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Structural equation modeling of the inflammatory response
to traffic air pollution
Emmanuel S. Baja1,2, Joel D. Schwartz1, Brent A. Coull3, Gregory A. Wellenuis4, Pantel S. Vokonas5,6 and Helen H. Suh1,7,8

Several epidemiological studies have reported conflicting results on the effect of traffic-related pollutants on markers of
inflammation. In a Bayesian framework, we examined the effect of traffic pollution on inflammation using structural equation
models (SEMs). We studied measurements of C-reactive protein (CRP), soluble vascular cell adhesion molecule-1 (sVCAM-1), and
soluble intracellular adhesion molecule-1 (sICAM-1) for 749 elderly men from the Normative Aging Study. Using repeated measures
SEMs, we fit a latent variable for traffic pollution that is reflected by levels of black carbon, carbon monoxide, nitrogen monoxide
and nitrogen dioxide to estimate its effect on a latent variable for inflammation that included sICAM-1, sVCAM-1 and CRP. Exposure
periods were assessed using 1-, 2-, 3-, 7-, 14- and 30-day moving averages previsit. We compared our findings using SEMs with
those obtained using linear mixed models. Traffic pollution was related to increased inflammation for 3-, 7-, 14- and 30-day
exposure periods. An inter-quartile range increase in traffic pollution was associated with a 2.3% (95% posterior interval (PI):
0.0–4.7%) increase in inflammation for the 3-day moving average, with the most significant association observed for the 30-day
moving average (23.9%; 95% PI: 13.9–36.7%). Traffic pollution adversely impacts inflammation in the elderly. SEMs in a Bayesian
framework can comprehensively incorporate multiple pollutants and health outcomes simultaneously in air pollution–
cardiovascular epidemiological studies.
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INTRODUCTION
Epidemiological studies have linked increased levels of traffic-
related pollution to increased cardiovascular mortality and
morbidity and have also identified traffic-related pollution as a
risk factor.1 Although the physiological mechanisms of this
association have not been fully explained, scientific evidence
increasingly suggests that altered cardiac autonomic control,
vascular endothelial cell injury and systemic inflammation have
significant roles.2,3 For instance, Madrigano et al.4 found that
serum levels of soluble vascular cell adhesion molecule-1 (sVCAM-1)
were positively associated with black carbon (BC), a marker of
ambient pollution from traffic. Delfino et al.5 also found in elderly
people with coronary artery disease that exposure to the traffic
pollutants, BC, carbon monoxide (CO) and nitrogen dioxide (NO2),
were associated with increased C-reactive protein (CRP) level, a
marker of systemic inflammation.

These findings, however, are not definitive, as other studies
have reported inverse or null associations between air pollution
exposure and these adverse health outcomes.5–7 Even within a
given study, conclusions have varied with the surrogate marker of
traffic pollution or of endothelial injury or inflammation.8 This
heterogeneity across and within studies suggests the need for
comprehensive methods to consider multiple traffic pollutants
and multiple health biomarkers simultaneously.

To address this issue, we used structural equation models
(SEMs), which represent a family of statistical techniques that
allows one to estimate association among multiple latent
variables, to examine the association between traffic pollution
and inflammation. For our analyses, we used latent variables to
conceptualize traffic pollution and inflammation. These latent
variables, traffic pollution and inflammation, are not observed
directly but are correlated with measured traffic-related pollutants
and markers of inflammation, respectively. Notably, the latent
variables correspond to what is ‘‘common’’ among the parameters
measured and do not preclude, for example, CRP and sVCAM-1
representing in part different biological processes. SEMs have
been used in studies that assessed source-specific health effects
of air pollution9,10 and in health effects of methyl mercury11

and lead to neurodevelopment.12,13 Notably, SEMs reduce the
attenuation due to measurement error in models with 3 or more
surrogates of the latent exposure,14 which is an ongoing concern
in air pollution studies.

In this paper, we develop repeated measures SEMs in a Bayesian
framework to examine the impact of short-term changes in traffic
pollution on inflammation among participants in the Normative
Aging Study (NAS). We compare and contrast the results of the
SEM to more conventional linear mixed models (LMMs) in both
the Frequentist and Bayesian framework.
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MATERIALS AND METHODS
Study Population
The NAS is an ongoing longitudinal study of aging established by the
Veterans Administration in 1963.15 Briefly, 2,280 healthy, community-
dwelling men living in the Greater Boston area were enrolled between
1963 and 1968. Every 3–5 years, after an overnight fast and abstention
from smoking, participants visited the clinic for an extensive physical
examination, blood collection, laboratory tests and a self-administered
questionnaire on medical history, alcohol consumption, medication usage,
food intake, smoking history and other factors that could affect health.

