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Abstract 

A QSAR study is performed on the seriestetraketone and benzyl benzoate derivatives in order to analyze the physicochemical requirements of 

tyrosinase inhibitors and to provide structural insight into the binding mode of the molecules to the enzyme. All the derivatives in the series 

were sketched using ChemDraw ultra v12.0.2 module of ChemOffice 2010 and the sketched structures were consequently used for the 
calculation of molecular descriptors available in QSAR software Spartan’14 and PaDEL-Descriptors software. Quantum, constitutional and 

topological descriptors for all molecules were calculated using Spartan’14 v1.1.2, 2013 and PaDEL-Descriptors software v2.20, 2011 and 

correlation between the biological activity and molecular descriptors was found through genetic function approximation adopted by statistical 
program material studio v7.0. The generated QSAR models revealed that ATS0s, AATS6p, ATSC1i, SpMAD_Dzv and VR1_Dze descriptors 

have good correlation to the anti-tyrosinase activity. The results obtained by regression analysis indicated that ATSC1i and SpMAD_Dzv is 

negatively contributing to inhibitory activity thus; enhancement of anti-tyrosinase activity can be achieved by decreasing the respective 
descriptors. Positive contribution of ATS0s, AATS6p, and VR1_Dze specifies that increase of Average Broto-Moreau autocorrelation - lag 6 / 

weighted by polarizabilities, Average Broto-Moreau autocorrelation - lag 6 / weighted by polarizabilities and Randic-like eigenvector-based 

index from Barysz matrix / weighted by Sanderson electronegativities will impart positive influence on the activity. 
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1. Introduction 

Tyrosinase (Syn. Polyphenol Oxidase, PPO, EC 1.14.18.1) 

is an enzyme that catalyses the oxidation of phenols. It is also 

known as monophenol mono oxygenase. It is a copper 

contain-ing enzyme present in animal tissues, higher plants 

and fungi that catalyses the production of melanin [1,2]. 

Production of mel-anin causes many kinds of skin diseases, 

such as hyperpigment spots on the face and freckles [3]. 

Tyrosinase catalyses both the hydroxylation of monophenols 

to o-di-phenols (monophenelase or cresolase activity) and the 

oxidation of o-di-phenols to o-quinonesboth using molecular 

oxygen followed by a series of nonenzymatics steps resulting 

in the formation of melanin which plays a crucial protective 
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role against skin photocarcinogenesis [4-6]. Tyrosinase may 

involve in neuromelanin formation in human brain and 

contribute to neurodegeneration associated with parkinson’s 

disease [6,8]. In fungi, the role of mel-anin is correlated with 

the differentiation of reproductive organ and spore formation, 

virulence of pathogenic fungi, and tissue protection after 

injury. In addition, it causes undesired enzym-atic browning 

such as injured cut fruits and vegetables which leads to 

significant decrease in nutritional values [7]. As tyrosinase 

inhibitors have an increasing importance due to enormous 

application prospects in recent periods, the various tyrosinase 

inhibitors are extracted from natural sources and synthesized. 

Among which some are applicable to pharmaceutical and 

cosmetic fields [8]. Tyrosinase inhibitors are useful for the 

treatment of some dermatological disorders associated with 

melanin hyperpigmentation, wound healing, parasite encapsul-

ation and also important in cosmetics for whitening and 

depigmentation after sunburn. 

Lead optimization is a vital component of the drug 

discovery process in which a chemical showing promise is 

modified to greatly improve its usefulness as a drug. 

Computa-tional methods like quantitative structure activity 

relationships (QSAR) can facilitate this process by elucidating 
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the chemical characteristics that are favorable and unfavorable 

through statistical analysis of a series of chemicals [9,10]. 

QSAR methods derive correlations between the properties/ 

descript-ors of molecules and their biological activities (e.g., 

inhibition constants or binding affinities). Since the advent of 

Free Wilson and Hansch analysis, numerous methods have 

been published in the literature for structure-activity relation-

ships modeling [11]. It is a meaningful correlation (model) 

between a set of independent variables (chemical descriptors) 

calculated from chemical graphs, and a dependent variable 

such as binding affinity, log P, or the pKa value whose value 

one wishes to predict for the compound of interest [12]. 

