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TÜB_ITAK (Project No: 118C276).

Peer review under responsibility of Faculty of Engineering, Alexandria

University.

https://doi.org/10.1016/j.aej.2023.04.013
1110-0168 � 2023 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Emre Gures a,*, Ibrahim Yazici a, Ibraheem Shayea a,*, Muntasir Sheikh b,

Mustafa Ergen a, Ayman A. El-Saleh c
aDepartment of Electronics and Communication Engineering, Faculty of Electrical and Electronics Engineering, Istanbul
Technical University (ITU), 34467 Istanbul, Turkey
bElectromagnetics Engineering, Faculty of Engineering, King AbdulAziz University (KAU), Saudi Arabia
cDepartment of Electronics and Communication Engineering, College of Engineering, A’Sharqiyah University (ASU), Ibra
400, Oman
Received 2 November 2022; revised 8 March 2023; accepted 7 April 2023
KEYWORDS

Load balancing;

Machine learning;

High-speed railways;

Regression;

Handover margin;

Time-to-Trigger;

Radio link failure;

Handover ping-pong
Abstract With the rapid developments of fifth generation (5G) mobile communication networks in

recent years, different use cases can now significantly benefit from 5G networks. One such example

is high-speed trains found in several countries across the world. Due to the dense deployment of 5G

millimetre wave (mmWave) base stations (BSs) and the high speed of moving trains, frequent han-

dovers (HOs) occur which adversely affect the Quality-of-Service (QoS) of mobile users. User asso-

ciation for load balancing is also a key issue in 5G networks. Therefore, HO optimisation and

resource allocation are major challenges in the mobility management of high-speed train systems.

Handover Margin (HOM) and Time-to-Trigger (TTT) parameters are crucial for the HO process

since they affect the key performance indicators (KPIs) of high-speed train systems in 5G networks.

To manage system performance from the aspect of predictive analytics, we have modelled system

performance of mobility management through machine learning (ML). First, the HO management

process of a high-speed train scenario is framed as a supervised ML problem. The inputs for the

problem are regression task, HOM and TTT and the outputs are key performance indicators

(KPIs). Second, data processing is accomplished after generating a simulation dataset. Several

methods are employed for the dataset, such as Adaptive Boosting (AdaBoost), Gradient Boosting

Regression (GBR), CatBoost Regression (CBR), Support Vector Regression (SVR), Multi-layer

Perceptron (MLP), Kernel Ridge Regression (KRR) and K-Nearest Neighbour Regression

(KNNR). Tenfold cross validation is then applied for choosing the best hyperparameters. Finally,

the deployed methods are compared in terms of the Mean Absolute Error (MAE), Mean Square
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Error (MSE), Maximum Error (Max E), and R2 score metrics. From the MAE results, CBR

achieves the best outcomes for load level and throughput KPIs with 0.003 and 0.0144, respectively.

On the other hand, GBR achieves the best results for call dropping ratio (CDR), radio link failure

(RLF) and spectral efficiency KPIs with 0.354, 0.082 and 0.354, respectively. CBR also follows

GBR for the three KPIs with 0.356, 0.082 and 0.357, respectively. Only a slight difference in esti-

mations is present. MLP achieves the best results for HO ping-pong (HOPP) and HO probability

(HOP) KPIs with 0.0045 and 0.011, respectively. This is followed by GBR and CBR. From the

MSE outcomes, CBR and GBR exhibit the best results for load level and throughput KPIs with

2e-5 and 3e-5, respectively. GBR attains the best results for CDR, RLF and spectral efficiency KPIs

with 0.25, 0.011 and 0.025, respectively. Accordingly, CBR follows GBR with slightly different

errors for the three KPI estimations. MLP achieves the best results for HOPP and HOP KPIs with

5e-5 and 3.6e-5, respectively. Again, this is followed by GBR and CBR for the estimation of these

results. This indicates that CBR and GBR can capture relationships between inputs and KPIs for

the dataset used in this study, outperforming all other methods generally used for solving this prob-

lem.

� 2023 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/

4.0/).
1. Introduction

High-speed railways are becoming increasingly popular due to
their advantages such as lower energy consumption, reduced

environmental pollution, greater transport capacity, time effi-
ciency, more comfort, higher safety, etc. [1–3]. Broadband
communication for high-speed trains is becoming the main
trend due to the significant demand for various mobile wireless

services, including online gaming, video calls, etc. [3,4]. The
mmWave frequency can be used by 5G and beyond (B5G) cel-
lular networks to potentially accommodate exponentially

increasing data rates thanks to the new spectrum bands. How-
ever, there are significant obstacles to overcome in mmWave
bands, such as high path loss and vulnerability to rapidly

changing channel conditions and occlusions [5–11]. The dense
deployment of mmWave cells is required to ensure proper cov-
erage and capacity. It is anticipated that the implementation of
edge computing will further exasperate issues as well [12]. HOs

will frequently occur due to the dense deployment of 5G
mmWave BSs as well as the high speed of moving trains. Sig-
nalling overhead and latency of service will increase due to

more frequent channel estimation and cell association
[13,14]. Therefore, HO and resource allocation during user
association are crucial issues in mmWave networks.

In recent years, the topic of applying user association to
achieve load balancing in mmWave networks has drawn signif-
icant attention [15–17]. Load balancing is a promising

approach for effectively handling higher data rates, increasing
system capacity by controlling cell congestion and managing
wireless resource allocation across multiple links [18]. The cell
bandwidth is shared by all of its connected users. The cell

becomes overloaded when its workload exceeds capacity or
approaches near capacity since the number of current users
in the cell have reached the threshold limit. The network

resources in lightly loaded cells are not fully utilised while users
in heavily loaded cells compete for scarce network resources.
Therefore, data rates are unfairly distributed across users

within the network, and the quality of experience (QoE)
becomes inconsistent. In this case, load balancing is initiated,
and some users at the boundaries of overlapping or adjacent
cells are handed over from overloaded cells to lightly-loaded

cells.
HO is the mechanism that switches an active call from one

cell to another while the user is moving within the coverage

area of a cellular system [19]. HO is a key process that must
be properly managed in high-speed rail networks since it poses
multiple threats to QoS, such as reductions in the average

throughput and service interruptions [20]. Load balancing
achieves a fair load distribution between cells by optimising
HO control parameters (HCP), such as HOM and TTT.

