Abstract—Unmanned Underwater Vehicles (UUVs) can be utilized to perform difficult tasks in cluttered environments such as harbor and port protection. However, since UUVs have nonlinear and highly coupled dynamics, motion planning and control can be difficult when completing complex tasks. Introducing models into the motion planning process can produce paths the vehicle can feasibly traverse. As a result, Sampling-Based Model Predictive Control (SBMPC) is proposed to simultaneously generate control inputs and system trajectories for an autonomous underwater vehicle (AUV). The algorithm combines the benefits of sampling-based motion planning with model predictive control (MPC) while avoiding some of the major pitfalls facing both traditional sampling-based planning algorithms and traditional MPC. The method is based on sampling (i.e., discretizing) the input space at each sample period and implementing a goal-directed optimization (e.g., A^\ast) in place of standard numerical optimization. This formulation of MPC readily applies to nonlinear systems and avoids the local minima which can cause a vehicle to become immobilized behind obstacles. The SBMPC algorithm is applied to an AUV in a cluttered environment and an AUV in a common local minima problem.

I. INTRODUCTION

The United States has over 360 ports that comprise more than 90% of the U.S. export and import industry [1]. These harbors pass through cargo and even passengers. A threat to the ports can produce an environmental and economic crisis [2]. A simple tactic a terrorist can use to cause havoc is employing mines or maritime improvised explosive devises (MIEDs) at a U.S. port. In this way a mine that cost no more than a few thousand dollars can cause great disruption. There have been non-mine related crises in the past that have caused setbacks at U.S. ports: the Exxon Valdez spill of 1989, which cost more than $2.5 billion to clean up, and the dock workers strike of 2002, which resulted in a loss of $1.9 billion dollars a day [2]. The effect of closing a port due to a mine explosion can also be catastrophic.

Consequently, it is necessary to protect U.S. ports. The task of searching and destroying mines is a potentially harmful process that can be performed by a combination of surface vehicles, unmanned underwater vehicles (UUVs), and explosive ordinance divers (EODs) [1]. This paper will consider the use of an UUV, more specifically an autonomous underwater vehicle (AUV). Harbors and ports have naval ships, commercial vessels, fishing boats, piers and other articles that create a cluttered environment for AUV motion. For the inspection to be successful the AUV cannot collide with an obstacle, because this can obviously be very disruptive. In addition to the complex AUV mobility environment the nonlinear, time-varying and highly coupled vehicle dynamics make motion planning and control difficult for harbor protection tasks since it is difficult to predict future paths for the vehicle as it moves through the environment. In addition, there are uncertainties in the hydrodynamic coefficients determined in a tank test, which effect the confidence in the fidelity of the dynamic model when the AUV maneuvers in the ocean. The vehicle is underdamped and easily perturbed, which is a challenge when there are external disturbances like ocean currents that cause the vehicle to deviate from its path. Furthermore, the center of gravity and buoyancy may change depending on the AUV payload. Consequently, an AUV requires robust motion planning and control to operate reliably in complex environments.

Standard AUV motion planning and control first determines a trajectory that the AUV may not be physically able to follow, then applies a controller that may require the vehicle to follow this possibly infeasible trajectory. An approach that can help ensure robust motion planning is to incorporate a model of the AUV when planning the vehicle trajectory since this applies motion constraints that ensure feasible trajectories. In cluttered environments, the use of kinodynamic constraints in motion planning aid in determining a collision free trajectory. The kinematics provides the turn rate constraint and side slip [3], while the dynamics can provide insight into an AUV’s movement and interaction with the water, providing limits on velocities, accelerations and applied forces. This paper presents preliminary results for motion planning with a kinematic model. A future paper will consider planning using an AUV dynamic model.

There are researchers that have previously incorporated a
model in motion planning for an AUV. Kawano has a four part system [4]: 1) the offline Markov Decision Process module performs the motion planning offline; 2) the replanning module determines a path when there are new obstacles; 3) the real-time path tracking module gives action that needs to be taken; 4) the feedback control module regulates the vehicles’ velocity to the target velocity. Yakimenko uses the direct method of calculus to generate trajectories that are kinematically feasible for the vehicle to traverse [5]. There are four main blocks: the first generates a candidate trajectory that satisfy boundary conditions and position, velocity and acceleration constraints; the second employs inverse dynamics to determines the states and control inputs necessary to follow the trajectory; the third computes states along the reference trajectory over a fixed number of points; and the fourth optimizes the performance index.

