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Abstract 
Many countries completed large scale (1:5,000 – 1: 25,000) soil surveys decades ago, and have 
since used their thematic and geographic information to derive thematic soil property layers of 
the same or smaller scale (1:100,000 and smaller). The new layers are often simply aggregates of 
the original soil polygons and inherit the same geographic relationships that were delineated in 
the original data source. In reality, this approach does not use all information of the input data. 
Instead of aggregating existing maps, the original, non-interpreted field survey point data can be 
gathered and used for deriving new property layers. The paper aims to summarize a soil database 
development project using legacy data for a transboundary area, representing two different 
systems of data collection, storage and management. Recent and archived soil profile data have 
been collected, including monitoring sites, soil nutrient status campaign data for different periods, 
and recorded soil profiles from previous soil mapping activities. These data sources have been 
transformed to have a common theoretical basis using commonly accepted pedotransfer rules and 
an integrated profile database has been formed. It was used to interpolate soil information and 
develop soil property maps and layers representing the WRB diagnostic properties and horizons. 
The creation of the property layers was based on statistical/geostatistical interpolations of the soil 
profile database using DEM derivatives, SPOT and Landsat satellite images as covariates to 
provide information for the natural setting of the area. The interpolated values for the numeric 
variables were estimated using regression kriging, while the classified variables were calculated 
using the maximum likelihood classification algorithm. It was concluded, that the development 
of WRB diagnostic criteria database is feasible using raw data of different origin and a set of 
harmonization and  digital soil mapping tools. 
 
Keywords: WRB; soil database development; data harmonization; remote sensing; digital 
terrain modeling 
 
1. Introduction  
 
Soil data of appropriate format and reliable accuracy are often the most limiting factor of soil 
related modeling and applications. Many countries have had several data collection campaigns 
serving different goals, like mapping or agricultural fertility testing. Besides a Canadian example 
to make use of legacy data in a digital database (see chapter 26) legacy data have also been used 
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for several digital soil mapping applications to derive updated information (Rossiter, 2008, 
Baxter and Crawford, 2008, Mayr et al. 2008, Dobos et al. 2007, Bernoux et al. 2007, Mayr and 
Palmer, 2007, ). The integration of several legacy data sources is a potential way to create a 
product with great value added without the need of strong field data collection. One of the key 
element of any digital soil mapping based database development procedure is the appropriate 
density of input calibration/training data (section 3 of chapter 29). However, the integration of 
interpreted maps is often difficult. Thus, a different approach is demonstrated here. A point 
database was created from each input dataset and an integrated, multi-origin point database was 
developed after the necessary harmonization and data filtering. Taxonomic harmonization was 
done using the WRB 2006 classification system (IUSS Working Group WRB, 2006).  This 
database is used as calibration and training datasets for several digital soil mapping tools.  
 
2. Materials and Methods 
 
2.1. Study Area 
 
The study area, called Bodrogköz, is located between the triangle of the Tisza, Bodrog and 
Latorica Rivers along the eastern section of the Hungarian-Slovakian border (Figure 1.). It 
represents a homogeneous landscape, a flood plain with some windblown sand dunes, typical for 
the Pannonian plain. The areas along the major rivers, the so-called natural levees, are a few 
meters higher than the area behind (backwater area). Its soil texture is much coarser than the 
backwater area, which is heavy clay overlaying the deeper sand strata. One to two meters of 
relative elevation difference results in different texture, chemical properties, and also soil and 
landuse types. The recent landscape-landuse-geomorphologic-parent material system of the area 
is very much interrelated and defines the soils in an almost deterministic manner. There is also a 
slight change along the NE-SW direction, which is the major axis driving the surface water flow 
as well. The NE edge is higher, while approaching to the SW edge the elevation tends to be 
lower, have more frequent flooding, hydromorphic impact, thus more leaching, lower pH, and 
higher humus content. This trend varies a little bit in the SW edge, where the two levees of the 
Tisza and the Bodrog meet and form a joint levee, with somewhat higher elevation, different 
water regime and coarser texture.   
 
The area has been cultivated for over a thousand years, with a strong intensification starting in 
the 19th century. The soils were developing under the strong impact of floods and high 
groundwater table. Flood protection and drainage systems have been constructed since the 
second half of the 19th century, which has changed the environmental system dramatically.  
 