HOM is one of the main parameters that control the HO
process between the serving and target cells. Basically, the cell
coverage is expanded or narrowed by including the HOM
value to the cell’s pilot power value. With this inclusion, the

underloaded target cell becomes more attractive in user associ-
ation than the overloaded serving cell. As a result, user traffic
is offloaded from overloaded cells to underloaded cells. In this

way, the overall system handles more traffic and users obtain
higher throughput. However, since HOM only mimics the
received signal quality, this can lead to lower SINR for users

that have been handed over, mostly users at the cell edge.
Therefore, appropriately setting the HOM value is a crucial
issue in any HO process.

Another significant metric used to regulate the HO process

is the TTT interval. The TTT interval is a predetermined
amount of time that the system will use to repeatedly test the
measured received signal strength prior to performing HO.

Low TTT time allows users to HO from overloaded cells to
underloaded cells in a shorter time, increasing average
throughput and reducing the call dropping ratio (CDR). How-

ever, this setting can also cause an increase in HO probability
(HOP) and HO ping-pong (HOPP) [21]. A high TTT setting
may prevent the offloading of users from overloaded cells

and may also cause delays in handing over users experiencing
poor communication quality.

Various mobility management algorithms are available
throughout the literature for high-speed train scenarios. In

[22], a distributed architecture with an access point on each
wagon was proposed to avoid any temporary interruptions
for 5G connectivity, improving the QoE. The proposed dis-

tributed architecture is where each train carriage uses one (or

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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more) Wi-Fi access points for its train-to-ground connection.
HO on each high-speed train carriage is modelled as a queuing
system with service interruptions triggering load balance

between adjacent queues. Each carriage uses the local informa-
tion of neighbouring carriages and forwards its accumulated
packets to neighbours according to the current service speed

of neighbouring carriages. In [20], an adaptive switching algo-
rithm based on random suppression was proposed in high-
speed rail scenarios. The algorithm establishes an elliptical

function relationship between HOM and train speed. HOM
can be adjusted according to train speed which reduces the dif-
ficulty of forward transition of high-speed trains. However, the
proposed vertical HO algorithm fails to fully consider uncer-

tain factors in the network environment. It is easily affected
by dynamic network changes which causes further problems,
such as HO performance degradation.

Various mobility management algorithms based on ML in
B5G networks are also present throughout the literature. In
[23], an adaptive optimisation method based on the Q-

Learning algorithm was proposed to achieve real-time estima-
tion of HCPs for long term evaluation (LTE) railway (LTE-R)
system. A performance situation map of HCPs for different

speeds is established to enhance the HO performance. In
[24], an intelligent HO scheme based on the Elman network
in LTE-R networks was proposed. A neural network model
in different regions is trained by the Elman network to obtain

the variations of measured HO decision parameters in a future
period of time. In [25], the proposed HO decision algorithm
based on Bayesian regression assumes that HO conditions

are independently distributed in LTE-R networks. The algo-
rithm predicts the cell boundary crossing time. According to
the prediction, the algorithm in the serving BS decides when

to initiate the HO process, assuming constant delay of HO
preparation and HO execution. However, this algorithm
assumes that it is too idealistic and does not consider the influ-

ence of multiple attributes in the HO results.
Although these algorithms enhance handover performance,

they are not robust nor ideal in selecting appropriate HCP val-
ues in the 5G system. One of the main reasons is that most of

these algorithms were developed for the fourth generation (4G)
technology, which has different specifications and require-
ments as compared to the 5G technology. The existing algo-

rithms developed for previous cellular networks are not
efficient for 5G network implementation. Thus, further
research with various mobility and deployment scenarios is

required for the 5G network. All previously mentioned algo-
rithms were designed to operate on a central optimisation
model. This model may lead to increased HO issues for some
users [26]. Not all mobile users require the optimisation pro-

cess at the same time and in the same direction. This issue
can become more critical due to the small coverage offered
by 5G BSs and the required support for high mobility speeds

(400 km/h). Another problem is the type of HCPs considered
for optimisation. Several existing algorithms do not optimise
all HCPs. For instance, some algorithms only optimise one

HCP (HOM or TTT), such as in [20,23,25].
The contributions of this paper offer versatile solutions to

the current literature. Firstly, to the best of our knowledge,

this study is the first attempt to establish a predictive method
for microcells and railway network scenarios using ML meth-
ods. For such scenarios, the simulated system is framed as a
supervised learning problem, and the estimation of system
KPIs are performed by ML methods from the aspect of predic-
tive analytics. Secondly, we use and deploy ML methods to
acquire results that forge a direction for future research, fur-

ther enhancing the reproducibility of our applications in this
paper. Finally, this investigative study contributes to the
understanding of ML deployment methods and their effective-

ness in estimating system performance of high-speed trains in
B5G mobile networks. This can greatly assist in determining
which learning algorithms should be applied for mobility load

balancing in a high-speed railway scenario. The resultant pre-
diction model may also be used for proposing efficient load
balancing algorithms that improve system performance by
optimising or adapting HCPs.

The organisation of this paper is as follows. Section II
introduces the system and simulation models. Section III
briefly presents the ML methods used in this paper. Section IV

highlights the data collection, data processing and implemen-
tation details of the methods used for solving the problem. Sec-
tions V displays the outcomes of deploying the ML methods

and Section VI presents the concluding remarks.

2. System and simulaton models

This section introduces the network and simulation models.
The deployment model and mobility scenario are described,
and the simulation settings are summarised. The HO decision

process used in load balancing is introduced and the modifica-
tion made in target cell identification is explained.