From January 2000 to December 2009, soluble intracellular adhesion
molecule-1 (sICAM-1), sVCAM-1 and CRP measurements were obtained
during each participant’s regularly scheduled visit. sVCAM-1 and sICAM-1
were measured in plasma by an ELISA assay (R&D Systems, Minneapolis,
MI, USA) with a sensitivity of 2.0 and 0.35 ng/ml, respectively. High-
sensitive CRP concentrations were also measured in the serum by an
immunoturbidimetric assay on the Hitachi 917 analyzer (Roche Diagnos-
tics, Indianapolis, IN, USA), using reagents and calibrators from Denka
Seiken (Niigata, Japan). To date, sICAM-1, sVCAM-1 and CRP measurements
are available from 749 participants. Of these participants, 212 had one
measurement, 174 had two measurements, 339 participants had three
measurements and 24 individuals had four measurements, for a total of
1673 valid measurements. All participants gave written consent and this
study had Institutional Review Board approval.

We measured concentrations of ambient BC continuously at the Harvard
University Countway Library stationary ambient monitoring site, located
o1 km from the clinical laboratory, where subjects were examined. Hourly
ambient CO, nitrogen monoxide (NO) and NO2 concentrations were obtained
from the Massachusetts Department of Environmental Protection for
monitoring stations within 20 km of the clinical laboratory, including those
in Boston (Roxbury, Bremen, Kenmore Square and North-End), Lynn and
Waltham MA. We used data from these sites to calculate the mean hourly
concentrations of each pollutant. We obtained data on ambient temperature
and dew point temperature from the first-order National Weather Service
station at Boston Logan airport. We calculated apparent temperature
(ATemp), an index of human discomfort16 as: ATemp¼ � 2.653þ
(0.994� Temp)þ (0.0153�DPT2), where Temp is the ambient temperature
in Celsius and DPT is the dew point temperature in Celsius.

Statistical Analysis
We examined the association between latent traffic pollution and latent
inflammation using SEMs in Bayesian framework that account for repeated
measures. This approach links estimation of parameters in an integrated
approach through estimation of parameters characterizing the joint
distribution of multiple outcomes and exposures. SEMs consist of two
main components, a measurement model part, which shows the relation
between latent constructs and their indicators/markers and a structural
model part, which shows the association dependencies between two

latent constructs, between a latent construct and a measured variable or
between two measured variables. As standard SEMs typically assume that
all continuous variables are normally distributed, sICAM-1, sVCAM-1 and
CRP were log-transformed to satisfy this assumption.

SEM in Bayesian Framework with Repeated Measures. We examined
associations between traffic-related pollution and markers of inflammation
using SEMs, parametric-directed acyclic graphs (DAGs) that contain specified
paths connecting latent and observed variables.14,17 In a Bayesian
framework, the SEMs consist of (1) probability models for the observed
variables, given latent variables and model parameters, (2) distributional
assumptions on the latent variables and (3) prior distributions for the
parameters. The SEMs also specify linear models relating the unknown
means of the latent traffic pollution and latent inflammation variables to
fixed covariates (e.g. confounding factors), other latent variables and a
subject-level random intercept to accommodate the repeated measures
design of the study. For the effect of traffic pollution on inflammation,
exposure periods were assessed and modeled separately using 1-, 2-, 3-, 7-,
14- and 30-day moving average pre-visit, given results from earlier studies
that show effects at similar exposure windows.4,18,19

We specified measurement models describing the relationships between
the latent variables and the observed measures. We first modeled the
relationship between the latent exposure variable Traffic and the traffic-
related observed measures, mainly BC, CO, NO and NO2 (Figure 1). For
moving average concentration pre-visit measurement of participants i¼ 1,
yI, of traffic-related pollutants j¼ 1, yJ, on participant’s scheduled time
visits t¼ 1, yT,

Xijt � Nðmijt
X ; tj

XÞ ð1Þ

where Xijt is the normally distributed traffic-related exposure variable for
moving average concentration pre-visit measurement of participant i of
traffic-related pollutant j on participant’s scheduled time visit t, with
unknown mean mijt

X and variance tj
X. The mean exposure of traffic-related

pollutant j, mijt
X, was related to the latent exposure variable Traffic through a

linear model,

mijt
X ¼ l0jþ l1jTrafficit ð2Þ

where Trafficit is the normally distributed latent exposure variable Traffic for
scheduled time visit t for participant i, with unknown mean mit