The landuse and the soil type are highly correlated. Low lying and high ground water areas have 
pasture and Gleysols on them, while the areas with lower ground water table have Vertisols, 
Arenosols and Luvisols. These soils are cultivated despite their high acidity and unfavorable 
textures.  
 
The study area has temperate climate with an annual precipitation of 550 mm and a mean 
temperature of 10o C. The altitude of the majority of the study area ranges from 90 to 120 meters. 
Only two small volcanic hills arise from the plain and reach 270 meters. The parent material is 
mainly alluvial clay and loamy fluvic material. The dominant landuse is farmland with some 



. 3

orchard, forest spots and wet pastures. The most common soil types are Vertisols, Arenosols, 
Gleysols, Fluvisols and Luvisols (Dobos and Kobza, 2008). 
 
 
2.2. Digital and Field Data  
 
2.2.1. Point data 
The area has 1786 sampling sites, of which 1616 falls to the Hungarian and 164 onto the 
Slovakian side (Figure 1).  
 
The highest number of points was imported from the Kreybig mapping campaign. These points 
were chosen as representative and complementary profiles for the 1:25,000 scale mapping, 
started in the late 1930s. 1161 points were processed, digitized and revalidated (Szabó et al, 
2005). Five parameters, namely the 5 hour capillarity rise, pH(KCl), humus%, CaCO3, and salt 
content were assigned to each point.  
 
The 164 Slovakian sites were part of the 1:10,000 mapping campaign started in the 1980s and 
contained three parameters, namely the humus%, clay% and pH(KCl).  
 
Official monitoring sites for both countries (18/6, Hu/Sk) were also used for interpolation and for 
data harmonization with the variables of CaCO3, texture, humus%, and pH(KCl) (Várallyay et al. 
1995).  
 
Data from three soil nutrient survey campaigns (TVG) in Hungary between the late 1970’s and 
1987 were used as well. A total of 422 data points were generated having the following 
variables: the Arany-type cohesion measure (Ka), humus%, salt content, CaCO3 and pH(KCl). 
 
An additional 16 sites were also sampled as representative, calibration data – benchmark soil 
sites - and used in the harmonization process. The majority of these points were selected to 
revisit existing points of other datasets. These points were sampled and lab analyzed for the 
humus%, texture, pH, CaCO3 and salt content.  
 
 
2.2.1.1.  Point data derivation from averaged field data (TVG data processing) 
 
In order to increase the data point density for areas where no reliable point data source was 
available non-point data sources were used as well, namely the TVG data. The TVG dataset is a 
non-point, field-based dataset, with 8 non-located composite samples taken along a recorded 
transect. Their average was assigned to a parcel, or a part of it, with the size ranging from 10 to 
20 hectares. These data were first filtered for field homogeneity and only data representing 
homogeneous fields were processed and used in this project. Field homogeneity was tested in 
two ways. First, by looking at the site visually on orthophotos, SRTM terrain derivatives, and 
multitemporal/multispectral Landsat/SPOT/IKONOS images representing six different dates.  
Quantitative methods, like the spectral distance based region grow algorithm of the ERDAS 
Imagine was tested as well (ERDAS, 1999). However, due to the high diversity and variability of 
the input layers no successful method to define the thresholds has been developed yet. Thus, the 
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thresholds were increased continuously up to the point when the expert judged and the measured 
results matched. If a match was not obtained within a certain range of threshold values, then the 
test failed. The second test was to check for deviation and outliers along the area selected in the 
first step. The measurements obtained in the transects falling within the selected areas were 
selected and the recorded measurements for each transects have been collected. The acceptable 
absolute deviation from the average was set by expert judgment for each variable, such as 0.5 for 
the pH. All measurements having greater deviation than the set value was considered outlier. If 
any outlier was identified then the area was dropped. If the tests were passed then the center or 
the most representative looking point of the area was selected and the average value was 
assigned to it. Data for 422 points were generated in this way having the following variables: the 
Arany-type cohesion measure (Ka), humus%, salt content, CaCO3 and pH(KCl).  This procedure 
unavoidably introduces some uncertainty to the process, therefore it was used only for areas 
having limited data.  
 