2.1. Network and simulation models

The simulation environment has been developed in MATLAB
2020b to simulate the B5G network according to microcells
and railway network scenarios. The network layout consists

of thirty-nine evolved NodeB (eNB) with three sectors for each
cell, and the distance between the two BSs is 400 m (each eNB
covers 200 m). The network is modelled according to the spec-

ifications of LTE-Advanced Pro 3GPP Rel. 16. Table 1 dis-
plays the network parameters. The number of hexagonal
cells can automatically increase depending on the simulation

time. Fig. 1 presents an example of the B5G network deploy-
ment scenario where the pink-coloured points and hexagonal
shapes represent the user equipment (UE) and the eNB, respec-
tively. The frequency reuse factor is assumed to be one.

A collection of mobile users is initially constructed with
random coordinates inside the hexagonal boundaries of each
cell to simulate the environment of the actual B5G network.

The number of users randomly and periodically fluctuates over
the simulation cycles in each cell. This means that each eNB’s
traffic load is periodically and automatically modified to reflect

the current state of the network. The simulation model is cre-
ated to mimic a random generation of traffic load throughout
the simulation, taking into account the complete enablement

of admission control functionality in the target cell during user
mobility. Each user is equipped with an omnidirectional
antenna to communicate with the serving cell.

In this study, the Directional Mobility Model (DMM) is

proposed for all measured mobile users to simulate the move-
ment of high-speed trains. Mobile users are only allowed to
move in one direction, as shown in Fig. 1. The measured users

are initially generated at random coordinates in cell number



Table 1 Simulation settings [16,26,31–35].

Parameter Assumption

Environment 5G Rel. 16 System, micro cells and

urban areas

Cellular layout Hexagonal grid

No. of sectors for each

cell

3 Sectors

Path loss model L ¼ 58:8þ 37:6xlog10 dð Þ þ 21log10 fcð Þ
eNB’s antenna height 15 m

Cell radius (d) 200 m

Carrier frequency (fc) 28 GHz

Total power TX eNB 46 dBm

System bandwidth 500 MHz

Shadowing 8 dB

Tested UE number 15 UEs randomly distributed

eNB noise figure 5 dB

White noise power density

Nt

�174 dBm/Hz

Thermal noise power (Np) Np ¼ Nt þ 10log10 BWx106
� �

dB

No. of tested UEs 15 UEs randomly distributed

UE noise figure 9 dB

UE height 1.5 m

UE antenna gain 0 dB

UE’s antenna 1, omni-directional

Mobility model DMM

No. of PRBs 2500 PRBs

Resource distribution Equally across all active UEs

UE’s speed 400 km/h

Simulation cycle 40 ms

Min. desired level of RX

in the cell

�101.5 dBm

TTT intervals Changes from (0 to 5120) ms

HOM values Changes from (0 to 16) dB

Modulation scheme Adaptive Modulation Coding scheme
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one, as shown in Fig. 1. Afterwards, users move between solid
blue lines in only one direction and on different parallel paths
to each other. The simulation periodically updates the move-

ments of the UEs. The periodic interval is specified as 40 ms.
To accurately depict the characteristics of a high-speed train,
the user speed for the simulation study was set to 400 km/h.

In this research, 15 users were selected to investigate the
performance of the proposed algorithms. The average values
from 15 users represent all results considered in the measure-

ments made throughout this study. 15 users are randomly gen-
erated in cell #1 in the first simulation cycle. Since performance
is independently measured for each user during each simula-
tion cycle, the accuracy of results is improved. The average

value was taken for all users measured in each simulation
cycle. Therefore, the average values of the cells’ load level,
throughput, CDR, spectral efficiency [27], HOP, HOPP and

radio link failure (RLF) are calculated in each simulation
cycle. The simulation began according to the parameter set-
tings depicted in Table 1.

2.2. Handover decision

The main objective of load balancing is to ensure that the total

network traffic load is equally shared among cells by offload-
ing the user traffic from overloaded cells to underloaded cells.
For this to be accomplished, a bias value is added to the target
cell’s pilot power value. The load balancing function increases

the HOM to initiate an early HO to another cell when the serv-
ing cell is overloaded. Underloaded target cells with biased
power during the HO decision stage become more attractive

than overloaded cells. Therefore, the total system serves more
traffic and users obtain higher throughput [18]. However, this
unanticipated increase may lead to RLF and HOPP, causing

poor QoS for users [28]. An automated model is therefore
needed to separately predict HOM settings based on the cell
load for each user. The conventional A3 HO event depending
on a power-based margin is initiated when the neighbouring

cell’s power is greater than that of the serving cell for one
TTT period. It is mathematically expressed in Equation (1),
as follows:

RSRPt þHOM > RSRPs ð1Þ
where RSRPs and RSRPt represent the RSRP of the serv-

ing cell and the target cell, respectively. If the load balancing
function is inactive (the serving cell is not overloaded, that

is, the load level is less than 65 %), the HOM value is set to
zero [29,30].

In this study, an adjustment was made in the target cell

selection to provide load balancing and reduce HOP and
HOPP. The target cell is determined from a restricted list of
neighbouring cells defined by the load level criterion. In this
list, the cell with the highest RSRP is designated as the target

cell. This adjustment ensures the handover of users to under-
loaded target cells if adequate conditions are met. In the sce-
nario where the serving cell is overloaded, users are handed

over to underloaded target cells with appropriate HCP set-
tings. In this scenario, no matter how high the RSRP value
of the serving cell is, it cannot be assigned as the target cell

since it cannot meet the load level requirement. Therefore,
the probability of HOPP and HOP is reduced.

3. Machine learning-based system performance prediction

ML methods are applied across various fields, producing
promising results. We chose ML methods for estimating sys-

tem performance. Our goal is to deploy machine learning
methods to estimate performance of a mobility system. To
achieve our goal, the ML methods predict outputs of a high-
speed train system based on HOM and TTT input values.