Traffic and
variance t Traffic,

Trafficit � Nðmit
Traffic; tTrafficÞ ð3Þ

The mean Traffic exposure, mit
Traffic, was related to confounding factors,

through a linear model,

m Traffic
it ¼j1Sine½2py tð Þ/365:24� þj2Cosine½2py tð Þ/365:24� þ

j3Residual ATempð Þt þj4Residual2 ATempð Þt ð4Þ

Figure 1. Path diagram for the effect of traffic pollution on inflammation. Ellipses are used to denote latent constructs, rectangles are used to
denote the observed variables measuring and affecting these constructs, and single-headed arrows are used to denote directional
relationships, from predictor to outcome.
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where the sine and cosine terms capture seasonal trends in traffic
pollution, y(t) is the calendar day of the year the participant visited
the clinic, ATemp is the apparent temperature averaged across the same
exposure window, and residual (ATemp) is the residual of a model
regressing ATemp against sine and cosine terms of the calendar day of the
year in the study. This approach was taken because temperature data is
highly seasonal, and this avoids substantial collinearity between the
seasonal terms and temperature, which would otherwise be present in the
model. In addition, Eq. (4) appears as it does not vary with participant i but
it does vary because the scheduled time visits t are unique to that
participant.

We also modeled the relationship between latent outcome variable
Inflammation and its observed markers, mainly CRP, sICAM-1 and sVCAM-1
(Figure 1). For blood-sampled measurement of participants i¼ 1, yI, of
inflammation markers k¼ 1, yK, on participant’s scheduled time visit
t¼ 1, yT,

Yikt � Nðmikt
Y; t Y

k Þ ð5Þ

where Yikt represents the normally distributed markers of inflammation for
blood-sampled measurement of participant i of inflammation marker
k on participant’s scheduled time visit t, with unknown means mikt

Y

and variances tk
Y. For inflammation marker k, the mean outcome, mikt

Y, was
related to the latent outcome variable Inflammation through a linear
model,

m Y
ikt ¼ a0kþ a1kInflammationit ð6Þ

where Inflammationit is the normally distributed latent outcome variable
Inflammation for scheduled time visit t for participant i, with unknown
mean mit

Inflammation and variance tInflammation,

Inflammationit � Nðm Inflammation
it ; tInflammationÞ ð7Þ

The mean Inflammation outcome, mit
Inflammation, was related to the latent

exposure variable Trafficit, confounding factors, predictors of the latent
outcome variable and a subject-level random intercept, bi, through a linear
model,

m Inflammation
it ¼ g1Trafficit þ g2X1it þ . . . þ gmþ 1Xmit þ

gmþ 2Sine½2py tð Þ/365:24� þ gmþ 3Cosine½2py tð Þ/365:24� þ

gmþ 4Residual ATempð Þt þ gmþ 5Residual2 ATempð Þt þ bi ð8Þ

where the fixed covariates (X1it, y, Xmit) included age, body mass
index (BMI), smoking status (ever/never), pack-years smoked, diabetes
status (defined as having a doctor’s diagnosis of disease or fasting
blood glucose4126 mg/dL), an indicator of statin usage (yes/no), an
indicator of hypertension usage (yes/no) andZ2 servings of alcohol per
day (yes/no). These covariates were chosen a priori as potentially
important predictors of inflammation. To account for seasonal variation
in inflammation, a function of calendar date {sine [2py(t)/365.24]þ cosine
[2py(t)/365.24], where y (t) is the calendar day of the year the participant
visited the clinic} was used. To account for temperature variation in
inflammation, we regressed ATemp on sine (2py(t)/365.24)þ cosine
(2py(t)/365.24) and used the linear (Residual (ATemp)t) and quadratic
(Residual2 (ATemp)t) residuals of the equation as part of the fixed effects of
the model. To accommodate the repeated measures design of the study,
we also included a subject-level random intercept, bi, to represent subject-
specific permanent effects for each participant. Furthermore, Eq. (8)
implicitly depends on participant i because the scheduled time visits t
depend on participant i.

For model identifiability, the location of all the latent variables was
centered and set to 0 (i.e. j0 and g0¼ 0). Because latent variables are
constructed from multiple measured parameters, which have different
scales of variation, a scale must be specified for each latent variable. We
chose BC as the reference scale for Traffic pollution, and sVCAM-1 as the
scale for Inflammation. To set the reference scale for Traffic and
Inflammation and for identifiability and interpretation of these latent
variables, l1

BC and a1
sVCAM-1 were also constrained to be equal to 1.11 See

Figure 1 for the DAG diagram of the SEM.

