Ender Yildirim

Ender Yildirim
Middle East Technical University | METU · Mechanical Engineering

PhD

About

44
Publications
13,483
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
423
Citations
Additional affiliations
September 2019 - present
Middle East Technical University
Position
  • Professor (Assistant)
July 2012 - August 2019
Cankaya University
Position
  • Professor (Assistant)
Description
  • Courses given:Fluid Mechanics, Experimentation and Measurement, Mechanical Engineering Lab, Innovative Engineering Analysis and Design, Innovative Engineering Design and Implementation, Micro Scale Fluid Mechanics, Advanced Numerical Methods for Engineers
November 2010 - July 2012
Cankaya University
Position
  • Instructor
Description
  • Courses given: Computer Aided Engineering Drawing, Manufacturing Processes, Computer Integrated Manufacturing Systems
Education
September 2005 - September 2011
Middle East Technical University
Field of study
  • Mechanical Engineering
September 2002 - September 2005
Middle East Technical University
Field of study
  • Mechanical Engineering
September 1998 - June 2002
Middle East Technical University
Field of study
  • Mechanical Engineering

Publications

Publications (44)
Article
In recent years, single cell isolation and analysis have become crucial, driven by the need to study rare cells in cell biology research, diagnostics, and personalized medicine. However, existing platforms for isolating small cell numbers are expensive, labor-intensive, and not widely accessible. To address this, we present a low-cost, repeatable m...
Article
Full-text available
The isolation of circulating tumor cells (CTCs) from peripheral blood with high efficiency remains a challenge hindering the utilization of CTC enrichment methods in clinical practice. Here, we propose a microfluidic channel design for the size-based hydrodynamic enrichment of CTCs from blood in an epitope-independent and high-throughput manner. Th...
Preprint
Full-text available
Ultrasonic embossing is a promising method for fabricating microchannels on thermoplastics due to reduced cycle time and relatively low equipment cost. Replication quality in ultrasonic embossing has been investigated in the literature by primarily referring to the replication depth. However, this approach does not fully reflect the fidelity betwee...
Article
Full-text available
Electrochemical sensing is ubiquitous in a number of fields ranging from biosensing, to environmental monitoring through to food safety and battery or corrosion characterisation. Whereas conventional potentiostats are ideal to...
Article
Microfluidics enables the integration of whole protocols performed in a laboratory, including sample loading, reaction, extraction, and measurement steps on a single system, which offers significant advantages thanks to small-scale operation combined with precise fluid control. These include providing efficient transportation mechanisms and immobil...
Article
In the present study, the capabilities of different chip materials for acoustic particle manipulation have been assessed with the same microfluidic device architecture, under the same actuator and flow conditions. Silicon, glass, epoxy with fiberglass filling (FR4), polydimethylsiloxane (PDMS) and polymethyl methacrylate (PMMA) are considered as ch...
Article
Full-text available
Pathogen detection is still a challenging issue for public health, especially in food products. A selective preconcentration step is also necessary if the target pathogen concentration is very low or if the sample volume is limited in the analysis. Plate counting (24–48 h) methods should be replaced by novel biosensor systems as an alternative reli...
Article
Full-text available
One of the issues limiting the development of personalized medicine is the absence of realistic models that reflect the nature and complexity of tumor tissues. We described a new tissue culture approach that combines a microfluidic chip with the microdissected breast cancer tumor. “Tumor-on-a-chip” devices are suitable for precision medicine since...
Article
No PDF available ABSTRACT Ultrasonic particle manipulation in microchannels is a rapidly growing research field with significant potential applications in biological studies. Several factors are essential in achieving effective manipulation, such as obtaining resonance conditions in the actuator, chip, and/or the microchannel. The choice of chip ma...
Article
In this study, a capillary driven microfluidic chip-based immunoassay was developed for the determination of Human Chorionic Gonadotropin (hCG) protein, which is prohibited by the World Anti-Doping Agency (WADA). Here, we used antibody modified magnetic metal organic framework nanoparticles (MMOFs) as a capture prob in urine sample. MMOF captured h...
Article
Full-text available
We report the development of a lab-on-a-chip system, that facilitates coupled dielectrophoretic detection (DEP-D) and impedimetric counting (IM-C), for investigating drug resistance in K562 and CCRF-CEM leukemia cells without (immuno) labeling. Two IM-C units were placed upstream and downstream of the DEP-D unit for enumeration, respectively, befor...