The results of this performance estimation approach can also
be used in load balancing and HCP optimisation. ML consists
of three types of learning: supervised learning, unsupervised

learning and reinforcement learning. Our task falls under the
supervised learning category which the applied ML methods
are trained by labelled data (output) to perform either a regres-

sion task or a classification task. In this paper, we applied
regression-type supervised methods since our outputs are all
continuous. The high-speed train simulation system is framed

as a supervised learning problem, and HOM and TTT are used
to predict the outputs of high-speed train scenarios in the B5G
network. Ultimately, the study conducts predictive analytics
for HO management in high-speed train scenarios. Powerful

ML methods are utilised in the task of predicting outputs.
AdaBoost Regression (ABR), CatBoost Regression (CBR),
Gradient Boosting Regression (GBR), K-Nearest Neighbour



Fig. 1 B5G network deployment scenario.
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Regression (KNNR), Kernel Ridge Regression (KRR), Multi-
layer Perceptron Regression (MLPR) and Support Vector

Regression (SVR) are the supervised ML methods used in this
paper. A brief overview of these methods is provided in the fol-
lowing subsections.

3.1. Adaboost regression

Ensemble learning in ML methods forms strong estimators
(learners) rather than a single base estimator (weak learner)

to achieve better performance at the end of a learning process.
It consists of two types: bagging and boosting. Boosting con-
structs its model through sequential learning with each gener-

ated model trying to mitigate the weakness of its predecessor
model. Bagging trains its model in parallel, learning to con-
struct its model in this manner.

Adaptive Boosting Regression is a type of boosting algo-
rithms frequently used for both classification and regression
tasks [36]. The easy-to-implement and bias reducing features
of this algorithm support its utilisation in different classifica-

tion and regression tasks. However, the hyper-parameter selec-
tion (which depends on the problem handled), the intense
computations for high amounts of data and the avoidance of

overfitting issues are all significant issues in the deployment
stage.
3.2. Gradient boosting regression

Gradient Boosting is another type of boosting algorithm that
can perform both classification and regression tasks. As previ-
ously mentioned, the gradient boosting model is constructed

by forming strong learners from weak learners, compensating
the weakness of the weak learners. A set of weak learners (re-
gression trees) evolves in a manner where a set of strong learn-

ers is obtained during this evolution process by learning from
the errors of previous learners [37,38]. This method is an
extended version of adaptive boosting. Boosting is framed as
an optimisation problem that minimises the loss function using

a gradient descent type optimisation procedure. Hyper-
parameter selection and overfitting issues must be carefully
managed in the deployment stage.

3.3. Cat boosting regression

Cat Boosting, proposed by Yandex research, is a novel boost-

ing algorithm that conducts both classification and regression
tasks [39]. It considers categorical features along with
continuous-valued features in a problem, providing scalable

and fast GPU implementations for large datasets. It falls under
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the category of boosting algorithms similar to AdaBoost and
Gradient Boosting.

3.4. K-Nearest neighbour regression

The KNN algorithm is a type of non-parametric supervised
ML algorithm that can be used for both classification and

regression tasks [40]. This algorithm makes use of the neigh-
bourhood of pre-determined K neighbours in model fitting.
In regression, the output is computed by averaging the values

of these K neighbours. In model fitting, the model is con-
structed by using a step function that leads to smoother fits
[41]. This algorithm is a promising solution for different use-

cases, however, bias-variance trade-off is a significant issue
when determining the number of K in the deployment stage.

3.5. Kernel ridge regression

Kernel ridge regression is a combined algorithm that uses clas-
sification and ridge regression with the kernel trick in a hybrid
form. Kernel ridge regression transforms the space of features

into a higher dimensional space to informatively represent the
dataset. This algorithm is formed by applying the kernel trick
to a parametric model, the ridge regression [42]. The solution

vector depends on all training inputs, hence, the model learned
by kernel ridge regression is non-sparse [43]. Kernel ridge
regression is similar to support vector machines in using kernel
tricks, however, they vary in their use of different loss func-

tions. Support vector machine employs epsilon-insensitive loss,
while the kernel ridge regression utilises squared error loss.

3.6. Support vector regression

Support vector regression is a regression form of the support
vector machine used for classification tasks [44]. Support vec-

tor regression also applies kernel trick and epsilon-insensitive
loss function in its algorithm. This loss function only penalises
the points which are lying outside the epsilon-tube [43]. The

SVR problem is first framed into a constrained optimisation
problem and then solved by the quadratic function optimisa-
tion. SVR is good at avoiding the overfitting issue, however,
it is computationally burdensome when the dataset size is

large. This becomes a problem in the deployment stage [45].

3.7. Artificial neural network

Artificial Neural Network is a type of stacked logistic regres-
sion method where the last layer changes according to task
type, either regression or classification. In regression tasks,

the last layer is a linear layer while it is sigmoid, softmax or
another classification activation function. ANN consists of
one input layer, one hidden layer and one output layer

[43,46]. It mimics the function of neurons in the brain during
its working principles. In ANNs, the given information is pro-
cessed throughout hidden layer(s) by means of several activa-
tions until finally, an output is produced. A shallow neural

network consist of one input layer, one hidden layer and one
final output layer. The size of the hidden layer in a shallow
neural network may significantly affect the performance of

the algorithm by causing overfitting or underfitting, therefore,
this parameter must be considered in model construction and
deployment stages [45].

4. Implementation

This section introduces the stages of application. The first
stage consists of data collection and data processing tasks, fol-

lowed by the inputs, outputs and prediction scheme. The sec-
ond stage includes the training procedures, model selection
and prediction and performance metrics. Fig. 2 presents the

overall implementation steps.