The aim of this paper is to find a correlation between mo-

lecular and electronic structures of 37 investigated tyrosinase 

inhibitors (Table 1) which were found to have tyrosinase 

activity through inhibiting tyrosinase reductase as their 

inhibition efficiency IC50 was reported [4,6]. Molecular 

orbital calculations were performed looking for good 

theoretical parameters to characterize the inhibition property 

of inhibitors which will be helpful to gain insight into the 

mechanism of inhibition. 

2. Experimental 

2.1. Materials 

The materials used in this study include; DELL 

INSPIRON computer system (Intel Pentium), T4500 2.30 

GHz processor Dual-core, 3GB ram size on Microsoft 

windows 10 operating system, Spartan 14 version 1.1.2, Chem 

Draw ultra version 12.0.1, PaDEL descriptor tool kit version 

2.20 and Microsoft office Excel 2013 statistical software, 

Material Studio (modeling and simulation software) version 

7.0, DTC_Euclidean program version 1.0 

2.2. Methods 

The data set tetraketone and benzyl benzoate derivatives 

used in this study was taken from the work of [4,6] and is 

shown in Table 1. This set contains the values of the anti-

tyrosinase inhibition potency compounds. The data set was 

divided into two groups, a training set consisted of 25 

compounds and a test set with 12 compounds. The training 

and test sets were used for the constructing of the models and 

to evaluate the predictive power of the generated models, 

respectively. The inhibitory activities in logarithmic scale 

(pIC50 = log 1/IC50) fall in the range of -0.314 to 2.233, with 

a mean value of 0.0428. 

2.2.1. Molecular Modeling and Generation of 

Molecular Descriptors 

The dual core personal computer equipped with the 

operating system Windows ten (10) was used for making 

calculations of this work. Structure of all the compounds was 

drawn using Chem Draw Ultra module of the program and 

transferred to Spartan’14 (2013) version 1.1.2 [13] module to 

create the three-dimensional (3D) structure. These structures 

were then subjected to energy minimization using molecular 

mechanics (MMFF). Energy minimized molecules were 

subjected to optimization via parameterization method (PM6) 

[14,15]. These methods have become popular in recent years 

because they can reach similar precision to other methods in 

less time and less cost from the computational point of view. 

The geometry optimization of the lowest energy structure was 

carried out without any symmetry constraints were also 

transferred to PaDEL-Descriptor [16] version 2.20 and were 

subjected to re-optimization (with the MMFF94 force field). 

Most stable structure for each compound was generated and 

used for calculating various physicochemical parameters used 

for the statistical analysis. The resulted geometries were used 

for docking study. 

2.2.2. Calculation of fragment-based descriptors 

For the generated descriptors, a pool of about 856 2D-

3Ddescriptors was calculated using the PaDEL-Descriptor 

v2.20 software package. These descriptors include Acidic 

group count, ALOGP, APol, Aromatic atoms count, BCUT, 

Chi cluster, constitutional, Eccentric connectivity index, 

electropological state, XLogP, Zagreb index, Moment of 

inertia, Zagreb index, Topological charge, Charged partial 

surface area, Wiener numbers, Petitjean shape index, RDF, 

WHIM etc. All descriptors with constant values among the 

dataset were deleted, resulting in 316 different descriptors 

(independent variables) which were used in the QSAR 

analysis. 

2.2.3. Selection of the training and test sets 

In order to compare the biological activities of the set of 

compounds which have a wide range of chemical structures 

(i.e., descriptors), the dataset was divided into representative 

training and test sets using a dissimilarity-based compound 

selection method called Kennard-Stone algorithms. The 

program is intended to split a source dataset to training and 

test sets for further modeling. There are many cases when the 

splitting to training and test set is complicated because of poor 

endpoint variables range and etc. In this program authors 

implemented Kennard-Stone algorithm which takes into 

account all available information (descriptors) to make a 

splitting, to get evenly distributed set of data in both sets. The 

program is very quick, easy to use, with well documented 

manual that includes background information and steps to run 

the software. On my opinion the program is very useful and 

can be applied for many kinds of datasets, which need to be 

splitted to develop and validate a predictive model. 
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Table 1 Structures of dataset used for GA-MLR QSAR analysis with corresponding observed and predicted class of tyrosinase inhibitors. 