LMMs in Bayesian and Frequentist Framework. To compare the results from
the SEM with repeated measures in Bayesian framework to those obtained
from a standard univariate analysis, the association between traffic-related
air pollutant BC and mean marker of inflammation (sVCAM-1) was also
estimated using LMMs with random subject-specific intercepts in Bayesian
(BLMMs) framework. Moreover, to demonstrate that our Bayeisan approach
to estimation yields trustworthy parameter estimates, we also compared the
results from the above BLMMs to frequentist framework estimates (LMMs)
obtained from LME in R (http://www.r-project.org). The same fixed and
random covariates used in SEMs were included in all the BLMMs and LMMs.
To allow more direct comparison for the SEMs, BLMMs and LMMs, effect size
estimates were reported for an inter-quartile range (IQR) increase in Traffic
pollution or BC.

We specified a model for the measured health effect outcome, sVCAM-1.
The mean sVCAM-1 for participant i on participant’s scheduled time visit t,
sVCAM-1it, was related to BCit, confounding factors and predictors of the
health effect outcome, and a subject-level random intercept, bi, through a
linear model,

sVCAM� 1it ¼ b0 þ b1BCit þ b2X1it þ . . . þ bnþ 1Xnit þ bnþ 2Sine 2py tð Þ/365:24½ �
þbnþ 3Cosine 2py tð Þ/365:24½ � þ bnþ 4Residual ATempð Þt þ
bnþ 5Residual2 ATempð Þt þ bi:

Results were quantified and characterized in terms of the strength of the
following hypothesized relationships: positive relationships between BC and
sVCAM-1, and between Traffic pollution and Inflammation. In terms of
Bayesian inference, results were presented as probability statements,
providing evidence that coefficients describing BC or Traffic pollution are
positive based on the hypothesized relationship. For descriptions of prior
distributions of parameters and implementation particulars, see Supple-
mentary Section for details.

RESULTS
Eligible study participants included 749 NAS participants, who had
valid CRP and cellular adhesion molecules measurements avail-
able for analysis. Subjects were male with a mean age of 74.9
years (SD¼ 6.7 years), were mostly overweight with a mean BMI
of 28.1 kg/m2 (SD¼ 4.2 kg/m2) and were mostly ever cigarette
smokers (70.4%) (Table 1). Table 2 shows the descriptive statistics
for markers of inflammation, and ambient air pollutant measures.
Traffic pollutant concentrations averaged over 1 day and over 30
days before blood collection were strongly correlated, with CO
averaged over 1 day and 30 days having the highest correlation
(Spearman correlation coefficient, r¼ 0.74). The correlation
between markers of inflammation was highest for sICAM-1 and
sVCAM-1 (r¼ 0.42) (see Supplementary Table 1 for details).

Table 1. Characteristics of study population (N¼ 749), Normative
Aging Study 2000–2009.

Characteristic Value (mean±SD) or (%)

Age, years 74.9±6.7
Body mass index, kg/m2 28.1±4.2
Z30 kg/m2 (%) 26.5

Mean arterial pressure, mmHg 90.1±11.0
Cholesterol, mg/dL 185.6±38.5
Glucose fasting, mg/dL 105.9±22.4
Ever diabetic (%)a 19.6
Cumulative cigarette pack-years, years 20.3±24.4
Ever cigarette smoker (%) 70.4
Z Two drinks per day (%) 18.6
Antihypertensive user (%) 65.4
Statin user (%) 47.2

aReport of doctor’s diagnosis of disease or FBG4126mg/dL.
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Measurement Models of Traffic Pollution and Inflammation
Table 3 tabulates the results of the factor loadings (l1j and a1j

coefficients of Eqs. (2) and (6)) of the measurement models for the
relation of Traffic and Inflammation latent variables to its various
marker variables, it also includes the corresponding variance of
latent (1/tTraffic of Eqs. (3) and (1)/tInflammation of Eq. (7)) and its

marker (1/tj
X of Eq. (1) and1/tk

Y of Eq. (5)) variables. Using sVCAM-1
as the reference marker, Inflammation was strongly represented
by CRP with a coefficient as factor loading of 1.88 (95% posterior
interval (PI): 1.52, 2.26) (Figure 2a). In using BC as the reference
marker, for the 1-day moving average exposure, the highest
reliability measure of Traffic was CO (coefficient as factor loading
of 0.95; 95% PI: 0.87, 1.05), whereas the lowest reliability measure
of Traffic was NO2 (0.02; 95% PI: 0.02, 0.02). Furthermore, for the
30-day moving average exposure, CO predominantly represented
Traffic (3.40; 95% PI: 2.88, 4.01), whereas NO2 was still the lowest
reliability measure of Traffic (0.07; 95% PI: 0.06, 0.08) (Figure 2b).
Moreover, the variance of latent Inflammation variable was lower
(0.008; 95% PI: 0.006, 0.010) compared with the variance of the
1-day moving average latent Traffic variable, which was slightly
higher (0.038; 95% PI: 0.031, 0.045). For the traffic-related
pollutants, the variance of the 1-day moving average BC was
highest (0.132; 95% PI: 0.122, 0.142), whereas NO2 was the lowest
in variance (3.0E-5; 95% PI: 2.7E-5, 3.2E-5) for all the pollutants. Of
the three markers of inflammation, the variance of CRP was the
highest (1.102; 95% PI: 1.027, 1.183) and the variance of sICAM-1
was the lowest of the three markers (0.005; 95% PI: 0.002, 0.010).

