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Abstract—Applications for real-time multimedia content pro-
duction, because of their delay-sensitive nature, require fast
and precise control by the user. This is commonly achieved by
specialized physical controllers that are application-specific with
steep learning curves. In our work, we propose using the inputs
from Microsoft Kinect as a controller interface.

Originally introduced as a peripheral of XBox, Kinect is a
multimodal device equipped with RGB Camera, Depth Sensor
and Microphone Array. We use those inputs in order to pro-
vide a non-tactile controller abstraction to the user, targeting
multimedia content creation. Current Kinect-based solutions, try
to recognize natural gestures of the user, and classify them as
controller actions. The novelty of our implementation is that
instead of extracting gesture features, we directly map the inputs
from the Kinect to a suitable set of values for the multimedia
application. By removing the gesture recognition concept, we are
able to create a generic and lightweight framework, with a clear
interface to the user. We examine the usability of the framework
through the development and evaluation, of a Kinect-controlled
real-time multimedia application.

Keywords—Human Computer Interaction, MS-Kinect, Multimedia,
Mixed Media.

I. INTRODUCTION

Nowadays there is a vast range of applications, that either
present or create/modify audiovisual content. From a timing
perspective, real-time multimedia applications, present the
content as they produce it; in order to provide a seamless
experience, they require precise control over the inputs. To
achieve this precision, expensive specialized hardware is used.
Our research is focused on using Microsoft Kinect as an input
device, to control real-time multimedia applications.

Kinect is a multimodal input device, originally marketed as
a peripheral of Xbox game console, that can provide Video,
Audio and Depth information of the scene. It uses an infrared
projector/camera pair - and with Time-of-Flight technology,
calculates the distance of points within its range. The output
consists of a matrix filled with those distance values, called
Depth Image. In order for an application to extract data from
the device, a middleware library is used, such as Microsoft
SDK [1] or OpenNI [2]. The middleware, besides parsing
the raw Kinect data, can track the position of the user and
provide a set of depth values (Coordinates), for predefined

points of interests, on his body. Those points are called Joints
and their naming is consistent to the body part they represent
(i.e. RightHand, Head, LeftShoulder etc.).

Most of the research efforts on Kinect interfaces, concen-
trate on utilizing Joint Coordinate data in order to identify
user Gestures [3]. The data classification required for gesture
recognition, can be done either by checking if a Set of Rules
applies, or by running Machine Learning algorithms [4]. The
downside in the first case is that in order for the classification
to be efficient, every user must have his own Rules Set. If
there is only one Rules Set, the user must be trained to it
and the Gestures are not considered to be Natural. As for the
Machine Learning scenario, a large data set must be provided
for the Gesture Recognition engine to be efficient. In both
cases, the classification process is computational expensive and
can downgrade the user experience.

The fundamental difference between our framework, and
the standard use of Kinect as a controller, lays on the princi-
ple that instead of performing complex Gesture Recognition
techniques, then extracting gesture parameters and parse them
as input values to the application; we select features of interest
(a set of Joint Coordinates) and directly map their values to a
range suitable for the multimedia application. This way, the
time consumed to perform a Gesture is abstracted and we
achieve performance closer to real-time, since the delay binds
to the rate data is being extracted from Kinect. On terms
of computational cost, the expensive Gesture Recognition
algorithms, are replaced by simple mapping functions. By
removing the Gesture concept we are also able to reduce the
time required for the user to familiarize with the application.
Specifically in the case of mapping the Joint Coordinates of the
hands, the behavior of the interface is similar to a multi-touch
screen (or touchpad). This provides a user interface experience
that is already familiar, hence minimizing the learning curve
– meaning that once the user is aware of which characteristics
are mapped to what values, is able to accurately control the
desired application.

In the following Section, we present the current state of
the art on Gesture Recognition interfaces. Then, in Section
III, we detail our framework design, to present it implemented
on a sample application in Section IV. We show the future
prospects in Section V, and conclude the paper in Section VI.