Compound ID Structures of dataset Observed pIC50 Predicted pIC50 Residual 

ID01 

 

-0.816 -1.332 0.515 

ID02 

 

-1.425 -1.008 -0.417 

ID03 

 

-1.090 -1.200 0.110 

ID04 

 

-1.230 -1.308 0.078 

ID05 

 

-1.071 -0.776 -0.295 

ID06 

 

-0.684 -0.950 0.266 

ID07 

 

-1.295 -1.540 0.245 

ID09 

 

-0.681 -0.839 0.158 

ID10 

 

-0.831 -1.128 0.297 

ID11 

 

-0.320 -0.013 -0.307 

ID15 

 

-0.417 -0.352 -0.065 

ID16 

 

-0.616 -0.713 0.097 

ID17 

 

-1.164 -1.315 0.151 
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ID18 

 

-0.957 -0.577 -0.380 

ID19 

 

-0.568 -0.746 0.178 

ID20 

 

-1.108 -0.918 -0.190 

ID21 

 

-1.186 -1.206 0.020 

ID22 

 

-0.819 -0.558 -0.261 

ID23 

 

-1.854 -1.913 0.059 

ID24 

 

-0.603 0.503 -1.106 

ID25 

 

-0.314 0.631 0.945 

ID26 

 

-1.127 -0.939 -0.188 

ID27 

 

-0.504 -0.773 0.269 

ID28 

 

-1.103 -0.894 -0.209 

ID29 

 

2.233 2.136 0.097 

ID30 

 

1.909 1.807 0.102 

ID31 

 

2.000 1.822 0.178 
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ID32 

 

1.580 2.163 -0.583 

ID33 

 

2.097 1.866 0.231 

ID34 

 

2.213 2.298 -0.085 

ID35 

 

1.613 1.979 -0.366 

ID36 

 

2.205 1.948 0.257 

ID37 

 

1.940 1.864 0.075 

ID38 

 

1.699 1.967 -0.268 

ID39 

 

1.000 1.652 -0.652 

ID42 

 

1.699 1.598 0.101 

ID40 

 

1.177 
 

1.6502 
 

-0.4732 
 

 

2.2.4. Optimized variable selection 

Owed to the fact that it is tedious and unreasonable to 

investigate all possible combinations of the descriptor pool, 

genetic function approximation and multiple linear regression, 

which simplify the process and reduce the time required to 

execute algorithms, were implemented [17]. 

2.2.5. Genetic Function Approximation 

Genetic Function Approximation (GFA) [18] is used to 

determine the best initialization of clusters as well as optimiz-

ation of initial parameters. Genetic Function Approximation 

attempt to incorporate the ideas of natural evolution [19]. In 

general, they start with an initial population, and then a new 

population is created based on the notion of survival of the 

fittest. Typically, fitness is the measure for how good this pop-

ulation is and can be calculated depending on the nature of the 

application, where a distance measure is the most common [20]. 

Then a process called crossover is done over the new popu-

lation where substrings from selected pairs are swapped [21]. 

Multiple Linear Regression is a method used for modeling 

the linear relationship between dependent variable Y (pIC50) 

and independent variable X (descriptors). MLR is based on the 

least squares method: the model is fitted such that the sum-of-

squares of differences of observed and a predicted value is 
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Table 2 Internal Validation Parameters 

Parameters Values 

SEE 0.2086 

R^2 0.9823 

R^2 adjusted 0.9777 

F 210.92 (DF :5, 19) 

Q 4.7512 

FIT 21.0889 

 
Table 3 Leave-One-Out (LOO) Result (Without Scaling) 

Parameters Values 

Q^2 0.9705 

PRESS 1.3774 

SDEP 0.2347 

rm^2(Loo)          0.9651 

rm^2'(Loo)         0.9671 

average rm^2(LOO) 0.9661 

delta rm^2(LOO)    0.0020 

 

minimized. MLR estimates values of regression coefficients (R
2
) 

by applying least squares curve fitting method. The model 

creates a relationship in the form of a straight line (linear) that 

best approximates all the individual data points. In regression 

analysis, conditional mean of the dependent variable (pIC50) 

Y depends on (descriptors) X. MLR analysis extends this idea 

to include more than one independent variable. 