Effect of Traffic Pollution on Inflammation
Table 4 shows the estimated percent change in inflammation per
IQR increase in traffic pollution for various daily moving averages.
For a 1-day moving average, an IQR increase in traffic pollution
exposure was associated with a 0.9% (95% PI: (� 1.0 to 2.8%)

Table 3. Factor loadings (l1j and a1k coefficients) of the measurement models for the relation of Traffic and Inflammation latent variables to its
various marker variables and the corresponding variance of latent (1/tTraffic and 1/tInflammation) and its marker (1/tj

X and 1/tk
Y) variables.

Moving
average

Latent
variable/
markers

Factor loading
(l1j) (95% PI)

Variance (95% PI) Latent variable/
markers

Factor loading
(a1k) (95% PI)

Variance (95% PI)

1-day Traffic/ 0.038 (0.031, 0.045) Inflammation/ 0.008 (0.006, 0.010)
BCa 1.00 0.132 (0.122, 0.142) 1.00
CO 0.95 (0.87, 1.05) 0.010 (0.008, 0.012)

sVCAM-1a

1.57 (1.41, 1.73)
0.099 (0.093, 0.107)

NO 0.07 (0.06, 0.07) 1.1E-4 (1.0E-4, 1.2E-4)
sICAM-1

1.88 (1.52, 2.26)
0.005 (0.002, 0.010)

NO2 0.02 (0.02, 0.02) 3.0E-5 (2.7E-5, 3.2E-5)
CRP 1.102 (1.027, 1.183)

2-day Traffic/ 0.024 (0.019, 0.029) Inflammation/ 0.008 (0.006, 0.010)
BC 1.00 0.098 (0.092, 0.106) sVCAM-1 1.00 0.099 (0.092, 0.106)
CO 1.03 (0.94, 1.14) 0.009 (0.008, 0.011) sICAM-1 1.57 (1.39, 1.75) 0.006 (0.002, 0.012)
NO 0.07 (0.06, 0.07) 7.3E-5 (6.6E-5, 8.0E-5) CRP 1.88 (1.52, 2.26) 1.104 (1.029, 1.182)
NO2 0.02 (0.02, 0.03) 2.6E-5 (2.4E-5, 2.8E-5)

3-day Traffic/ 0.016 (0.013, 0.019) Inflammation/ 0.008 (0.006, 0.010)
BC 1.00 0.072 (0.067, 0.078)
CO 1.15 (1.03, 1.27) 0.008 (0.007, 0.010)

sVCAM-1 1.00 0.099 (0.092, 0.106)

NO 0.07 (0.06, 0.07) 5.5E-5 (5.0E-5, 6.0E-5)
sICAM-1 1.55 (1.37, 1.74) 0.006 (0.002, 0.013)

NO2 0.03 (0.02, 0.03) 2.4E-5 (2.2E-5, 2.5E-5)
CRP 1.89 (1.53, 2.27) 1.106 (1.031, 1.183)

7-day Traffic/ 0.003 (0.002, 0.004) Inflammation/ 0.008 (0.006, 0.010)
BC 1.00 0.042 (0.040, 0.046) sVCAM-1 1.00 0.099 (0.092, 0.106)
CO 2.17 (1.86, 2.54) 0.009 (0.008, 0.010) sICAM-1 1.57 (1.39, 1.76) 0.006 (0.002, 0.012)
NO 0.12 (0.10, 0.14) 3.8E-5 (3.4E-5, 4.1E-5) CRP 1.89 (1.53, 2.28) 1.107 (1.035, 1.186)
NO2 0.04 (0.04, 0.05) 2.0E-5 (1.9E-5, 2.2E-5)

14-day Traffic/ 0.001 (0.001, 0.002) Inflammation/ 0.008 (0.006, 0.010)
BC 1.00 0.032 (0.030, 0.035) sVCAM-1 1.00 0.099 (0.092, 0.106)
CO 2.76 (2.35, 3.27) 0.009 (0.008, 0.010) sICAM-1 1.57 (1.39, 1.77) 0.006 (0.002, 0.012)
NO 0.15 (0.13, 0.18) 3.3E-5 (3.0E-5, 3.6E-5) CRP 1.90 (1.53, 2.29) 1.107 (1.032, 1.186)
NO2 0.06 (0.05, 0.07) 1.9E-5 (1.8E-5, 2.0E-5)