2.2.1.2. Point data harmonization 
 
The European Union, and also its member states, have several different ways of collecting and 
analyzing soil samples, and different ways of expressing the results. Therefore using these data 
sources is not straight forward. Much preprocessing is required to import all of these data into 
the same reference system. The preprocessing means both the spatial and the attribute data are 
transformed into a common system. This procedure is called, in our terminology, 
“harmonization”.  
 
The first step of the harmonization procedure was the field work, when representative profiles 
were opened in the field, sampled, analyzed in lab, and classified according to WRB 2006. The 
sites were to represent the major reference/benchmark soils of the area. The site selection was 
based on existing soil maps, satellite and orthophoto images and on the major geomorphologic 
units. The joint field work was a crucial step for mentally harmonizing the group members from 
the two countries, to reach a common understanding of the soil variable interpretation and to 
develop a mental model of soil variability. Based on the expert/local knowledge learnt from the 
reference profiles, each input data type was translated to a common variable using existing 
transformation models or correlation functions developed within the project. The result of this 
section was a harmonized soil profile database, and a mental model of the soil resources. 
 
Two major variables needed significant effort to harmonize, namely the taxonomic groups 
(WRB major reference groups, diagnostic horizons and criteria) and the texture. The taxonomic 
units were identified manually by the country representatives after field harmonization of the 
interpretation of the diagnostic properties. Numerous misclassified profiles were identified, 
screened and replaced by a commonly agreed unit. This work was crucial, and much less time-
consuming than anticipated. Having the mental model and the field correlation efforts, it was 
quite easy and fast to screen the problematic profiles and modifiy/correct their classification 
units.  
 
The property having the highest representation diversity was the texture. Clay % content, 
capillarity water rise in 5 hours, Arany-type cohesion measure (Ka) and interpreted texture 
classes were the input types of the different sources. Correlation rules developed by Buzás et al. 
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(1993) were employed to reach the common platform and convert all properties into the same 
variable. The less detailed variable, namely the classified texture unit was chosen to serve as the 
final variable, to which we could adjust/degrade the more detailed parameters. The correlation 
table is given in Table 1. The rest of the given parameters (humus, CaCO3 and salt %) were in 
the same units and were analyzed in the same way, so no further thematic harmonization was 
needed.  
 
Table 1. The correlation table of the three input texture parameters. 

 Clay% Ka Capillarity water 
rise in 5 hours (mm) 

Coarse sand below 5 below 25 over 350  
Sand 5-15 25-30 300-350 
Loamy sand 15-20 30-37 250-300 
Loam 20-30 37-42 150-250 
Clay loam 30-40 42-50 75-150 
Clay 40-45 50-60 40-75 
Heavy clay over 45 over 60 below 40  
 
Due to the temporal diversity of the input data sources some changes might have happened in the 
chemical properties over time and could resulted in a shift of the data values, which could 
significantly decrease the model performances. Therefore a set of t-tests for the humus content 
and pH were calculated to make sure that all input data sets represent the same population. The 
values of these two classes were close to normally distributed, skewness 0.6 and 0.5, while the 
Kurtosis was 3 and 3.3 for the pH and the humus, respectively. Because of the specific 
environmental setting of the study area – where parent material expresses the geomorphology 
and the terrain influence on the soils in the same time – a harmonized and simplified quaternary 
geology database was used to pre-stratify the area. The simplified parent material dataset 
contained four units: Holocene alluvial clay, Aeolian Dune Sand, Holocene reworked clay-loam 
alluvium and recent loamy, loamy-sand alluvium. The populations of the different point sources 
falling into the same parent material class polygons were tested for having the same means at 0.2 
level of significance. This value was chosen as a lowest acceptable level. Both of the humus and 
pH tests were significant.  
 
2.2.2. Other digital data sources 
 
Two Landsat and two SPOT images were selected for the work, both representing different 
seasons and natural conditions. The SPOT images were taken in May and October of 2006, while 
the Landsat images were acquired in March, 1999 and in July 2006. The1999 image represents a 
flooded condition. These data sources were combined into a 22 band image, resampled to 120 
meters and used as covariates for the interpolation and classification procedures. The pixel size 
degradation was carried out to decrease the impacts of artificial landscape patterns and increase 
the importance of the overall environmental condition.  
 