Regression equation takes the form: 

𝑌 = 𝐵1 ∗ 𝑋1 +  𝐵2 ∗ 𝑋2 +  𝐵3 ∗ 𝑋3 + ………+  𝑐      (1) 

where Y is dependent variable, 'B's are regression coefficients 

for corresponding 'X's (independent variable), 'c' is a 

regression constant or intercept [22]. 

3. Results and Discussions 

3.1. Results 

All molecules in each data set were successfully optimized 

by Spartan 14 V1.1.2 software. The following properties were 

obtained from the optimized structures: Molecular properties, 

QSAR descriptors, thermodynamic properties as well as 

acidity and basicity properties. The successful optimization of 

the molecules implies that all the molecules used have 

geometries close to their real or test tube geometries. Thus, 

properties computed from these optimized molecules are 

reliable. 

3.1.1. Descriptor Calculation  

The descriptor of each molecular structure was 

successfully computed with the aid of PaDEL version 2.20 

descriptor tool kits. Approximately 856 descriptors ranging 

from 1D, 2D, and 3D were obtained from these soft ware’s. 

 
Fig. 1. Scatter plot of the experimental activities versus predicted activities for 

QSARmodel, LOO cross-validated predictions on full training set. 

  

 
Fig. 2. Scatter plot of the experimental activities versus predicted activities for 

test-set predictions 

 

3.1.2. GA-MLR Derived models for pIC50 Anti-

tyrosinase Compounds 

Models 1 give the best Genetic Function Approximation-

Multiple Linear Regression (GA-MLR) derived QSAR models 

for pIC50 of anti-tyrosinase molecules. Based on the model 

with the best statistical parameters identified using the 

parameters in Table 6 as standard, Model 1 were chosen as the 

best models for predicting the pIC50 of anti-tyrosinase 

molecules. The internal and external validation parameters of 

the models conform to the minimum standard for a robust 

QSAR model shown in Table 1-8, confirming the stability and 

robustness of the models. 

3.1.3. Genetic algorithm-multi-parameter linear 

regression 

pMIC50 =  1.40103(+/−1.69175)  − 0.0257(+/
−0.0011) ATS0s − 3.73751(+/−0.98995) AATS6p +
0.19682(+/−0.01267) ATSC1i + 1.17379(+/
−0.10375) SpMAD_Dzv − 0(+/−0) VR1_Dze. 

 ________________________________________________

__ Model 1 

y = 0,982x - 0,001
R² = 0,982
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Table 4 External Validation Parameters (Without Scaling) 

Parameters Values 

r^2 0.8756 

r0^2 0.8574 

reverse r0^2 0.8406 

rm^2(test) 0.7574 

reverse rm^2(test) 0.7118 

average rm^2(test) 0.7346 

delta rm^2(test) 0.0456 

RMSEP 0.5389 

Rpred^2 0.8323 

Q^2f1 0.8323 

Q^2f2 0.8121 

 

Table 5 GA-MLR Overall Parameters  

Parameters Values 

rm^2(overall)          0.8797 

reverse rm^2(overall) 0.8756 

average rm^2(overall) 0.8777 

delta rm^2(overall)    0.0041 

 

Table 6 Golbraikh and Tropsha (2002) acceptable model criteria's 

Parameters Values  

Q^2 0.9705, Passed (Threshold value Q^2 

> 0.5) 

 r^2 0.8756, Passed (Threshold value r^2 > 

0.6) 

|r0^2-r'0^2| 0.017, Passed (Threshold value |r0^2-

r'0^2|<0.3) 

k 0.8192, Passed Threshold value: 

[0.85<k<1.15] 

[(r^2-r0^2)/r^2]   0.02, Passed Threshold value: (r^2-

r0^2)/r^2) < 0.1 

 k' 1.0583, Passed Threshold value: 

0.85<k'<1.15 

[(r^2-r'0^2)/r^2]    0.04, Passed Threshold value: (r^2-

r'0^2)/r^2) < 0.1  

 

3.1.4. Plot of Experimental Versus Predicted pIC50 of 

model 1 

The agreement between the experimental pIC50 values of 

molecules used in the training set and the predicted values by 

the optimization models 1 presented in Figs. 1 and 2, respecti-

vely.  The high Linearity of these plots indicates high predict-

tive power of the models. 