30-day Traffic/ 7.7E-4 (5.3E-4, 0.001) Inflammation/ 0.008 (0.006, 0.010)
BC 1.00 0.027 (0.025, 0.029) sVCAM-1 1.00 0.099 (0.092, 0.106)
CO 3.40 (2.88, 4.01) 0.008 (0.007, 0.009) sICAM-1 1.56 (1.38, 1.75) 0.006 (0.002, 0.012)
NO 0.19 (0.16, 0.22) 2.9E-5 (2.7E-5, 3.2E-5) CRP 1.89 (1.53, 2.27) 1.107 (1.030, 1.187)
NO2 0.07 (0.06, 0.08) 1.8E-5 (1.7E-5, 1.9E-5)

Abbreviations: BC, black carbon; CO, carbon monoxide; CRP, C-reactive protein; 95% PI: 95% posterior intervals; NO, nitrogen monoxide; NO2, nitrogen dioxide;
sICAM-1, soluble intracellular adhesion molecule-1; sVCAM-1, soluble vascular cell adhesion molecule-1.
aReference marker.

Table 2. Summary statistics for inflammation and ambient air
pollutant measures.

Average Median SD 5% 95% IQR

Inflammation measurea

ln(sVCAM-1) 6.9 6.9 0.4 6.4 7.5 0.4
ln(sICAM-1) 5.7 5.7 0.3 5.3 6.1 0.3
ln(CRP) 0.5 0.5 1.1 � 1.2 2.3 1.4

Air pollution measureb

BC 0.73 0.73 0.17 0.47 1.00 0.24
CO 0.37 0.36 0.16 0.14 0.67 0.19
NO 0.016 0.014 0.008 0.007 0.034 0.009
NO2 0.018 0.019 0.004 0.013 0.024 0.005

aAbbreviations: CRP, C-reactive protein; IQR, inter-quartile range; sVCAM-1,
soluble vascular cell adhesion molecule-1; sICAM-1, soluble intracellular
adhesion molecule-1.
b30-day moving average ambient air pollution measurements from
January 2000 to December 2009.
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increase in inflammation (posterior probability¼ 0.82). The mag-
nitude of the association increased with longer moving averages,
resulting in a 23.9% (95% PI: 13.9–36.7%) increase in inflammation
for exposures averaged over the 30 days before the blood
measurement (posterior probability¼ 1.00). Figure 3a presents the
posterior probability distribution of the SEMs. As the averaging
period increases from 1 day to 30 days, the variability or spread of
the distribution also increased, as evidenced by the wider
posterior probability distributions.

Model Comparison
Ordinary LMMs were fitted to double check the estimates and PIs
from the BLMMs. The results from LMMs and BLMMs produced
almost identical estimates and confidence/posterior intervals (See
Supplementary Table 2 for LMM results on the effects of traffic-
related pollutants on sVCAM-1). Table 4 compares the posterior
mean and 95% PI from SEMs to the posterior mean and 95% PI
from BLMMs. The effect estimates were higher for SEMs as
compared with BLMMs for longer moving averages (7-, 14- and
30-day). However, for shorter moving averages (1-, 2- and 3-day)
the effect estimates were higher for BLMMs as compared with
SEMs (see Figure 3). For example, a 23.9% (95% PI: 13.9–36.7%)
increase in inflammation (reference marker: sVCAM-1) was
observed for an IQR increase in traffic (reference pollutant: BC)
for the 30-day exposure window using SEM, as compared with a
7.0% (95% PI: 4.1–10.0%) increase in sVCAM-1 using BLMM. In
contrast, for the 1-day moving average exposure window, an IQR
increase in traffic (reference pollutant: BC) was associated with a
0.9% (95% PI: � 1.0 to 2.8%) increase in inflammation (reference
marker: sVCAM-1) for the SEM and a 4.4% (95% PI: 2.5–6.4%)
increase in sVCAM-1 observed for an IQR increase in BC using
BLMM.

DISCUSSION
Using SEMs, we found traffic pollution, as reflected by BC, CO, NO
and NO2, to have a strong and positive association with
inflammation, as measured by CRP, sVCAM-1 and sICAM-1, at
longer exposure windows (3-, 7-, 14- and 30-day). As increased
inflammation has been shown to predict cardiovascular disease
among older men, our findings suggest that air pollution may
adversely impact cardiovascular health through the inflammation
pathway.