II. STATE OF THE ART

Gesture Recognition techniques have been utilized in ap-
plications varying from controlling multimedia playback [5],
to web browsing [6], to medical imaging interaction [7] and
others [8]. On the aforementioned examples, the interaction
with the user does not produce multimedia content, instead it
affects the way the content is being represented. As a result,
there are not strict timing constraints and Gesture Recognition
can be used to provide inputs in similar scenarios.

In the field of real-time multimedia content creation,
Odowichuk et. al. [9] have created a platform that simulates
music instrument (xylophone) playing. This is achieved by,
initially creating a virtual representation of the instrument, then
extracting motion characteristics from the gestures, spatially
mapping them and parse the resulting values as parameters
to a sound generator. In this case, the main principle is
closer to our work, than the other examples, since it includes
direct mapping of values, even though it is coupled with
Gesture Recognition techniques. However, this work targets
a very specific application, and due to their attempt for spatial
mapping on the virtual xylophone, latency and temporal jitter
are observed, rendering their method unsuitable for real-time
multimedia. In order to minimize the effect of those issues,
the authors are planning on implementing Machine Learning
for movement prediction.

Churnside et. al. [10] designed a gestured-based audio
interface system that uses Joint Coordinates to adjust the speed
and volume of audio and video playback. There are similarities
with our work, in the way Hand Coordinates are mapped to
several parameters (different parameter per movement axis),
the multimedia manipulation approach (real-time), and the
separated interface-multimedia engines design. The system
design however, is completely rigid and cannot be applied to
other applications.

Several low-latency techniques are used for human-robot
interaction, but they address to trained operators and assume
specific underlying hardware setup [11] [12] [13].

On more generic frameworks, Deshayes et.al. have de-
veloped a framework for gesture-based applications, with
Statechart modeling [14]. Even though their approach provides
solutions on the application development and verification side,
they are using traditional Gesture Recognition techniques.
Finally, Vidakis et. al. [15] have examined the capabilities of
Kinect as a multimodal interface, using Voice and Gestures,
but there is no specific example on the real-time multimedia
domain.

III. THE FRAMEWORK

The generic implementation of our framework can be split
in two distinct elements; the System Engine, responsible for
gathering and mapping the data from Kinect, providing the
Parameter Values for application input, and the Interface, that
displays information on the current state of the system to the
user.

1) System Engine: The System Engine of our framework
lays between the OpenNI middleware [2] and the multimedia
application, as shown in Fig. 1. To setup the System Engine, a
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Fig. 1: System Architecture

Parameter Set must be provided. The first part of a Param-
eter Set consists of a List with the multimedia application
parameters and their possible values. Table I shows an example
Parameter List for a Band-Pass Filter audio application. The
second part is a Map between the aforementioned list and the
framework parameters (Joint Coordinates). The shared key for
the Map and the List, in order to build the Parameter Set, is
the Parameter Name.

The Map can be Physical, Visual or Mixed. The difference
between them, is on the Joint Coordinate system used by the
framework. The Physical Map uses the spatial coordinates
of the Joints (distance from the device), as provided by the
underlying middleware, in millimetres (mm). Visual maps to
their projection coordinates (i.e. the Joints position on the
screen), therefore the values are in pixels (px). In Mixed, the
mapping method may vary between parameters. An example
of a Mixed map for the values in Table I is shown in Table II.

To start, the user must initialize the framework and se-
lect a feature of the multimedia application. Afterward, the
System Engine gathers the input data from Kinect and using
the Parameter Set, maps the required Joint Coordinates to
application-specific values, in order to parametrize the selected
feature. Then, the parameter values are parsed to the multime-
dia application, where the content manipulation takes place.
Any possible feedback, is delivered through the framework
interface.

TABLE I: Application Parameter List

Parameter Min. Value Max. Value

Band Width 0 (Hz) 40000 (Hz)

Pass Band 20 (Hz) 20000 (Hz)

Active OFF ON

Volume 0 % 100 %



TABLE II: Parameter Map

Parameter Joint Min. Max.

