mechanical properties and specialized characteristics is a major theme in modern materials science, particularly for implementation in high-end applications in the biomedical and electronics industry. In this work, a number of metamaterials with perforated architectures poss...
Article
Full-text available
Deformation analysis in engineering materials and components is a subject of ongoing enquiry due to its importance for obtaining reliable prediction of strength and durability of structures and assemblies. Whilst optical methods deliver information about surface displacements, X-ray scattering methods have the capability to provide efficient assess...
Article
Full-text available
Mechanical polishing is commonly used for both surface finishing and metallographic sample preparation for a broad range of materials. However, polishing causes local deformation and induces residual stress, which has an important effect on many surface phenomena. Until recently, it has not been possible to quantify the nanoscale depth variation of...
Article
Full-text available
Objectives: Yttria Partially Stabilised Zirconia (YPSZ) is a high strength ceramic which has become widely used in porcelain veneered dental copings due to its exceptional toughness. Within these components the residual stress and crystallographic phase of YPSZ close to the interface are highly influential in the primary failure mode; near interfac...
Article
Full-text available
Wire EDM is well-known as a technique for sectioning metallic samples that causes minimal disturbance in terms of residual stress introduction and modification at the macro-scale. Indeed, at the millimetre scale, EDM-induced residual stress can usually be neglected. However, when the dimensions of the machined product are reduced to less than a few...
Article
Full-text available
Diffraction data were collected using synchrotron X-ray scattering (sXRD) and electron back-scattered diffraction (EBSD) during in situ tensile-compressive deformation of Mg alloy AZ31B dogbone samples. The onset and evolution of twinning and detwinning were monitored based on intensity changes in sXRD 2D scattering patterns (which also provided av...
Article
Full-text available
Friction stir welding (FSW) since its invention has been attracting relevant interest for joining aluminium alloys. Due to the nature of this process, the materials can be joint without melting. Thanks to this peculiar characteristic, the issues associated with the cooling from liquid phase are avoided or considerably reduced, such as cracking, por...
Article
Full-text available
The study of Residual Stress is gaining more and more attention due to its importance in design for structural integrity. At present a lot of emphasis is placed on understanding the origins of mechanical failure that lie at the nano-/micron-scale. This leads to the evident need for evaluating residual stress distributions at increasingly smaller sc...
Article
Full-text available
We present a combined experimental and numerical study that provides the understanding of deformation mechanisms and stresses in Mg AZ31B alloy across scales, from macro-scale (Type I) to micro- (inter-granular, Type II) and nano-scale (intra-granular, Type III). The combination of in situ synchrotron X-ray diffraction (XRD), in situ electron backs...
Article
To investigate grain rotation caused by twinning-detwinning during plastic deformation, experiments using synchrotron high energy X-ray Diffraction (XRD) and Electron Backscatter Diffraction (EBSD) are carried out under in situ compression-tension loading. Comparison between the XRD and EBSD data confirms that the intensity change of diffraction ri...
Article
Full-text available
The purpose of the present study is to predict the residual stress and distortion of Inconel Alloy 740H components during the fabrication of welded components used for advanced ultra-supercritical technology by means of solving the inverse eigenstrain problem. The proposed model determines the distribution of two components of eigenstrain using two...
Article
Full-text available
Polylactide (PLA)-hydroxyapatite (HAp) composite components have attracted extensive attentions for a variety of biomedical applications. This study seeks to explore how the biocompatible PLA matrix and the bioactive HAp fillers respond to thermo-mechanical environment of a PLA-HAp composite manufactured by 3D printing using Fused Filament Fabricat...
Article
Full-text available
A methodology for evaluating the effect of surface damage in the fatigue life of nickel superalloys is presented in this paper. Dents generated due to low velocity impacts of hard objects were simulated using a finite element (FE) model. The residual stress distribution underneath the dent root obtained numerically was compared with the measurement...
Article
Dental caries is one of the most common chronic diseases that affect human teeth. It often initiates in enamel, undermining its mechanical function and structural integrity. Little is known about the enamel demineralisation process caused by dental caries in terms of the microstructural changes and crystallography of the inorganic mineral phase. To...
Article
Full-text available
A novel approach to separating macroscopic (Type I) from microscopic (Type II + III) residual stress is presented, based on Focused Ion Beam – Digital Image Correlation (FIB-DIC) ring-core stress evaluation and eigenstrain modelling. This approach was applied to study the residual stresses for a titanium alloy bar following plastic four-point bendi...
Article
Full-text available
Nickel superalloys play a pivotal role in enabling power-generation devices on land, sea, and in the air. They derive their strength from coherent cuboidal precipitates of the ordered γ’ phase that is different from the γ matrix in composition, structure and properties. In order to reveal the correlation between elemental distribution, dislocation...
Article
Full-text available
Statement of significance: Alkaline solutions are often employed for the treatment of bamboo in order to alter its natural elastic behaviour. In this work we study the effect of alkaline solutions on the elastic properties of bamboo. Using state of the art experimental technique allowed shedding light on the deformation mechanisms occurring in the...
Article
Full-text available
High energy 2D X-ray powder diffraction experiments are widely used for lattice strain measurement. The 2D to 1D conversion of diffraction patterns is a necessary step used to prepare the data for full pattern refinement, but is inefficient when only peak centre position information is required for lattice strain evaluation. The multi-step conversi...
Method
Full-text available
This focused ion beam-digital image correlation (FIB-DIC) Good Practice Guide (GPG) is one of the key outputs from the iSTRESS project, aimed at providing users with practical advice for making reliable residual stress measurements on their own systems and materials using this technique. It brings together the expertise and experience of the projec...
Article
Residual stress is of great significance for the structural integrity of components and assemblies. Its proper evaluation and integration into failure criteria may considerably enhance the engineering parts performance. Although experimental measurements of residual stress provide important input, the crucial next step is the incorporation of the i...