Our results are consistent with the results from BLMMs and
LMMs based on BC as the sole marker of traffic pollution and on

sVCAM-1 as the individual marker of inflammation. For example,
we found significant impacts of BC on sVCAM-1 using LMMs in
both the Bayesian and Frequentist approaches. Impacts assessed
using the LMMs were, however, similar across all examined
exposure windows (except for the 30-days moving average) as
compared with those obtained using the SEM, which had an
increasing monotonic effect, as evidenced by their respective
estimated means (Table 4). Our results indicate the need to
examine the cumulative/simultaneous effect of multiple traffic-
related pollutants in addition to the effects of a single pollutant.
The differences in the findings we observed between the LMM
approach and the SEM approach implies that the effect of traffic
on inflammation is not the same as the effect of BC on sVCAM-1
(Figure 3). In addition, we also ran LMMs to check the effect of the
other pollutants on sVCAM-1. We hypothesize that other traffic-
related pollutants (CO, NO and NO2) contribute to the effect of
traffic on inflammation, especially at the longer moving averages
(7, 14 and 30 days) where the effect estimates of the other traffic-
related pollutants (CO, NO and NO2) on sVCAM-1 are higher
compared with their effect estimates at shorter moving averages
(Supplementary Table 2). In addition, long-term average CO over
weeks at low concentrations is likely representative of longer-term
exposure to things in auto exhaust other than CO, as low-level CO
exposure is actually used therapeutically and is an antioxidant. At
shorter moving averages (1, 2 and 3 days), our finding of larger
significant impact of BC on sVCAM-1 using the LMMs as compared
with SEMs implies that other traffic-related pollutants may not
have an effect. However, alternatively, the longer-term effect may
represent the increasing role of other inflammatory markers than
sVCAM-1 at longer exposure windows. For example, in a cross-
sectional analysis of this data Zeka et al.20 showed that BC was
related to CRP, but only at longer moving averages such as 4 weeks.
CRP may not be responding to shorter-term excursions in traffic
exposure.20 More research that examines the concurrent use of the
two approaches (SEMs and LMMs) is needed to verify our results.

In addition to greater impacts of traffic on inflammation using
SEMs at longer averaging times (7, 14 and 30 days), we also found

Figure 2. Relation of latent variables of Inflammation (for a 1-day
moving average exposure) (a) and Traffic (for a 30-day moving
average exposure) (b) to marker variables as factor loading values.

Table 4. Effect estimates of % change in health effect outcome
(inflammation or sVCAM-1) associated with an IQRa increase in
exposure (black carbon (reference pollutant of latent traffic pollution)).

Exposure
outcome

Moving
average

% Change in mean (95%
posterior interval)

Posterior
probabilityb

Structural equation modelc

Traffic
inflammation

1-day 0.9 (� 1.0, 2.8) 0.824
2-day 1.3 (� 0.7, 3.4) 0.895
3-day 2.3 (0.0, 4.7) 0.972
7-day 11.1 (5.7, 17.6) 1.000
14-day 15.7 (8.9, 24.1) 1.000
30-day 23.9 (13.9, 36.7) 1.000

Exposure
outcome

Moving
average

% Change in mean (95%
posterior interval)

Posterior
probabilityd

Bayesian linear mixed modele

BC/ 1-day 4.4 (2.5, 6.4) 1.000
sVCAM-1 2-day 4.7 (2.7, 6.6) 1.000

3-day 4.0 (2.0, 6.1) 1.000
7-day 4.4 (1.9, 7.0) 1.000
14-day 4.6 (2.1, 7.2) 1.000
30-day 7.0 (4.1, 10.0) 1.000

Abbreviations: BC, black carbon; sVCAM-1, soluble vascular cell adhesion
molecule-1.
aInter-quartile range (IQR): 1-day¼ 0.54; 2-day¼ 0.46; 3-day¼ 0.40; 7-
day¼ 0.32; 14-day¼ 0.26; 30-day¼ 0.24.
bPosterior probability that g140.
cSEM in Bayesian framework: effect of traffic pollution on inflammation.
dPosterior probability that b140.
eBayesian linear mixed model: effect of black carbon on sVCAM-1.
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wider PIs in SEMs as compared with BLMMs. Wider PIs are likely
due to our use of multiple indicators to measure the latent
variables (Traffic and Inflammation) in our SEMs and the reduction
in temporal variability for longer averaging times, which could
contribute to the decrease in precision/wider PI. Reduced bias
introduced by measurement error correction, which occurs in
SEMs with three or more surrogates for a latent variable, would
result in a de-attenuated posterior mean and larger variance of the
posterior probability distribution for the main effect of traffic
pollution on inflammation, both effects we observed at longer
moving averages (Table 4). This is a typical phenomenon in
measurement error corrections; it tends to de-attenuate point
estimates coupled with wider posterior/confidence intervals due
to reflecting additional uncertainty due to measurement error
correction. The hope is that the total mean-squared error (bias
squaredþ variance) is lower than the uncorrected estimate.14,21