Band Width RightHand Y 120 (px) 330 (px)

Pass Band RightHand X 300 (px) 550 (px)

Active Users 0 1

Volume RightHand Y Torso Y Head Y

2) The Interface: In order to easily operate the framework,
an user interface (UI) implementation is needed. The frame-
work interface can be embedded to the application interface,
or implemented separately. Even though no specific UI rules
apply, a typical interface paradigm consists of four elements:

1) Area of Effect: The virtual frame, in which the Joint
Coordinates are mapped

2) Virtual Buttons: Pre-defined Areas of Effect, that
implement switch behaviors

3) Output Screen: Real-time video output (if available)
4) Monitor Screen: Indications on the screen regarding

the state of the framework

A Graphical User Interface (GUI) paradigm, can vary in
complexity and information feedback; from a full implemen-
tation in which all four elements appear on the screen, to a
very minimal, consisting of a Monitor or Output Screen only.
The more elements are implemented, the easier it is for the
user to operate the application, since there is more information
available.

An example of a minimal interface implementation, for a
real-time audio editing application, that implements only the
Monitor Screen can bee seen in Fig.2. In this case, the Monitor
Screen, consists of a Depth Image grayscale representation,
and two message panels. The user is able to see a 2D projection
of his position on screen, while the distance is represented in
shades of gray; white being the closest to the device, and black
out of range. At the bottom of the Monitor Screen, there are
two message panels. The one on the left is used for informative
messages regarding the current state of the application, and the
other shows information on the Joint Coordinates and their
mapped values.

Fig. 2: Sample framework interface implementing the Monitor
Screen element

IV. APPLICATION EXAMPLE

We created a demo multimedia application using our
framework. The application was developed in Java, via the
Processing wrapper - using OpenGL [16] for rendering the
visual output, and minim [17] library for audio playback-
/editing. In this application, the user can on-the-fly select
an audio track, apply and parametrize a Band-Pass filter, or
chose a visualization. In order to achieve these functions, the
Joint Coordinates for hands are extracted for controlling the
application.

The Interface of the application can be seen in Fig.3. Since
the application is controlled by the RightHand and LeftHand
coordinates, there are two dots on the screen, used as pointers
for their current position. On the top part of the Interface,
visible Virtual Buttons responsible for the application functions
are located. A Volume button/indicator is on the bottom-left
side of the screen, and a Monitor button/indicator on the
bottom-right. The user selects the desired function by moving
one of the pointers to the respective button. The message panel,
on the bottom of the Interface, is reserved for displaying the
title for the selected playback track.

The interface shown in Fig.3 is for the Band-Pass Filter
mode. The current visualization selected is a real-time repre-
sentation of the audio wave (for right and left channel) in the
center of the screen. This can be used from the user as a visual
aide. An alternative visualization that the user may select is,
the bar spectrogram of the audio. That visualization is achieved
by performing Discrete Fourrier Transformation (DFT) to the
frequency domain.

Fig. 3: Application Interface (in Band-Pass Filter mode)

To setup the System Engine of the framework, the ap-
plication Parameter List must be parsed. In order to achieve
this without editing the code, the framework has an integrated
Extensible Markup Language (XML) document reader. This
way, the Parameter List can be easily modified/updated, even
after the application is deployed. For this application we are
using the same Band-Pass Filter Parameters, as shown in Table
I – expressed in XML format in Listing 1.



The initial field, specifies a parameter value, in case the
function is activated, before the user sends any relevant input.
It can have any values between the given min, and max. The
default field, defines the framework behavior, when the user
does not provide any input. This can be done intentionally, if
the user decides to use some other feature of the application,
while keeping the currently active on (in our case the Band-
Pass Filter). It accepts the min and max keywords, any value in
between, and the HOLD keyword, which keeps the last given
value, until the user resumes control. Those two fields, even
though optional, they are essential in real-time multimedia ap-
plications, to avoid contextual discontinuities, while handling
different tasks simultaneously.