Article
Full-text available
A critical component of microfluidic technology is the fluid pumping mechanism. Syringe and pressure pumps are typically used in the lab environment; however, their operations generate considerable dead volume that is often larger than the volume of the chip itself, leading to considerable waste of precious sample. As an alternative, pipetting allo...
Article
Full-text available
Being one of the major pillars of liquid biopsy, isolation and characterization of circulating tumor cells (CTCs) during cancer management provides critical information on the evolution of cancer and has great potential to increase the success of therapies. In this article, we define a novel strategy to effectively enrich CTCs from whole blood base...
Conference Paper
In this study, we investigated the performance of 2D simulations to predict the droplet sizes under varying flow conditions. Simple 2D models are lacking in presenting correct results because the top and bottom wall boundaries are excluded despite their significant effect on the flow construction. Here, we added an extra drag term representing the...
Conference Paper
We investigated the cell focusing performance of a CEA type microchannel, which comprises several throttles connecting circular wells in a zigzag arrangement. By obtaining the spatial distribution of the lift force using direct numerical simulations (DNS), we revealed the expected particle trajectories for CEA microchannel by sampling the circular...
Chapter
In the field of biomolecule detection, there are many conventional methods; however, there is a demand for applications that are more sensitive, accurate, and capable of analyzing small sample volumes. Lab-on-a-chip (LOC) devices are promising multifunctional tools for these purposes and the combination of LOC with spectroscopy provides rapid and r...
Article
Multiplex detection and quantification of bacteria in water by using portable devices are particularly essential in low and middle-income countries where access to clean drinking water is limited. Addressing this crucial problem, we report a highly sensitive immunoassay sensor system utilizing fluorescence technique with magnetic nanoparticles (MNP...
Article
Full-text available
Microsystems are key enabling technologies, with applications found in almost every industrial field, including in vitro diagnostic, energy harvesting, automotive, telecommunication, drug screening, etc. Microsystems, such as microsensors and actuators, are typically made up of components below 1000 microns in size that can be manufactured at low u...
Article
In this paper, the process-affected zone in ultrasonically embossed thermoplastic substrates is investigated both numerically and experimentally. Commercialization of microfluidic devices challenges the need for high-speed manufacturing of plastic chips. Ultrasonic embossing is considered as an alternative method since the cycle time can be as low...
Article
In this report, a passive microfluidic chip design was developed for fast and sensitive fluorometric determination of Escherichia coli (E. coli) based on sandwich immunoassay. Initially, magnetic nanoparticles (MNPs) and chitosan modified mercaptopropionic acid capped cadmium telluride (CdTe) quantum dots (QDs) were functionalized with E.coli speci...
Article
For the analysis of thermoacoustic (TA) devices, computational methods are commonly used. In the computational studies found in the literature, the flow domain has been modelled differently by different researchers. A common approach in modelling the flow domain is to truncate the computational domain around the stack, instead of modelling the whol...
Article
Infusing minute amounts of valuable liquids such as samples to microfluidic chips by using common pumping schemes such as syringe pumps often result in an excessive dead-volume. We present a simple yet effective sample loading interface, which helps by pumping the sample to the chip by using the hydraulic pressure generated by the syringe pump. Res...
Article
Human luteinizing hormone (LH) is an important analyte for doping control analysis since it increases the athletic performance. However, traditional methods to detect LH have few disadvantages, such as long analysis duration, waste disposal problem and sample matrix effect. Addressing these problems, surface-enhanced Raman spectroscopy based LH ana...
Article
Full-text available
In this paper, numerical analysis and experimental investigation of a micromixer, which was specifically designed for microfluidic devices fabricated by micromilling, is presented. The mixer is composed of series of contractions and expansions in zigzag arrangement along a mixing channel. Mixers, fabricated by micromilling on polymethylmethacrylate...
Article
In this study, effects of embossing temperature, time, and force on production of a microfludic device were investigated. Polymethyl methacrylate (PMMA) substrates were hot embossed by using a micromilled aluminum mold. The process parameters were altered to observe the variation of replication rate in width and depth as well as symmetry of the rep...