3.1.5. Residual plot of model 1 

The measure of the dispersion of residual pIC50 values 

from the predicted pIC50 values are presented in Fig. 3. The 

propagation of the errors on both sides of zero is an indication 

of the robustness of the QSAR models. 

 
Fig. 3. The residual versus the experimental pIC50 by measured GA-MLR. 

 

 

Fig. 4: William’s plot of generated GA-MLR model. 

 

 

3.1.6. Comparison of observed and predicted pIC50 of 

model 1 

The comparison of the predicted pIC50 of the model with 

their experimental values are presented in Tables 1. The low 

residual values shown in the tables confirms the high 

predictive power of the models. 

3.2. Discussion 

After analyzing, we split the data set into the training set 

and query set, the next step was to select the main factors 

which were the most important for the anti-tyrosinase 

inhibition. As we do not know yet which descriptors or which 

particular combinations are related to the studied response and 

can be used in the predictive models, we applied genetic algor-

ithms as the variable selection procedure to select only the 

best combinations (most relevant) for obtaining the models 

with the highest predictive power by using the training set. 

Five most significant descriptors according to the GA-MLR 

algorithm are Broto-Moreau autocorrelation - lag 0 / weighted 
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by I-state (ATSOs), Average Broto-Moreau autocorrelation - 

lag 6 / weighted by polarizabilities, (AATS6p), Centered 

Broto-Moreau autocorrelation - lag 1 / weighted by first 

ionization potential (ATSC1i), Spectral mean absolute 

deviation from Barysz matrix / weighted by van der Waals 

volumes (SpMAD_Dzv), and Randic-like eigenvector-based 

index from Barysz matrix / weighted by Sanderson electroneg-

ativities (VR1_Dze). The predicted values for pIC50 for the 

compounds in the training and test sets using model 1 were 

plotted against the experimental pIC50 values in Figs. 1 and 2. 

A plot of the residual for the predicted values of pIC50 for both 

training and test sets against the experimental pIC50 values are 

shown in Fig. 3. Clearly, the model did not show any 

proportional and systematic erroras suggested by Jalali-Heravi 

and Kyani [23], because the propagation of the residuals on 

both sides of zero is random. The real usefulness of QSAR 

models is not just their ability to reproduce known data 

verified by their fitting power (R
2
), but mainly it is their 

predictive application potential.The F -value has found to be 

statistically significant at 95% level, since the calculated F 

valueis higher as compared to tabulated value. The positive 

value of quality factor (Q) for this QSAR’s model suggests its 

high predictive power and lack of over fitting [24,25]. 

A statistically significant 2D-QSAR model was obtained 

using the properly selected training set of 25 ligands. Results 

of the statistical analysis are presented in Tables 1 to 8. In the 

QSAR model, initial GA analysis of the aligned training set 

was done using material studio version 7.0. This yielded a 

highly significant Q
2
 value of 0.9705 Table 3 (with SDEP= 

0.2347 Table 2), which indicates that it is a model with high 

statistical significance; a Q
2
 value of 0.6 is considered 

statistically significant in QSARstudies [26]. The conventional 

R
2
 value of 0.9823 and low standard error of estimate (SEE) 

value of 0.2086 Table 1, indicate the accuracy of the 

predictions of the model. High values of Q2 from the leave-

one-out (LOO) analysis (Table 3) can be regarded as a 

necessary, but not a sufficient, condition for a model to 

possess significant predictive power [27]. In addition to LOO, 

the internal predictive ability of the model was further 

assessed by a Y-randomization performed with 25 analogues 

for 10 times. The average of 10 readings was given as average 

Q
2
 as showed in Table 7; Y-randomization test (Table 7) 

ensures the robustness of a QSAR model [28] and to assess the 

multiple linear regression models obtained by descriptor 

selection [29]. In y-randomization test, the dependent variable 

or biological activity is randomly shuffled and a new QSAR 

model is developed keeping molecular descriptors intact. The 

new models are expected to have low R
2
 and Q

2
 values, which 

determine the statistical significance of the original model. 