4.1. Data collection

The dataset was created using the MATLAB 2020B software
in the B5G network and was designed to consider the micro-
cells and railway network scenarios according to the simula-

tion settings summarised in Table 1. The inputs of the
system consist of fixed HOM and TTT values. A total of 528
samples were obtained by simulating the combinations of fixed
HOM and TTT values. Input parameters (HOM and TTT)

take the values defined by the 3rd generation partnership pro-
ject (3GPP) [34]. Fixed HOM values range from 0 to 16 dB in
0.5 dB increments. Fixed TTT intervals consist of the follow-

ing values defined by 3GPP: 0, 40, 64, 80, 100, 128, 160, 256,
320, 480, 512, 640, 1024, 1280, 2560, and 5120 ms. We offer
Fig. 2 Procedure for ML-based system performance prediction.
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a large set of measurements to provide a more comprehensive
research that considers additional KPIs, thereby determining
the performance of various networks from different perspec-

tives. Other than the KPIs related to load balancing (load
level, throughput, CDR and spectral efficiency), the perfor-
mance metrics associated with mobility robustness optimisa-

tion (RLF, HOPP and HOP) are also included in the
analysis due to the high speed scenario of trains. The dataset
consists of seven outputs, as explained in Table 2. The outputs

are the average measurement values achieved by 15 users in
each simulation cycle.

4.2. Data processing

All outputs are real-valued outputs, therefore, regression was
applied in the supervised ML method. Since the units of each
output and input features are different, they must be nor-

malised to acquire stable results with the deployed methods.
This study applies the zero-mean normalisation for each input
and output features according to Equation (2):

x
0
i ¼

xi � l
r

ð2Þ

where xi and x
0
ix

0
i denote the value of ith example and the

normalised value of this ith example, respectively. On the other
hand, l and r correspond to the values of mean and standard
deviation of the relevant feature or output, respectively. Nor-

malisations for the testing and training sets are performed with
different mean and standard deviation values. This is a signif-
Table 2 Definiton and purpose of inputs and outputs.

Type Parameter Definition

Inputs

HOM An offset that artificially modifies the HO

decision.

TTT Predetermined amount of time that the

system will use to repeatedly test the

measured received signal strength prior to

performing HO.

Outputs Load Level The ratio of the current number of users

in a cell to the maximum number of users

that the cell can serve.

Throughput The volume of data accurately transferred

from one site to another within a

predetermined period of time.

Call

dropping

ratio

The ratio of the number of calls to the

total number of calls due to poor

connection quality and insufficient

resources in the cell

Spectral

efficiency

Data rate normalized with the cell

bandwidth.

Radio link

failure

Drop rate of communication during user

mobility due to a deterioration in the

RSRP level.

HO ping-

pong

HO of a user back to the serving cell in a

time below the critical time after being

handed over to the target cell.

HO

probability

Probability of connections exchanged

between the source and destination BSs

during user mobility.
icant issue in ML deployment methods. In ML, the testing
dataset distribution is unknown by the fitted model that is only
trained on a training dataset with possibly different distribu-

tions than the testing dataset. Hence, normalising the testing
and training data with the same parameters will result in
wrong predictions. In this paper, different parameters (mean

and standard deviation values) are used for the normalisation
of the training and testing datasets.

4.3. Hyperparameter setting and model training

This section presents the stages of training, validation and
model selection. In our experiments, we used Python 3.9 and

sklearn 1.1.1 library for the deployment method. An ultrabook
laptop that has Intel Core i5 CPU with 1.8 GHz was used for
conducting the experiments.

ML methods have different hyperparameters that affect

their performance, such as the learning rate, hidden layer units
in neural networks, C parameter for SVR, number of trees in
decision tree method, etc. Choosing the model with the best

hyperparameter settings is crucial to ensure that the ML algo-
rithm can achieve promising results.

The use of cross-validation for model selection is therefore

essential to learn the hyperparameters of the ML method,
making it a viable option. The cross-validation method resam-
ples a dataset used to assess the performance of the ML
method on a limited dataset size. Cross-validation, generally

dubbed as k-fold cross-validation, partitions a training dataset
into k-folds. The ML method is then iteratively trained on
each k-fold as a validation set, and the rest are used for the

training set. Each fold of the dataset is used to train the ML
method. The method learns different input sets in this manner.
It then learns to estimate the skill of the ML method to select

the best one among different models as a result of the cross-
validation process. Therefore, the hyperparameters of an ML
method are the parameters learnt during the training stage

with the training dataset. Different ML methods have different
hyperparameters. We employed the k-fold cross-validation to
determine the best hyperparameters for different ML methods
in our implementations. Cross-validation further contributes

to the generalisation capability of ML methods, allowing them
to introduce the k-unseen dataset during the training stage.
Hence, the model produces more robust results than one that

uses a simple train-test split method. Fig. 3 presents an exam-
ple of cross-validation in the model selection process. 85 % of
the dataset was used for training, and the remainder was used

for the testing set. 10 % of the training dataset was used for the
validation set by applying 10-fold cross-validation.

SVR is another ML method used in this study. Fig. 4 pre-
sents an exemplary SVR method. In Fig. 4, a regression line is

fitted for the inputs, and a boundary that encompasses the
maximum inputs (points) in the epsilon-margin error is con-
structed for SVR modelling.

Fig. 5 displays the architecture of a shallow artificial neural
network. The input layers receive the inputs of a neural net-
work model, the hidden layers process the inputs by non-

linear transformations and the output layer then produces
the results of the model.



Fig. 3 Cross-validation process.

Fig. 4 Example of SVR.

Fig. 5 Example of shallow neural network.

Fig. 6 MIMO prediction strategy.

642 E. Gures et al.
4.4. Prediction

After determining the best hyperparameters in our experi-
ments, they were then set for each ML method. The Multi

Input Multi Output (MIMO) prediction strategy was used
for all deployed ML methods, as shown in Fig. 6.

To evaluate and confirm the performance of the deployed

ML methods, it is necessary to measure the statistical errors
between the ground truth and predicted values. Two common
error metrics were employed for the ML methods: the Mean
Absolute Error (MAE) and the Mean Square Error (MSE).

The Maximum Error (MaxE) metric was also used to evaluate
the error of worst performing method(s). Computations for
MAE, MSE and MaxE are provided in Equations 3–5,
respectively.