The current line of research first considered using the model in the motion planning process by integrating the guidance and control via a method called shrinking horizon model predictive control [6]. That approach was often able to determine a collision free path using a kinematic model, but had two primary shortcomings. First, the computational time was not fast enough for real time vehicle operation. Second, for certain initial condition the gradient-based optimization method would converge to a local minimum. To solve these issues Sampling Based Model Predictive Control (SBMPC) was developed [7].

SBMPC allows a model to be considered online while simultaneously determining the optimal control input and a kinematically or dynamically feasible trajectory of the AUV. SBMPC is a nonlinear model predictive control (NMPC) algorithm that can avoid local minimum, has strong convergence properties based on the LPA* optimization convergence proof [8], and has physically intuitive tuning parameters. The concept behind SBMPC was first presented in [7] and later a more developed version that tested SBMPC on an Ackerman Steered vehicle [9]. As its name implies, SBMPC is dependent upon the concept of sampling, which has arisen as one of the major paradigms for robotic motion planning [10]. Sampling is the mechanism used to trade performance for computational efficiency. Unlike traditional model predictive control (MPC), which views the system behavior through the system inputs, the vast majority of previously developed sampling methods plan in the output space and attempt to find inputs that connect points in the output space. SBMPC is an algorithm that, like traditional MPC, is based on viewing the system through its inputs. However, unlike previous MPC methods, it uses sampling to provide the trade-off between performance and computational efficiency. Also, in contrast to previous MPC methods, it does not rely on numerical optimization. Instead it uses a goal-directed optimization algorithm derived from LPA* [8], an incremental A* algorithm [10].

This paper is arranged as follows. Section II provides a summary of the methods combined to formulate SBMPC. The SBMPC algorithm is presented in Section III. Section IV gives simulations of SBMPC implemented on AUVs in clustered environments and local minima configurations. Finally, Section V presents conclusions and future work.

II. THE FUNDAMENTALS OF SAMPLING BASED MODEL PREDICTIVE CONTROL

SBMPC is a novel approach that allows real time motion planning that uses the vehicle’s nonlinear model and avoids local minima. The method employs an MPC type cost function and optimizes the inputs, which is standard in the control community. Instead of using traditional numerical optimization, SBMPC applies sampling and a goal-directed (A*-type) optimization, which are standard in the robotic and AI communities. This section provides a brief overview of the methods from which SBMPC was derived. Next, it describes the SBMPC cost function and outlines the SBMPC algorithm. Finally, this section discusses the benefits of SBMPC.

A. Model Predictive Control

Introduced to the process industry in the late 1970s [11], Model Predictive Control (MPC) is a mixture of system theory and optimization. It is a control method that finds the control input by optimizing a cost function subject to constraints. The cost function calculates the desired control signal by using a model of the plant to predict future plant outputs. MPC generally works by solving an optimization problem at every time step \(k \) to determine control inputs for the next \(N \) steps, known as the prediction horizon. This optimal control sequence is determined by using the system model to predict the potential system response, which is then evaluated by the cost function \(J \). Most commonly, a quadratic cost function minimizes control effort as well as the error between the predicted trajectory and the reference trajectory, \(r \). The prediction and optimization operate together to generate sequences of the controller output \(u \) and the resulting system output \(y \). In particular, the optimization problem is

\[
\min J = \sum_{i=1}^{N} \|r(k+i) - y(k+i)\|^2_Q + \sum_{i=0}^{M-1} \|\Delta u(k+i)\|^2_Q
\]

subject to the model constraints,

\[
x(k+i) = f(x(k+i-1), u(k+i-1))
\]

\[
y(k+i) = g(x(k+i))
\]

and the inequality constraints,

\[
Ax \leq b
\]

\[
C(x) \leq 0
\]

\[
u^l \leq u(k+i) \leq u^u
\]

Traditional MPC has typically been computationally slow and incorporates simple linear models.
B. Sampling Based Motion Planning

Sampling-based motion planning algorithms include Rapidly-exploring Random Tree (RRTs) [12], probability roadmaps [13], and randomized A* algorithms [14]. A common feature of each of those algorithms to date is that they work in the output space of the robot and employ various strategies for generating samples (i.e., random or pseudo-random points). In essence, as shown in Fig. 1, sampling-based motion planning methods work by using sampling to construct a tree that connects the root with a goal region. The general purpose of sampling is to cover the space so that the samples are uniformly distributed, while minimizing gaps and clusters [15].

