Emmanuel C. Laurenceau-Cornec

Emmanuel C. Laurenceau-Cornec
Université de Bretagne Occidentale | UBO · Laboratoire des Sciences de l’Environnement Marin- LEMAR (UMR 6539)

PhD Marine Biogeochemistry

About

11
Publications
3,564
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
377
Citations
Citations since 2017
4 Research Items
263 Citations
20172018201920202021202220230102030405060
20172018201920202021202220230102030405060
20172018201920202021202220230102030405060
20172018201920202021202220230102030405060
Additional affiliations
November 2015 - November 2016
University of Tasmania
Position
  • Post-Doctoral fellow Marine Biogeochemistry

Publications

Publications (11)
Article
Full-text available
The first KErguelen Ocean and Plateau compared Study (KEOPS1), conducted in the naturally iron-fertilised Kerguelen bloom, demonstrated that fecal material was the main pathway for exporting carbon to the deep ocean during summer (January-February 2005), suggesting a limited role of direct export via phytodetrital aggregates. The KEOPS2 project rei...
Article
Full-text available
We examined phytoplankton community responses to natural iron fertilisation at 32 sites over and downstream from the Kerguelen Plateau in the Southern Ocean during the austral spring bloom in October–November 2011. The community structure was estimated from chemical and isotopic measurements (particulate organic carbon – POC; 13C-POC; particulate n...
Article
Full-text available
During the second KErguelen Ocean and Plateau compared Study (KEOPS2) in October-November 2011, marine snow was formed in roller tanks by physical aggregation of phytoplankton assemblages sampled at 6 stations over and downstream of the Kerguelen Plateau. Sinking velocities, morphology, bulk composition (transparent exopolymer particles, biogenic s...
Article
Full-text available
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Article
Full-text available
The dissolved iron supply controls half of the oceans’ primary productivity. Resupply by the remineralization of sinking particles, and subsequent vertical mixing, largely sustains this productivity. However, our understanding of the drivers of dissolved iron resupply, and their influence on its vertical distribution across the oceans, is still lim...
Article
Numerical simulations of ocean biogeochemical cycles need to adequately represent particle sinking velocities (SV). For decades, Stokes' Law estimating particle SV from density and size has been widely used. But while Stokes' Law holds for small, smooth, and rigid spheres settling at low Reynolds number, it fails when applied to marine aggregates c...
Article
The oceans’ biological pump (BP) exports large amounts of particulate organic carbon (POC) to the mesopelagic zone (base of the euphotic zone – 1000 m depth). The efficiency at which POC is transferred through the mesopelagic zone determines the size of the deep ocean carbon store. Few observational BP studies focus on the mesopelagic, often leadin...
Article
The Kerguelen Plateau is characterized by a naturally Fe-fertilized phytoplankton bloom that extends more than 1000 km downstream in the Antarctic Circumpolar Current. During the KEOPS2 study, in austral spring, we measured particulate nitrogen (PN), biogenic silica (BSi) and particulate iron (PFe) export fluxes in order to investigate how the natu...
Article
Full-text available
This study examined upper-ocean particulate organic carbon (POC) export using the 234Th approach as part of the second KErguelen Ocean and Plateau compared Study expedition (KEOPS2). Our aim was to characterize the spatial and the temporal variability of POC export during austral spring (October–November 2011) in the Fe-fertilized area of the Kergu...
Article
Full-text available
To examine the potentially competing influences of microzooplankton and calcite mineral ballast on organic matter remineralization, we incubated diatoms in darkness in rolling tanks with and without added calcite minerals (coccoliths) and microzooplankton (rotifers). Concentrations of particulate organic matter (POM), suspended or in aggregates, of...
Article
Full-text available
To examine the potentially competing influences of microzooplankton and calcite mineral ballast on organic matter remineralization, we incubated diatoms in darkness in rolling tanks with and without added calcite minerals (coccoliths) and microzooplankton (rotifers). Concentrations of particulate organic matter (POM in suspension or in aggregates),...

Network

Cited By