MAE ¼ 1

N

XN

i¼1
yi � byij j ð3Þ

MSE ¼ 1

N

XN

i¼1
yi � byið Þ2 ð4Þ

MaxE ¼ max
i

yi � byij jð Þ ð5Þ

In Equations 2–4, N corresponds to the size of the relevant

dataset. yi and byi denote the ground truth value of element i of
an output and the predicted value of element i of the output,
respectively. The R2 score, a coefficient of determination,

was also used. This score shows the proportion of total vari-
ance in the ML method that is explained by the independent
variable(s). Computation for R2 is provided in Equation (6).

R2 ¼ 1�
PN

i¼1 yi � y
�
i

� �2
PN

i¼1 yi � byið Þ2 ; y
� ¼

XN

i¼1
yi ð6Þ
5. Results and discussions

This section provides the results of the deployed ML methods

with the best hyperparameters determined through grid search
and cross-validation methods. The best hyperparameters are
obtained by performing 10-fold cross validation, as explained

in the implementation section. The employed methods are
compared in terms of MAE, MSE, Max E and R2 score values.
The results for each output are displayed in Tables 3-6,
respectively.

The best score for each comparison is highlighted in bold
throughout Tables 3-6. In addition, the last row of Tables 2
and 3 provide the error performance difference between the

best performing method and the second best as a percentage
performance difference for each output. According to the
MAE results presented in Table 3, CatBoost Regression is best

at predicting load level and throughput. On the other hand,
Gradient Boosting Regression is best at predicting CDR,
RLF and spectral efficiency. However, in these first five out-
puts, the performance differences between Gradient Boosting

and CatBoost Regression are insignificant, as shown in the last
row of Table 3. Lastly, the Multi-layer Perceptron outperforms



Table 3 MAE Results.

MAE

Method LL T CDR RLF SE HO PP HOP

ABR 0.00483 0.01565 0.36917 0.0887 0.36726 0.00476 0.01533

GBR 0.00303 0.01447 0.3540 0.08214 0.3540 0.00478 0.01476

CBR 0.00300 0.01442 0.35678 0.08237 0.35678 0.00478 0.01475

SVR 0.01785 0.05917 2.07203 0.33304 2.07203 0.00848 0.03784

MLP 0.01125 0.01653 1.5876 0.09675 1.5789 0.00446 0.01083

KNNR 0.01085 0.022 1.13137 0.12361 1.13137 0.00495 0.01506

KRR 0.00906 0.01631 1.13999 0.09224 1.13999 0.01080 0.02622

Diff. (%) 1 0.4 0.8 0.3 0.8 6.3 26.6

Table 4 MSE Results.

MSE

Method LL T CDR RLF SE HO PP HOP

ABR 0.00003 0.00036 0.26528 0.01151 0.26405 0.00006 0.00051

GBR 0.00002 0.00033 0.25254 0.01069 0.25254 0.00006 0.00049

CBR 0.00002 0.00033 0.25322 0.01079 0.25322 0.00006 0.00049

SVR 0.00089 0.00492 12.96513 0.15663 12.96513 0.00050 0.00448

MLP 0.00019 0.00053 3.80253 0.01854 3.77245 0.00005 0.00036

KNNR 0.00039 0.00079 4.09487 0.02495 4.09487 0.00006 0.00055

KRR 0.00013 0.00051 2.35721 0.01666 2.35721 0.00029 0.00173

Diff. (%) 33.3 8.3 0.3 1 0.3 16.7 26.5

Table 5 Max E. Results.

Max Error

Method LL T CDR RLF SE HO PP HOP

ABR 0.01005 0.03586 0.99988 0.20494 0.99988 0.02656 0.06721

GBR 0.00794 0.03532 0.99988 0.20193 0.99988 0.02657 0.06709

CBR 0.00816 0.03612 1.05268 0.20568 1.05268 0.02724 0.06916

SVR 0.08525 0.14891 10.7277 0.85161 10.7277 0.08640 0.23301

MLP 0.02911 0.06205 4.37948 0.37847 4.28590 0.02868 0.07027

KNNR 0.06225 0.07431 6.27021 0.41876 6.27021 0.02675 0.06742

KRR 0.02524 0.06703 3.79483 0.38762 3.79483 0.06049 0.15171
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all other methods in the prediction of HOPP and HOP out-
puts. According to Table 3, the performance differences of this

method compared to the second-best method are extremely
high. The differences are 6.3 % and 26.6 % for HOPP and
HOP, respectively.

The results of the best performing methods in terms of

MSE performance (displayed in Table 4) are nearly the same
with Table 3. For predicting the load level and throughput,
Gradient Boosting and CatBoost outperform all other meth-

ods with considerable differences (33 % and 8.3 %). Gradient
Boosting outperforms all other methods in predicting CDR,
RLF and spectral efficiency. This is followed by the CatBoost

method with only a slight performance difference. Lastly, the
Multi-layer Perceptron method outperforms all other methods
in predicting HOPP and HOP with considerable difference, as

seen in the last row of Table 4 (16.7 % and 26.5 %). According
to Tables 3 and 4, CatBoost and Gradient Boosting Regression
achieve the best results. They outperform all other methods for
five outputs out of seven. This outcome is also seen in Figs. 7

and 8 regarding the average MAE and MSE achieved by these
methods.

Overall, all methods produced satisfactory results for load

level, throughput, RLF, HOPP and HOP according to MAE
and MSE metrics. However, SVR, KNNR, KRR and MLP
remained behind GBR, CBR and ABR in predicting CDR

and RLF according to both metrics. It should be noted that



Table 6 R2 Scores.

R2 Score

Method LL T CDR RLF SE HO PP HOP

ABR 0.9945 0.9796 0.9961 0.9791 0.9961 0.8785 0.9091

GBR 0.997 0.981 0.9963 0.9805 0.9963 0.8790 0.9119

CBR 0.997 0.9811 0.9963 0.9804 0.9963 0.8787 0.9114

SVR 0.8344 0.7181 0.8095 0.7149 0.8095 �0.0630 0.1988

MLP 0.965 0.9697 0.9441 0.9663 0.9446 0.8840 0.9355

KNNR 0.9281 0.9548 0.9398 0.9546 0.9398 0.8734 0.9013

KRR 0.9754 0.9705 0.9654 0.9697 0.9654 0.3866 0.69

Fig. 7 Average MAE comparisons for each method.