C. Goal Directed Optimization

There is a class of discrete optimization techniques that have their origin in graph theory and have been further developed in the path planning literature. In this paper these techniques will be called goal-directed optimization and refer to graph search algorithms such as Dijkstra’s algorithm and the A*, D*, and LPA* algorithms [10], [8]. Given a graph, these algorithms find a path that optimizes some cost of moving from a start node to some given goal. Although not commonly recognized, goal-directed optimization approaches are capable of solving control problems for which the ultimate objective is to generate an optimal trajectory and control inputs to reach a goal (or set point) while optimizing a cost function; hence, they apply to terminal constraint optimization problems and set point control problems.

D. The SBMPC Optimization Problem

SBMPC overcomes some of the shortcomings of traditional MPC by sampling the input space as opposed to sampling the output space as in traditional sampling-based motion planning methods. The need for a nearest-neighbor search is eliminated and the local planning method (LPM) is reduced to the integration a system model and therefore only generates outputs that are achievable by the system. To understand the relationship between sampling-based algorithms and MPC optimization, it is essential to pose sampling-based motion planning as an optimization problem. To illustrate this point, note that, subject to the constraints of the sampling, a goal-directed optimization algorithm can effectively solve the mixed integer nonlinear optimization problem,

\[
\begin{align*}
\min_{\{u(k)\ldots u(k+N-1)\},N} & \sum_{i=0}^{N} \| y(k+i+1) - y(k+i) \|_{Q(i)} \\
& + \sum_{i=0}^{N-1} \| \Delta u(k+i) \|_{S(i)}
\end{align*}
\]

subject to the system equations,

\[
\begin{align*}
x(k+i) &= f(x(k+i-1), u(k+i-1)), \\
y(k) &= g(x(k))
\end{align*}
\]

and the constraints,

\[
\begin{align*}
\| y(k+N) - G \| &\leq \epsilon, \\
x(k+i) &\in X_{free} \quad \forall \ i \leq N, \\
u(k+i) &\in U_{free} \quad \forall \ i \leq N,
\end{align*}
\]

where \(\Delta u(k+i) = u(k+i) - u(k+i-1)\), \(Q(i) \geq 0\), \(S(i) \geq 0\), and \(X_{free}\) and \(U_{free}\) represent the states and inputs respectively that do not violate any of the problem constraints. The term \(\| y(k+i+1) - y(k+i) \|_{Q(i)} + \| \Delta u(k+i) \|_{S(i)}\) represents the edge cost of the path between the current predicted output \(y(k+i)\) and the next predicted output \(y(k+i+1)\). The goal state \(G\) is represented as a terminal constraint as opposed to being explicitly incorporated into the cost function. Goal-directed optimization methods implicitly consider the goal through the use of a function that computes a rigorous lower bound of the cost from a particular state to \(G\). This function, often referred to as an “optimistic heuristic” in the robotics literature, is eventually replaced by actual cost values based on the predictions and therefore does not appear in the final cost function. The cost function can be modified to minimize any metric as long as it can be computed as the sum of edge costs.

E. The SBMPC ALGORITHM

The formal SBMPC algorithm can be found in [9]. However, the main component of the SBMPC algorithm is the optimization, which will be called Sampling-Based Model Predictive Optimization and consists of the following steps:

1) Sample Control Space: Generate a set of samples of the control space that satisfy the input constraints.

2) Generate Neighbor Nodes: Integrate the system model with the control samples to determine the neighbors of the current node.

3) Evaluate Node Costs: Use an \(A^*-\)like heuristic to evaluate the cost of the generated nodes based on the desired objective (shortest distance, shortest time, or least amount of energy, etc.).

4) Select Lowest Cost Node: The nodes are collected in the Open List, which ranks the potential expansion nodes by their cost. The Open List is implemented as a heap...
so that the lowest cost node that has not been expanded is on top.

5) **Evaluate Edge Cost for the “Best” Node:** Evaluate each of the inequality constraints described in (6) for the edge connecting the “best” node to the current node. The edge cost evaluation requires sub-sampling and iteration of the model with a smaller time step for increased accuracy; it is therefore only computed for the current “best” node. In the worst case the edge cost of all of the neighbor nodes will be evaluated, which is how \(A^* \) typically computes cost.