Article
Full-text available
Here, a numerical model for analysis of a capillary valve for use in microfluidic devices was presented. Capillary valves are preferred especially in passive microfluidic systems, where the capillary forces dominate the liquid motion, to manipulate the flow. The capillary valve in this work, was formed by the sudden expansion of a rectangular micro...
Article
Here we present fabrication and characterization of an absorption filter with superior roll-on properties and precisely tunable cut-off wavelengths for fluorescent imaging applications in lab-on-a-chip systems. The filters were fabricated by spinning dye doped photopolymer (Orasol Yellow in Norland Optical Adhesive 60) on glass substrates. The fabr...
Conference Paper
Full-text available
This paper presents a low cost hot embossing press and optimization of the process parameters for fabrication of microfluidic chips. For testing purposes, we fabricated a mold made of brass using micro milling process. By utilizing Taguchi method we found that 200 µm wide channels on polymethylmethacrylate (PMMA) substrates can be obtained by apply...
Article
Full-text available
A microfluidic passive valving platform is introduced that has full control over the stability of each valve. The concept is based on phaseguides, which are small ridges at the bottom of a channel acting as pinning barriers. It is shown that the angle between the phaseguide and the channel sidewall is a measure of the stability of the phaseguide. T...
Article
Full-text available
We have developed a magnetic particle-based assay platform in which functionalised magnetic particles are transferred sequentially through laminated volumes of reagents and washing buffers. Lamination of aqueous liquids is achieved via the use of phaseguide technology; microstructures that control the advancing air-liquid interface of solutions as...
Conference Paper
Full-text available
We demonstrate a simple, pump-free platform for performing rapid magnetic bead-based processes via their transfer through sequentially laminated liquid streams, made possible by the use of phaseguide technology. We have applied this strategy to two on-chip assays: (i) a streptavidin-biotin binding assay, and (ii) a sandwich immunoassay for the dete...
Conference Paper
Full-text available
This paper presents a novel microfluidics based approach to develop a reconfigurable circularly polarized transmitarray unit cell. The unit cell comprises double layer nested split ring slots formed as microfluidic channels that can be filled by fluids. Split regions in the slots are realized by injecting liquid metal into the channels. Beam steeri...
Article
This paper presents an electrostatically actuated, normally closed microvalve for parylene microfluidics. The proposed valve structure isolates the fluid from the electric field, and hence results in relatively low actuation potentials (<60 V) irrespective of the working fluid. Hereby, the microvalve solves electrolysis or electrode shielding probl...
Article
Full-text available
This paper presents an energy scavenging technique, merging microfluidics with electrostatic energy harvesting. The method employs droplet-based microflow of two phases with different electrical permittivities, resulting in a capacitance change across the microchannel, to harvest electrical energy. The technique is implemented on 3 mm wide, 1 mm de...
Conference Paper
This paper presents a droplet-based drug effect analysis system utilizing electrostatically-actuated normallyclosed microvalves to screen the effect of multiple drugs on a single type of cell. Proposed system minimizes the need for off-chip equipment by utilizing parylene based electrostatic microvalves. Prototypes of the system were fabricated and...
Article
Full-text available
This paper presents analysis and implementation of a simple electrostatic microvalve designed for use in parylene-based lab-on-a-chip devices. The microvalve utilizes an in-plane collapsing diaphragm. To investigate the pull-in behavior of the diaphragm and flow characteristics, a thorough analysis is carried out using the finite element method. Mi...
Conference Paper
This paper presents a novel electrostatic microvalve to control in-plane flow on parylene based lab-on-a-chip-devices. Normally-closed design of the microvalve insulates the working fluid from the electric field, while providing low leakage up to 40 kPa inlet pressure. Prototypes are fabricated and tested for pull-in and flow characterization. Pull...
Conference Paper
This paper presents a novel electrostatically actuated microvalve for lab-on-a-chip applications, fabricated using surface micromachining techniques. Lab-on-a-chip applications generally involve in-plane microflows. Microvalve mentioned here operates by moving a diaphragm, which is in-plane with the flow, perpendicular to the stream with the help o...

Network

Cited By