High resolution digital data for validating the sites were also used. Digital orthophotos from the 
summers of 2002 (for the Slovakian side) and 2005 (for the Hungarian side) with 2 meter 
resolution were created to cover the entire study area. An IKONOS multispectral image with 4 



. 6

meter resolution was also acquired for the entire area for the summer of 2007, when the field 
sampling campaign was running.  
 
 
2.2.2.1. Terrain information  
 
The terrain was represented with the 90 meter resolution SRTM data. These data were 
preprocessed to remove the effect of forests, which was recognized as a major limitation factor. 
The removal required a forest coverage map. It was created using the SPOT images described 
above and field training samples. The training samples were taken based on high resolution 
orthophotos. Maximum likelihood classification algorithm was employed to classify the entire 
image. The classified image was resampled to the same resolution as the SRTM and then 
reclassified into two classes, forest and non-forest . This image was used to identify the forest 
plot edges and an estimated elevation difference was calculated based on the minimum and 
maximum values within a given size of search window. This edge contour with the estimated 
elevations was used for lowering the actual SRTM (with the canopy) data. The resulting image 
was used for the terrain characterization.  
 
Except for the two hills, the area is almost totally flat. Thus the absolute elevation, and other 
commonly used parameters provided no useful information. Therefore two other topographic 
parameters were tested, the Topographic Position Index (TPI) (Weiss, 2002) and the Potential 
Drainage Density (PDD) index (Dobos, E and Daroussin J, 2007) to highlight the relative 
elevation, namely the low-lying and the elevated areas. 
 
 
2.3. Inference Models 
 
Figure 2 shows the flowchart of the inference system. The work had three major sections. The 
first step was the input data harmonization and the creation of the training/calibration point 
dataset. The second section was the creation of continuous property layers for the final and 
intermediate layers, like WRB Reference Soil Groups (RSG), texture, pH(KCl) and texture. 
(Alternative approaches for estimating soil properties based on various origin legacy data is 
described in sections 2 of chapters 16, 29 and 32.) After checking for potential trends, Universal 
Kriging and cokriging were used to interpolate the numerical data, namely the pH(KCl) and the 
humus content. Co-variables for the cokriging were selected by checking the cross-correlation of 
the variable to predict and the terrain parameters derived from the SRTM, and the best two were 
used. For the pH, 1611 observations were used and Universal kriging was selected as best 
performing model. The humus content was estimated with Universal cokriging using PDD as 
covariable with 657 observations.  
 
Categorical variables, like the WRB Reference groups and the texture, which were only in 
classified format, were estimated by maximum likelihood classification using the 22 layers 
combined SPOT and Landsat image, with a degraded resolution of 120 meters. The spatial 
distribution patterns of both variables were clearly visible on the RGB composite images, thus 
good performance was expected. Regular accuracy measures, like RMS, standardized RMS and 
average standard error were calculated and error vs. measured plot was created to visualize the 
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error trends. For the maximum likelihood classification the overall class performance (the 
correctly classified training pixels / the total number of training pixel), the Kappa statistics and 
the confusion matrix (user’s and producer’s accuracies) were calculated to characterize the 
accuracy (Congalton et al. 1991).  
 
In the last section, the WRB diagnostic properties and horizons were estimated using the four 
intermediate data layers and pedotransfer functions. Pedotransfer functions are simple or more 
complex rules/relationships to estimate missing properties based on existing, correlated, and easy 
to collect/measure properties (McBratney et al. 2002). Table 2. summarizes the pedotransfer 
functions used for estimating the WRB qualifiers/diagnostics for the study area.  
 
Table 2. The pedotransfer functions used for predicting the WRB qualifiers. 

Predicted WRB Qualifiers Pedotransfer functions 

Vertic All areas where Vertisols exist 
Mollic Humus>1% and Eutric 
Arenic Having sandy texture  
Clayic Having clay texture 
Gleyic All areas where Vertisols, Fluvisols and Histosols 

occur 
Dystric pH(KCl)<5  
Eutric pH(KCl)>5 
Calcic CaCO3 % > 5 

 
 
 
3. Results and Discussion 
 
3.1. Results from Model 
 
3.1.1. The WRB reference soil groups 
 
The WRB reference groups were estimated with maximum likelihood classification of the 
combined SPOT/Landsat images. Eight soil types appeared on the classified image with a very 
pronounced spatial distribution pattern (Figure 3). Fluvisols occur along the major rivers on the 
annually flooded areas. The backwater area behind the sandy levees, is covered by heavy 
textured Vertisols and Gleysols, with tiny islands of the remaining Histosols. The Northern part 
of the area is dominated by Luvisols, having a well developed B- horizon with strong clay skins. 
The small sand dunes have Arenosols and Cambisols on their lower sections. Histosols and 
Regosols occur as very small islands, representing small drained depressions and loamy plateaus.  
 