Moreover, if the model development includes F-stepping, then 

it is necessary to shuffle both dependent and independent 

variables to indicate that the original model is not because of 

chance correlation. The low R
2
 and Q

2
LOO values of the 

random models shown in Table 7 and the value of R
2

p= 0.8988 

(R
2

p≥0.5) indicates that there is no chance of correlation or 

structural dependency in the proposed model. Consequently 

model 1 can be considered as a perfect model with both high 

statistical significant and excellent predictive ability. 

FIT Kubinyi function define the statistical quality of 

activity prediction, the number of variables that enter in a 

QSAR model are compared by using FIT Kubinyi function as 

showed in the equation below, a criteria closely related to F 

value was proven to be useful.  

𝐹𝐼𝑇 =  𝑅2 
(𝑛 –  𝑘 –  1) / (𝑛 +  𝑘2) (1 –  𝑅2) 

where n is the number of compounds in training set and k 

is the number of variables in the QSAR equation. The main 

feature of the F value is its sensitivity to changes in k, if k is 

small sensitivity is high and vice versa if k is large. The FIT 

criterion has a low sensitivity towards changes in k values, as 

long as they are small numbers, and a substantial increase in 

sensitivity for large k values [30,31]. The best model will be 

the one that possess a high value of this function. According to 

the statistical values of the models reported in Table 3, with 

five variables since this showed high FIT. The observed, 

calculated and predicted values of the statistically significant 

five parameter QSAR model are presented in model 1. 

To satisfy with the robustness of the QSAR model develo-

ped using the training set, we have applied the QSARmodel to 

an external data set of tetraketone and benzyl benzoate deriva-

tives constituting the test set. As the experimental values of 

IC50 for these inhibitors are already available, this set of 

molecules provides an excellent data set for testing the 

prediction power of the QSAR model for new ligands. Fig. 2 

represents the predicted pIC50 values of the test set based on 

equation (1). The overall root mean square error of prediction 

(RMSEP) between the experimental and predicted pIC50 values 

 

 
Table 7 R, R^2, Q^2 and Rp^2 values after several Y-Randomization test 

Model R R^2 Q^2 

Original 0.9911 0.9823 0.9705 

Random 1 0.4627 0.2141 -0.2846 

Random 2 0.4213 0.1775 -1.0689 

Random 3 0.3681 0.1355 -0.3185 

Random 4 0.5475 0.2997 -0.2090 

Random 5 0.3707 0.1374 -0.6789 

Random 6 0.3160 0.0998 -0.4111 

Random 7 0.4059 0.1647 -0.7249 

Random 8 0.4484 0.2011 -0.4412 

Random 9 0.2769 0.0766 -0.6252 

Random 10 0.3824 0.1462 -0.5918 

Random Models Parameters 

Average r : 0.3999 

Average r^2 : 0.1652 

Average Q^2 : -0.5354 

Rp^2 : 0.8988 
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was 0.5389 as showed in Table 4, which reveals good 

predictability. The estimated correlation coefficients between 

experimental and predicted pIC50 values with intercept (r0^2) 

and without intercept (r^2) were 0.8406 and 0.8574, 

respectively. The value of [(r^2 –r0^2)/r^2] = 0.002 (Table 6), 

which is less than 0.1 stipulated value [32]and thus validates 

the usefulness of the QSAR model for predicting the 

biological activity of the external data set. Also, the values of 

k and k′ were 0.8192 and 1.0583, which are well within the 

specified ranges of 0.85 and 1.15 [28].The values of R
2
pred= 

0.8323 and rm^2(test) = 0.7574 were found to be in the 

acceptable range (Table 4) [33], there by indicating the good 

external predictability of the QSAR model. 