6) **Check for Constraint Violations:** If a constraint violation occurred, go back to step 4 and get the next “best” node.

7) **Check for Completion:** Determine if the current solution contains a path to the goal. If yes, stop. If no, go back to step 1.

The entire algorithm is integrated into the MPC framework by executing the first control and repeating the optimization until the goal is reached since the completion of SBMPO represents the calculation of a path to the goal and not the complete traversal.

F. Benefits of SBMPC

The novel SBMPC approach has several benefits. First, SBMPC is a method that can address problems with nonlinear models. It effectively reduces the problem size of MPC by sampling the inputs of the system, which considerably reduces the computation time. In addition, the method also replaces the traditional MPC optimization phase with \(LPA^* \), an algorithm derived from \(A^* \) that can replan quickly (i.e., it is incremental). SBMPC retains the computational efficiency and has the convergence properties of \(LPA^* \) \([8]\), while avoiding some of the computational bottlenecks associated with sampling-based motion planners. Lastly, tuning for this method requires choosing the number of samples and the implicit state grid resolution, which are physically intuitive parameters.

III. SBMPC SIMULATION RESULTS

The results presented in this section have two purposes: 1) to demonstrate how SBMPC can handle AUVs moving in cluttered environments, and 2) to demonstrate how the SBMPC algorithm behaves when a local minimum is present. It is assumed the obstacle information is available to the SBMPC algorithm. The problems associated with the uncertainty in sensing obstacles are beyond the scope of this paper. However, it must be addressed for real world implementation of SBMPC on AUVs.

A. SBMPC Motion Planning for an AUV in Cluttered Environments

Motion planning for the AUV is developed using the 2-D kinematic model,

\[
\begin{bmatrix}
\dot{x} \\
\dot{y} \\
\dot{\psi}
\end{bmatrix} = \begin{bmatrix}
cos \psi & 0 \\
n \sin \psi & 0 \\
0 & 1
\end{bmatrix} \begin{bmatrix}
u \\
r
\end{bmatrix},
\]

where the inputs \(u \) and \(r \) are respectively the forward velocity along the x-axis and angular velocity along the z-axis. Consequently, there are two inputs and three states in this model. The velocity \(u \) was constrained to lie in the interval \((0 \sim 2)\) m/s, and the steering rate \(\psi \) was constrained to the interval \((-\frac{\pi}{2} \sim \frac{\pi}{2}) \) rad/s.

The basic problem is to use the kinematic model (10) to plan a minimum-distance trajectory for the AUV from a start posture \((0m, 0m, 0^\circ)\) to a goal point \((20m, 20m)\) while avoiding the numerous obstacles of a cluttered environment. The parameters for the simulations are shown in Table I. It is assumed that the time step in the SBMPC cost function (4) is \(T_s \). For SBMPC the constraints were checked every time the model was updated (i.e., with period \(T_s \) and \(T_c \geq T_s \) corresponds to the period over which the control inputs were held constant. There were 100 simulations in which 30 obstacles of various sizes and locations were randomly generated to produce different scenarios. As a result, in Table I the prediction horizon varies because each random scenario requires a different number of steps to traverse from the start position to the goal position. In each simulation the implicit state grid resolution was 0.1m. SBMPC was used to solve the optimization problem (4) - (9) with \(Q(i) = I \) and \(S(i) = 0 \) and yielded the optimal number of steps \(N^* \) in addition to the control input sequence.

The results of 100 random simulations on a 2 GHz Intel Core 2 Duo Laptop are shown in Table II. Representative results from the 100 scenarios are shown in Figs. 2 and 3. These are typical scenarios which show SBMPC’s ability to create kinematically feasible trajectory in a complex environment without getting stuck in a local minimum. In the figures a circle on the path line represents the predicted output of the vehicle that coincides with the optimal sampled input. In Fig. 2 the inputs are sampled more as the vehicle comes close to a cluster of obstacles or a large obstacle. Fig. 3 demonstrates how the AUV overcomes a large cluster of obstacles at the start of a mission. As shown in Table II, the AUV was able to reach the goal in each of the 100 cluttered environment simulations. This is important since true autonomy requires a vehicle to be able to successfully complete a mission on its own. Note there is an order of magnitude difference in the mean CPU time and median CPU time of Table II, because a few of the randomly generated scenarios had obstacles clustered to form larger obstacles, which creates computationally intensive planning problems.