This soil distribution pattern was evident from the satellite images. RGB composites of the 
images showed the extent of the major soil types for the experienced eyes. The visual 
interpretation of the classified image showed a very good match as well with our local 
knowledge and mental model. Quantitative tests are given below. However, the risk of having 
too strong “landuse pattern”-dominated classified soil image was a real possibility. This strong 
pattern was “softened” by resampling the image to 120 meter resolution and using PCA 
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transformation. The first component of the PCA transformed image always emphasizes the 
landuse/landcover pattern, while the 2nd, 3rd, and 4th components are more related to secondary  
variability within-the-1st -component, within the land cover pattern. These secondary, hiding 
patterns are the ones we often need and are related to the soil characteristics. Using these tools 
limited the occurrence of the land cover pattern. 
 
The transition zones between the Regosols, Arenosols and Fluvisols classes were often quite 
difficult to handle, the separation of these taxonomically similar soil types were not always easy 
to make, even in the field. The subtypes of the reference groups were very similar taxonomywise 
to the neighboring reference soil group, often representing the transitional types between the 
reference groups – like Fluvisols and Fluvic Cambisols. However, as classified units they occur 
far from each other in the classification system due to the hierarchy. This problem had a 
significant impact on the accuracy measures as well. However, this potential misclassification 
had more impact on the quantitative accuracy measures, than on the real usefulness of the map.  
 
3.1.2. The property maps 
 
The texture map shows settings similar  to the WRB one. The active flood plains have loam and 
sandy loam texture. The inner part of the area is clay, with small islands of sand dunes occurring 
in the area. Organic materials and Histosols are very rare. The spatial patterns of the soil texture 
were easy to follow by simple visual interpretation of the composite satellite images as well. The 
RGB image of Figure 1. nicely shows the lighter colored levees of the recent and ancient rivers 
and the darker colored clayey (Gleysol-Vertisol) inland areas. 
 
Similar spatial pattern can be identified in the humus content (Figure 4. and 5). The higher 
humus content occurs with the clayey soils, where the clay bounds it strongly and the longer 
water saturation retards the organic matter decomposition. An opposite trend can be identified in 
the pH map (Figure 6. and 7.). Low pH is linked to the same low lying, clayey areas, where 
leaching was very active up to the last century. Spherical models were used to fit the curve for 
both cases. Strong nugget showing significant local variation has been found (Figures 4. and 6.).  
 
A spatial trend in the E-W direction was identified for both the humus and the pH value 
distributions. These two trends show converse ways, the pH values are the lowest in the centre 
part and increases towards the ends, while the humus content change the opposite way. These are 
real trends, and were modeled with a second order de-trend algorithm. The phenomenon is easy 
to explain. The centre part is the most typical backwater area, far from the major rivers and 
partly separated from them by the natural levees. The flooding water flowing over this natural 
levee slow down, looses its heavy sediments and keeps only the small particles like clay. This 
clay is deposited in the backwater area. The trapped water cannot flow back, even after the flood 
is over, because the levee blocks its way back to the river. Therefore the water stays there longer 
and strongly leaches the soils – low pH –, while the high clay content and the long saturation 
decreases the decomposition of the organic matter and support the higher humus content.  
 
The soils have seven major WRB diagnostic properties and horizons, which have common 
occurrence and strong importance in defining the soil use (Figure 8.). These diagnostics were 



. 9

created by manipulating the existing layers and combining their information according to the 
pedotransfer functions of Table 2.  
 
The spatial patterns of the final maps do not match the Hungarian or Slovakian soil maps, which 
differ from each other and from the WRB classification anyway. However, the shape and extent 
of the soil regions coincide  well with the geomorphologic and agro-environmental patterns of 
area, and match our mental model well. The WRB and texture maps correspond very well to 
each other, because they were derived from the same integrated satellite image. However, a very 
good genetic coincidence appears between the WRB/texture maps and the kriging based humus 
and pH data, which provides a visual support to the results as well. 
 