Selecting the best model, values of rm^2(overall) for the 

model was determined. As shown in Table 5, thisparameter 

penalized a model for large differences in experimental and 

predicted activity values. The parameter rm^2 (overall) 

determines whether the predicted activities are really close to 

the observed values or not since high values of Q
2
 and R

2
 

preddoes not necessarily mean that the predicted values are 

very close to the experimental ones. A model is considered 

satisfactory when rm^2 (overall) is greater 0.5 [34]. Besides 

rm^2 (overall), we have calculated rm^2 (test) and rm^2 

(LOO) values Tables 3 and 4. These two parameters signify 

the differences between the experimental and predicted 

activities of the test and training set compounds. For an ideal 

predictive model, the difference between R
2
pred and rm^2 

(test) in Table 4 and difference between Q
2
 and rm^2 (LOO) 

Table 3 should be low. Large difference between the values 

will ultimately lead to poor values of rm^2 (overall) 

parameter. For this data set, the difference between Q2and 

rm^2(LOO) is quite less (0.0054) and that between R2predand 

rm^2(test) is also very less (0.0749). Thus indicates that the 

model obtained for this data set using those descriptors are 

quite robust and predictive. The rm^2(LOO) parameter in 

Table 3 for a given model indicates the extent of deviation of 

the LOO predictedactivity values from the experimental ones 

for the training set compound while parameter rm^2(test) 

(Table 4) determines the extent of deviation of the predicted 

activity from the experimental activity values of test set 

compounds where the predicted activity is calculated on the 

basis of the model developed using the corresponding training 

set. Model 1 show acceptable values of rm^2(LOO) and 

rm^2(test) since they are greater than 0.5 [28]. 

The multi-collinearity between the above five descriptors 

were detected by calculating their variation inflation factors 

(VIF), which can be calculated as:1/1 − 𝑅^2 [35]. 

Where r is the correlation coefficient of the multiple 

regression between the variables in the model. If VIF equals 1, 

no inter-correlation exists for each variable; if VIF falls into 

the range of 1–5, the related model is acceptable; and if VIF is 

larger than 10, the related model is unstable and a recheck is 

necessary [26]. The corresponding VIF values of the seven 

descriptors are shown in Table 5. Based on this table, most of 

the variables had VIF values of less than 5, indicating that the 

obtained model has statistical significance. To examine the 

relative importance, as well as the contribution of each 

descriptor in the model, the value of the mean effect (MF) was 

calculated for each descriptor. This calculation was performed 

using the following equation. 







n

i
ij

m

j
j

nj

i
ijj

j

dB

dB
MF 1                                                       (1) 

3.2.1. Applicability domain of the model 

A quantitative structure activity relationship (QSAR) 

model is exploited to monitor new compounds when its 

domain of application has been defined [28]. The prediction 

may be assumed reliable for only those compounds which fall 

into this domain [36]. Standardizedresiduals of the activity 

were computed and were plotted versus leverage values (h). 

The value of leverage was calculated for every compound. 

Values are always between 0 and 1. A value of 0 is indicative 

of perfect prediction and usually is not accessible, and a value 

of 1 indicates very poor prediction. The lower the value, the 

higher confidence in the prediction. Warning leverage (h*) is 

another standard for explanation of the results and is, 

generally, fixed at 3 (k +1)/ n, where k is the number of model 

parameters and n is the number of training and test sets [36]. 

Calculated leverage for training and test sets is useful for 

determining the compounds which affect the model and, in 

terms of validation set, useful for assigning the applicability 

domain of the model. The William’s plot for the developed 

models in GA-MLR are shown in Fig. 3. Response outliers are 

compounds that have standard residual points higher than ± 

3.0 standard deviation units and a leverage value higher than 

the warning leverage, which is 0.72 for GA-MLR. As can be 

seen in Fig. 3, all studied molecules in training and test sets lie 

with high degree of confidence in application domain of the 

developed models. 

 

 

 
Fig. 5. Euclidean based applicability domain generated GA-MLR model 
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Table 8: The linear model based on the five parameters selected by the GA-MLR method. 