TABLE I

<table>
<thead>
<tr>
<th>Simulation Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Time Step ((T_s))</td>
</tr>
<tr>
<td>Control Update Period ((T_c))</td>
</tr>
<tr>
<td>Prediction Horizon ((N))</td>
</tr>
<tr>
<td>Control Horizon ((M))</td>
</tr>
<tr>
<td>No. of Input Samples</td>
</tr>
</tbody>
</table>
TABLE II

<table>
<thead>
<tr>
<th>Simulation Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean CPU Time</td>
</tr>
<tr>
<td>Median CPU Time</td>
</tr>
<tr>
<td>Success Rate</td>
</tr>
</tbody>
</table>

![Fig. 2. Typical SBMPC clustered environment scenario in which AUV maneuvers to goal.](image1)

![Fig. 3. Typical SBMPC clustered environment scenario in which AUV maneuvers to goal.](image2)

B. SBMPC Motion Planning for a Local Minimization Problem

As stated previously, SBMPC can handle local minimum problems that other methods have difficulties handling. In this section SBMPC is used to solve a common local minimum problem in which the vehicle has a concave obstacle in front of the goal. Note that whenever the vehicle is behind an obstacle or group of obstacles and has to increase its distance from the goal to achieve the goal, it is in a local minimum position. The parameters for these simulations are given by Table I with the exception that the number of samples for the simulations of Figs. 5 and 6 were increased from 10 to 25. The vehicle has a start posture of $(5m, 0m, 90^\circ)$ and the goal position $(5m, 10m)$.

SBMPC introduces suboptimality through its sampling of the inputs. As the number of samples of the input space increases the solution optimality increases at the expense of

![Fig. 4. A common local minimum problem where the AUV approaches a concave obstacle in front of goal with no. of input samples = 10.](image3)

![Fig. 5. A common local minimum problem where the AUV approaches a concave obstacle in front of goal with no. of input samples = 25.](image4)

![Fig. 6. A local minimum problem where the AUV is already inside of a concave obstacle.](image5)
increased computational time. In Figs. 4 and 5 the AUVs approach the composite concave obstacle but determines a path around it to the goal. Even though, both AUVs reach the goal, because Fig. 5 uses a larger number of input samples than Fig. 4 the solution path is shorter (i.e. more optimal). This increase in the number of samples comes with a price. The path of Fig. 4, which was based on 10 samples, requires 1.0s to determine a path, but the path of Fig. 5, based on 25 input samples, has a computation time of 12.7s. To achieve an algorithm that can be implemented online there are trade offs between speed and optimality. It is important to determine a balance between the two.

An even more complicated case is depicted in Fig. 6. The vehicle starts out in a deep concave obstacle area. However, the AUV is able to find a path outside the local minima with the SBMPC algorithm.

IV. CONCLUSION

Sampling-Based Model Predictive Control has been shown to effectively generate a control sequence for an AUV in the presence of a number of nonlinear constraints. SBMPC exploits sampling-based concepts along with the LPA^* incremental optimization algorithm to achieve the goal of being able to quickly determine control updates while avoiding local minima. The SBMPC solution is globally optimal subject to the chosen sampling method. When the entire state space is gridded, the SBMPC algorithm guarantees that the algorithm will converge to a solution if one exists.

This paper presents preliminary results using the kinematic model in cluttered environments. A future goal of this research is to consider 3-D motion utilizing the dynamic model. However, a dynamic model has greater complexity than a kinematic model, which will lead to increased computational times, and difficulties in achieving real time operation. One possible solution is to employ a method that switches from a dynamic model in complex situations to a kinematic model in less complex circumstances.

Currently, the goal region is only concerned with the AUV reaching a certain position. However, in certain missions, such as docking or recovery, it may be necessary for the vehicle to arrive at a specified posture. Consequently, the goal region will include the orientation in future work.

Lastly, because of the constantly changing environment in which the AUV must move, the time varying nature of the AUV dynamics, and the uncertainty of the hydrodynamic coefficients it is important to eventually replan the path. This is one of the benefits of traditional MPC; by replanning at every time step it produces robustness. SBMPC can incorporate replanning through the use of LPA^*.

REFERENCES