3.2.  Accuracy Assessment of Model 
 
The Landsat and SPOT image based classification resulted in an overall classification 
performance of 77 % and a Kappa statistic of 0.7. The confusion matrix is given in Table 3. The 
User’s accuracy ranged between 37 and 99 percent with an average of 64 %, while the 
Producer’s accuracy was between 61 and 94 % with an average of 82 %.  
 
The most severe misclassification occurred in the Histosols and Regosols classes. Both classes 
occur as small islands, often with a smaller extent than the pixel size used for its classification, 
which explains their low performance.  
 
RMS, standardized RMS and the average standard error were calculated for the kriging based 
extrapolations. These values for the pH(KCl) are 0.76, 0.98 and 0.77 respectively, while the 
values for the humus estimation were 1.13, 1.03 and 1.1. The pH values range between 3.5 and 8. 
The humus values are between 0 to 8, but can go further up for extreme hydromorphic soils.  
Both estimations are smoothing the data, the estimation error increases towards the minimum 
and maximum values, while decreases to 0 around the average.  
 
Table 3. The confusion matrix of the maximum likelihood classification of the WRB reference 
groups. The values in the matrix are percentages of training pixels from a given class classified 
into the resulting classes. The values of the “Total” line and column represents training pixel 
numbers.  

Classified Arenosol Fluvisol Histosol Regosol Luvisol Vertisol Cambisol Total 
Arenosols 60.54 3 1.09 2.21 2.38 6.19 5.85 2218 
Fluvisols 0.48 76.81 0 0 0.42 0.4 0.6 7095 
Histosols 4.16 5.55 93.82 0.44 3.22 5.91 1.38 1491 
Regosols 4.68 5.63 0 94.03 2.87 1.15 0.34 1162 
Luvisols 5.04 1.62 0.91 1.77 84.81 1.98 5.08 1659 
Vertisols 17.69 3.93 3.64 0.22 1.4 81.21 8.18 5033 
Cambisols 7.4 3.45 0.55 1.33 4.9 3.15 78.57 1653 
Total 2499 9178 550 452 1429 5041 1162 20311 

 
 
4. Conclusions 
 
Archived legacy data have great value for database development. Huge amounts of data have 
been collected and recorded in many previous mapping and survey campaigns. These data are 
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often interpreted into thematic polygon maps, and used for many applications. The integration of 
these types of data sources can improve the reliability and accuracy of our soil databases, and 
creates new generation data with added value. The best way to do so is to use the “raw” field 
survey observations as a profile database, or derive representative point data from averaged 
polygonal information. The integration and harmonization of these profile databases is the best 
and most consistent way of combining information of different origin and interpolate their 
information using digital soil mapping tools. It was also concluded that the diagnostic features, 
materials and horizons of WRB can be estimated from harmonized, variable origin, integrated 
data sources. 
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Figure 1. The location of the study area and the sampling sites (in yellow) over a Landsat RGB 
composite image (Bands 4,3,2). 
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Figure 2. The flowchart of the inference system used within this project. 
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Figure 3. The WRB Reference Soil Groupings map 



. 15

 
Figure 4. The humus content layer and the calculated semivariogram, where ɤ(h) is the 

semivariance function of the humus content in the function of the lag distance (h).  
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Figure 5. The trend analysis diagram for the humus content. The colors indicate the different 

dimensions, red is the horizontal plain, blue is the North-South direction, while the green color is 
the East-West one. The red points show the horizontal distribution/location of the points, while 
the blue and green ones refer to the pH values along the NS and the EW directions respectively. 
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Figure 6. The pH(KCl) layer and the semivariogram, where ɤ(h) is the semivariance function of 

the pH in the function of the lag distance (h). 
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Figure 7. The trend analysis diagram for the pH. The colors indicate the different dimensions, red 
is the horizontal plain, blue is the North-South direction, while the green color is the East-West 
one. The red points show the horizontal distribution/location of the points, while the blue and 

green ones refer to the pH values along the NS and the EW directions respectively.  
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Figure 8. The WRB diagnostic properties and horizons. 
 