Fig. 8 Average MSE comparisons for each method.
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SVR is the worst performing method among all others with

high error rates. This may be due to its low generalisation abil-
ity for the test set in this study. In Table 4, the SVR errors for
CDR and spectral efficiency are very high because MSE

quadratically penalises errors. Since SVR diverges from the
other methods by producing the worst results for these out-
puts, this divergence is quadratically penalised by the MSE

metric. In Table 5, outperformance of the applied boosting
methods is apparent since the maximum error in each output
is less compared to the other methods used. This demonstrates
the stability of the boosting methods when it comes to predic-

tions. The other methods produce high errors, especially in the
prediction of CDR and SE outputs. SVR is the worst perform-
ing method among all others. Table 6 demonstrates how much
the total variance of the dependent variable is explained by the

independent variable(s). The low performance of SVR is also
apparent from this table. Even KRR, which is a modified ver-
sion of SVR, achieved better results since it uses squared loss,

which contrasts from the epsilon-insensitive loss applied by
SVR. This may be due to KRR’s learning ability of the non-
sparse model which differs from SVR. The R2 score of SVR

is below 0, indicating that the method is not good at explaining
the relationship between input(s) and output(s). A noteworthy
point is that KRR’s R2 score is also low for HOPP and HOP
as compared to other methods, excluding SVR. For these out-

puts, KRR performs in parallel with SVR with low R2 scores,
significantly diverging from the other methods.

CatBoost Regression and Gradient Boosting Regression

further exhibit superior results in most output predictions, as
shown in Table 6. These two boosting methods are directly fol-
lowed by another boosting method: AdaBoost Regression. It

should be noted that MLPR sometimes produces the best pre-
diction outcomes by surpassing the boosting methods. Figs. 7
and 8 display the average results for each method used (includ-
ing their overall performance) according to MAE and MSE

outcomes, respectively. The MAE and MSE errors for the
GBR method are 0.118 and 0.074, respectively. Likewise, the
same MAE and MSE error values can be seen for CBR

(0.0119 and 0.074, respectively). According to the results in
the figures, the superiority of CBR and GBR is more apparent.
ABR is the boosting method that closely follows the two best

performing methods. In contrast, the worst performing meth-
ods are MLPR and KNNR. They are worse than KRR yet
better than SVR. This indicates that MLPR cannot generalise

the dataset well due to its small size. Although KRR and SVR
employ nearly the same learning procedure for modelling data
in the algorithmic perspective, KRR distinctively outperforms
the SVR method in terms of average MAE and MSE results.

This implies that KRR can capture patterns in the dataset,
hence achieving better predictions.

The overall results reveal the superiority of boosting meth-

ods in the regression task for the data applied in this study.
Weak learners form strong learners in the training stage to
achieve superior results. Boosting methods are generally good

at reducing bias in datasets, hence their superiority may stem
from bias reduction in the dataset used in this study. The
results also provide insight regarding ML modelling relations
between HOM, TTT and KPIs (outputs) from the aspect of
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predictive analytics in high-speed train scenarios using 5G net-
work systems with different ML algorithms. The limitations of
this study include dataset size and the number of features. If

the dataset size is larger with a greater number of features,
deep learning methods would be applied rather than conven-
tional machine learning methods to obtain better results. Deep

learning methods excel at capturing relationships between
inputs and outputs in datasets. Further research can address
these limitations to acquire improved results.

6. Conclusions

The aim of this paper is to model mobility management of

high-speed train system behaviour using ML methods for pre-
dictive analysis. ML system modelling enables the prediction
of outputs for different HOM and TTT values in high-speed

train scenarios in the 5G mobile network. It can also be
applied to model different use cases of mobility management
scenarios using predictive analytics. Accordingly, data was first
collected from a simulation then processed at the start of the

application stage. Normalisation was performed for the train-
ing and testing datasets using different parameters to provide
robust predictions since the testing dataset was unknown by

the fitted model. Next, GBR, CBR, ABR, SVR, KNNR,
KRR and MLPR methods were selected and applied for the
dataset. 10-fold cross validation was conducted for each

method, and the methods with the best hyperparameters were
chosen according to the cross-validation results. The methods
with the best hyperparameters were then applied for the data-
set. The performances of the chosen methods were compared

in terms of MAE, MSE and Max Error metrics. The R2 scores
were also presented. According to the results, CBR and GBR
achieved better MAE and MSE results compared to all other

methods for five outputs: LL, T, CDR, RLF and SE. Ada-
Boost directly follows CBR and GBR in terms of performance.
The MLPR method achieved the best results for two outputs:

HOPP and HOP.
This study provides insight regarding the effectiveness of

deploying ML methods in estimating system performance of

high-speed trains in B5G mobile networks. It can greatly assist
in choosing which learning algorithms should be used for
mobility load balancing in a high-speed railway scenario. Pre-
dictive load balancing algorithms that are chosen according to

examined indices can lead to enhanced results. The ML mod-
elling of a mobility system’s performance produces promising
results for estimating load balancing KPIs. This offers great

potential for future research and applications. Using the out-
comes of ML modelling in future studies will create efficient
load balancing algorithms that improve system performance

by optimising or adapting HCPs in different mobile network
scenarios.
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Appendix. Script for study results is provided after the Refer-

ences section. All codes of all experiments are also available in
the link: https://github.com/dervishson/HOM_TTT.
import argparse
import pandas as pd
import numpy as np
from sklearn.multioutput import MultiOutputRegressor
from sklearn.svm import SVR
from sklearn.kernel_ridge import KernelRidge
from sklearn.neighbors import KNeighborsRegressor as