Descriptors name Symbol VIF MF 

Broto-Moreau autocorrelation - lag 0 / weighted by I-state ATS0s 1.5719 5.1762 

Average Broto-Moreau autocorrelation - lag 6 / weighted 

by polarizabilities AATS6p 

1.3968 3.2661 

Centered Broto-Moreau autocorrelation - lag 1 / weighted 

by first ionization potential ATSC1i 

1.3411 -0.7138 

Spectral mean absolute deviation from Barysz matrix / 

weighted by van der Waals volumes SpMAD_Dzv 

1.7905 -6.8643 

Randic-like eigenvector-based index from Barysz matrix / 

weighted by Sanderson electronegativities VR1_Dze 

1.9766 0.1357 

 

3.2.2. Interpretation of descriptors  

The 2D-QSAR developed indicated that Broto-Moreau 

autocorrelation - lag 0 / weighted by I-state (ATSOs), Average 

Broto-Moreau autocorrelation - lag 6 / weighted by 

polarizabilities (AATS6p) and N Randic-like eigenvector-

based index from Barysz matrix / weighted by Sanderson 

electronegativities  (VR1_Dze) has positive values in the 

mean effect (Table 8) indicate that the indicated descriptor 

contributes positively to the value of pIC50, whereas negative 

values of Centered Broto-Moreau autocorrelation - lag 1 / 

weighted by first ionization potential (ATSC1i), and Spectral 

mean absolute deviation from Barysz matrix / weighted by van 

der Waals volumes (SpMAD_Dzv) indicate that the greater 

the value of the descriptor the lower the value of pIC50. In 

other words, increasing the ATSC1i and SpMAD_Dzv (Table 

8) will decrease pIC50 and increasing the ATS0s, AATS6p 

and VR1_Dze increases extent of pIC50 of the tetraketone and 

benzyl benzoate derivatives. The mean effect reveals the 

significance of an individual descriptor presented in the 

regression model. 

4. Conclusion 

The generated 2D-QSAR equations, described in this 

publication, indicate the relationship between biological 

activity and the corresponding descriptors. Table 8 presents 

abbreviations, full names and description of all the descriptors 

used in the final 2D-QSAR models. Some of them have quite 

clear physical meaning, but unfortunately, most of them is 

often “a combination of” a few physical and chemical 

properties. Not often happens that the biological activity of the 

drug is dependent on one or a few obvious and clear 

properties. Many factors have an influence on the biological 

activity of the compound and getting to know them isn’t easy. 

Time consuming and costly researches of professionals in the 

drug design confirm this facts. Obtained 2D-QSAR models 

allow to predict the activity of a new compound on the basis 

of its structure without the need of its synthesis. Estimation of 

the predictable (predicted) biological activity for the next 

analog can be made by optimizing the geometry of the 

compound in a suitable computer program and using 

appropriate computational quantum chemistry methods and 

then compute the so-called molecular descriptors. At that time, 

the obtained values of descriptors are substituted for the found 

earlier, reliable 2D-QSAR models and used to calculate a 

predicted value for the biological activity of a new tetraketone 

and benzyl benzoate derivatives of the analyzed group of 

compounds. The predictive ability of the model and the 

internal and external validation procedures illustrated the 

accuracy on one hand and offered a useful alternative to the 

time consuming experiments, on the other. In order to propose 

structural modifications that can be taken into account in the 

further synthesis of next analogues, we plan to carry out a 

molecular docking. It involves the generation, for a series of 

compounds, so called molecular field, which allows to visual 

identification of areas with positive or negative impact on the 

biological activity. This work emphasizes the use of various 

tests in QSAR analysis such as applicability domain of the 

model, predictive ability of validation set and FIT Kubinyi 

function as important parameters to obtain a reliable and 

robust QSAR model and thus help in designing more potent 

anti-tyrosinase inhibitors. 

Recommendation 

1 These drugs like molecules may be synthesized and 

formulated appropriately. 

2 Their pharmacological and toxicological activities 

could be performed on animal models before clinical 

trials. 
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