Our findings are consistent with previous studies of the NAS
cohort.4,19 While using a LMM, Madrigano et al.4 found a
significant association between 2-day moving average BC
concentrations and an increase in sVCAM-1. Although not
statistically significant at the Po0.05 level, 1- and 3-day moving
average BC were also associated with an increase in sVCAM-1. In
another study that used a validated spatio-temporal land use
regression model to estimate BC exposure at the residential
address of each NAS participant, Alexeeff and coworkers19

reported associations of BC and sICAM-1 at longer moving
averages of 4, 8 and 12 weeks. Further, both Alexeeff et al.19

and Madrigano et al.4 used sVCAM-1 and sICAM-1 data from 1999
to 2008. In our analysis, we removed the 1999 measurements
because we found inconsistency in the method of blood
collection/handling that could have affected the sICAM-1 and
sVCAM-1 measurements. However, we included measurements
from 2009, which became available for our study. Our finding of
significant effects of traffic on inflammation at longer exposure
windows was likely due to our use of the SEMs, which potentially
reduced bias introduced by measurement error and increased our
power to detect the effect of traffic pollution on inflammation at
all examined exposure windows.

To our knowledge, our study is the first to show simultaneous
impacts of multiple traffic-related pollutants on inflammation, a
cardiovascular health outcome that has the ability to predict
cardiovascular morbidity and mortality. SEM estimates all the
coefficients in the model simultaneously, an advantage in using
SEM. Therefore, one is able to assess and measure the strength
and the significance of a particular relationship (i.e. effect of BC on
sVCAM-1 (g1) or effect of BC on CRP (g1 � a1

CRP)) in the framework
of the complete model. Our study showed that multiple markers
of traffic pollution and inflammation can be analyzed concurrently
using SEMs that account for repeated measures, potentially
minimizing discrepancies and conflicting results that may arise
from multiple comparisons of individual markers of exposure or
health outcome. In addition, the models benefit from a reduction
in measurement error bias. In using SEMs in a Bayesian framework,
our study was able to integrate data and to account for variations

Figure 3. Density plots of posterior estimated percentage change in inflammation or sVCAM-1 associated with an IQR increase in BC
(reference pollutant of latent traffic pollution) exposure at different daily moving averages (MA). (a) SEM in Bayesian Framework: effect of
traffic pollution on inflammation and (b) Bayesian LMM: effect of BC on sVCAM-1.
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in one probabilistic framework. In addition, we showed that SEMs
in Bayesian framework also have the capability to analyze
unbalanced longitudinal data, with either multiple exposure
and/or outcome markers. Furthermore, our study used a random
subject intercept which means that the contrasts are a mixture of
within and between subjects; for this reason, confounding factor
bias should be small relative to that in a purely cross-sectional
study design.22 This comprehensive approach, however, is not
needed for research study designs that only have one traffic-
related pollutant exposure variable and have one measured
outcome variable, for which LMM and linear regression model will
still be the preferred method of analysis for repeated and
longitudinal studies, and cross-sectional studies, respectively.
Nevertheless, more studies are needed to verify and validate
the structural equation modeling approach in air pollution
epidemiological studies.

There are several limitations in our study. First, exposures in our
study were estimated using concentrations measured at a single
ambient monitoring site for BC and at several monitoring sites for
CO, NO and NO2, which will not capture spatial variation in air
pollutant concentrations. Because participants lived up to 22 km
from our ambient monitoring site, this spatial variation may result
in exposure measurement error that would probably be non-
differential and could bias the results in either direction.23 In
addition, bias due to residual or unmeasured confounding and
predictor factors cannot be ruled out, and the potential for larger
variance and wider PI should also be considered if SEMs and not
LMMs are to be used in air pollution epidemiologic studies.14,21

Lastly, as the study population consists of a high proportion of
ever-smoker older males who are predominately white and are
mostly veterans that have special occupational exposure, the
results may not be generalizable to younger individuals, women,
never smokers or other racial and ethnic groups. The effect of
traffic pollution on inflammation on these other populations
should be tackled in future studies.

In conclusion, this study documented the positive associations
between traffic pollution (BC, CO, NO2 and NO) exposure and
inflammation (CRP, sICAM-1 and sVCAM-1). The study also showed
that SEMs in a Bayesian framework would be a plausible and
alternative method for repeated measures and longitudinal
studies in air pollution epidemiology that looks at the effect of
traffic pollution exposure on multiple health effect outcomes. The
Bayesian approach allowed us to incorporate the mixed-effect
model structure within the SEM framework. Furthermore, this
study provides further evidence that traffic pollutants via the
inflammation pathway may have a critical role in cardiopulmonary
toxicity.
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