KNNR
from sklearn.ensemble import GradientBoostingRegressor as

GBR
from sklearn.ensemble import AdaBoostRegressor as ABR
from sklearn.linear_model import SGDRegressor as SGDR
from sklearn.neural_network import MLPRegressor as MLPR
from sklearn.metrics import r2_score as R
from catboost import CatBoostRegressor as CBR
def data_process(file_name):
data = pd.read_excel(args.file_name) #dataset.xlsx
x = data.sample(frac = 1).reset_index(drop = True)
HOM_mean,TTT_mean = x.mean()[:2]
HOM_std,TTT_std = x.std()[:2]
x[‘‘HOM”]=(x[‘‘HOM”]-HOM_mean)/HOM_std
x[‘‘TTT”]=(x[‘‘TTT”]-TTT_mean)/TTT_std
###Train-test split and only second index of j changes when

output changes
X_train,X_test = x.iloc[:450,:2],x.iloc[450:,:2]
y_train,y_test = x.iloc[:450,2:],x.iloc[450:,2:]
X_train,X_test = X_train.values,X_test.values
y_train,y_test = y_train.values,y_test.values
###Output mean and standard deviations
y_tr_means,y_ts_means = y_train.mean(axis = 0),y_test.mean

(axis = 0)
y_tr_stds,y_ts_stds = y_train.std(axis = 0),y_test.std(axis = 0)
#####Normalization of output
y_train,y_test=(y_train-y_tr_means)/y_tr_stds,(y_test-y_ts_me

ans)/y_ts_stds
return X_train,X_test,y_train,y_test,y_tr_means,y_tr_stds,y_ts_

means,y_ts_stds
def work_on(which_model):
X_train,X_test,y_train,y_test,y_tr_means,y_tr_stds,y_ts_means,

y_ts_stds = data_process(args.file_name)
if args.which_model==‘‘SVR”:
#define model
model = SVR(C = 10,epsilon = 0.1,gamma = 0.01,kernel=

‘‘rbf”)
mor = MultiOutputRegressor(model)
fitted = mor.fit(X_train,y_train)
preds = fitted.predict(X_test)
elif args.which_model==‘‘KRR”:

(continued on next page)

https://github.com/dervishson/HOM_TTT
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(continued)

import argparse
#define model
model = KernelRidge(alpha = 0.1,degree = 1,kernel=‘‘rbf”)
mor = MultiOutputRegressor(model)
#Fit and predict
fitted = mor.fit(X_train,y_train)
preds = fitted.predict(X_test)
elif args.which_model==‘‘KNNR”:
#define model
model = KNNR(metric=‘‘euclidean”,n_neighbors = 1,weigh

ts=‘‘uniform”)
mor = MultiOutputRegressor(model)
#Fit and predict
fitted = mor.fit(X_train,y_train)
preds = fitted.predict(X_test)
elif args.which_model==‘‘GBR”:
#define model
model = GBR(learning_rate = 0.1,max_depth = 5,n_estima

tors = 500)
mor = MultiOutputRegressor(model)
fitted = mor.fit(X_train,y_train)
preds = fitted.predict(X_test)
elif args.which_model==‘‘ABR”:
#define model
model = ABR(learning_rate = 0.3,n_estimators = 200)
mor = MultiOutputRegressor(model)
fitted = mor.fit(X_train,y_train)
preds = fitted.predict(X_test)
elif args.which_model==‘‘MLPR”:
#define model
model = MLPR(hidden_layer_sizes = 100,max_iter = 1500)
mor = MultiOutputRegressor(model)
fitted = mor.fit(X_train,y_train)
preds = fitted.predict(X_test)
elif args.which_model==‘‘CBR”:
#define model
model = CBR(learning_rate = 0.09,max_depth = 6,n_estima

tors = 500)
mor = MultiOutputRegressor(model)
fitted = mor.fit(X_train,y_train)
preds = fitted.predict(X_test)
#Computations
y_test,y_hat=(y_test*y_ts_stds) + y_ts_means,(preds*y_ts_std

s) + y_ts_means
Max_E = np.around(np.max(np.abs(y_test-y_hat),axis = 0),5)
MAE_vals = np.mean(np.abs(y_test-y_hat),axis = 0)
MAE_vals = np.around(MAE_vals,5)
MSE_vals = np.mean(np.power((y_test-y_hat),2),axis = 0)
MSE_vals = np.around(MSE_vals,5)
R_scores = []
for i in range(7):
R_scores.append(R(y_test[:,i],y_hat[:,i]))
a = np.mean(R_scores)
R_scores = np.around(R_scores,4).tolist()
list_1 = [‘‘Load_level”,‘‘Throughput”,‘‘CDR”,‘‘RLF”,‘‘SE”,‘‘

HO PP”,‘‘HO Prob.”]
list_2 = MAE_vals.tolist()
list_3 = MSE_vals.tolist()
list_4 = Max_E.tolist()
list_5 = R_scores
df = pd.DataFrame(list(zip(list_1,list_2,list_3,list_4,list_5)))
df.columns = [‘‘Outputs”,‘‘MAE”,‘‘MSE”,‘‘Max_Errors”,‘‘R

Scores”]
print(df)
(continued)

import argparse
print(‘‘MAE means:”,df[‘‘MAE”].mean())
print(‘‘MSE means”,df[‘‘MSE”].mean())
#print(‘‘Mean absolute values:”,MAE_vals)
#print(‘‘Mean square error values:”,MSE_vals)
def main(args):
np.random.seed(13)
#X_train,X_test,y_train,y_test,y_tr_means,y_tr_stds,y_ts_mean

s,y_ts_stds = data_process(args.file_name)
work_on(args.which_model)
if __name__ == ‘‘__main__”:
parser = argparse.ArgumentParser(description=’Result

shows’)
parser.add_argument(‘‘--file-name”, type = str,
help=‘‘Name of the data file”)
parser.add_argument(‘‘--which-model”,type = str,
help=‘‘Which model will be worked”)
args = parser.parse_args()
main(args)
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