<Parameters>
<Parameter Name=” Band Width ”>

<min> 0 < / min>
<max> 20000 < / max>
< i n i t i a l> 40000 < / i n i t i a l>
<d e f a u l t> HOLD < / d e f a u l t>

< / Parameter>
<Parameter Name=” Pas s Band ”>

<min> 20 < / min>
<max> 20000 < / max>
< i n i t i a l> 20000 < / i n i t i a l>
<d e f a u l t> HOLD < / d e f a u l t>

< / Parameter>
<Parameter Name=” A c t i v e ”>

<min> FALSE < / min>
<max> TRUE < / max>
< i n i t i a l> FALSE < / i n i t i a l>
<d e f a u l t> FALSE < / d e f a u l t>

< / Parameter>
<Parameter Name=” Volume ”>

<min> 0 < / min>
<max> 100 < / max>
< i n i t i a l> 50 < / i n i t i a l>
<d e f a u l t> HOLD < / d e f a u l t>

< / Parameter>
< / Parameters>

Listing 1: sample XML file

For the Parameter Map, we are using the same values as
shown in Table II. The Band Width and Pass Band values are
coupled – this causes the creation of a smaller rectangular Area
of Effect, defined by the respective parameter range (values
from the Parameter Map). In Fig. 4(a) the Band-Pass Filter
is activated and its Area of Effect is highlighted. The Band
Width parameter of the filter is set by the RightHand position
on the Y axis, within the Area of Effect, while the Pass Band
on the X axis.

The Volume function is coupled to its Button. As a result,
the Volume parameter can be changed by the RightHand Y
position, only if the user has his LeftHand over the Volume
Virtual Button, as Fig. 4(b) shows. Otherwise, the value
specified in the default field applies, and since it set to HOLD,
the most recent value remains the same, until it is updated.

V. FUTURE WORK

We are currently working on removing our framework from
the multimedia application stack, to increase its interoperabil-
ity. This way it can be used in a completely independent way,
implemented with minimal effort, and even run the framework
on a different local machine than the application. In order to

(a) Band-Pass Filter activated, with highlighted Area of Effect

(b) Volume Control activated, with highlighted Area of Effect

Fig. 4: Application Interface (in Band-Pass Filter mode)

separate the framework from the stack, we are introducing
communication with the main application by using Open
Sound Control [18]. OSC is a content format, that is already
being used for communication in state of the art multimedia
applications [19] [20]. The framework will independently
perform the input gathering and mapping process, and the
resulting values will be parsed to the application in a OSC-
compliant format.

On top of that, we are extending the framework in order
to support fully distributed processing. In this version, we will
support scenarios where the user data gathering takes places
in a remote machine – then, it is distributed over HTTP with
a streaming service, and the data mapping and application
control takes place locally. In order to achieve this, we add
data compression and transportation techniques. Transporting
RGB and Audio data captured by Kinect, will be done by
implementing the MPEG Dynamic Adaptive Streaming over
HTTP (DASH) standard [21], using the GPAC framework



[22]. With DASH a series of video streams are broadcasted
and the client is able to chose according to its requirements
and connection speed. Using the same DASH stream, other
extra parameters can be parsed [23], in our case the Joint
Coordinates and framework specifications.

For compressing the Depth stream, we will integrate the
Point Clouds Library (PCL) [24]. PCL offers algorithms for
lossy and lossless compression [25] [26]. The resulting Depth
maps will be delivered in a DASH-like manner, and the client
application will be able to chose the one it requires.

VI. CONCLUSION

Our work proposes a new approach to enhance the user
experience in real-time multimedia applications controlled by
Kinect. By implementing Parameter Mapping, and completely
abstracting the Gesture Recognition concept, we created a
low-latency, lightweight framework where various actions can
be performed, in an application-agnostic environment. Any
multimedia application can either be built on top of our
framework, or easily integrate it, with a few modifications to its
code. By implementing low-overhead networking capabilities,
a decentralized approach can be realized. Finally, with our
current work, we will be able to create completely scalable
and heavily distributed, Kinect-controlled multimedia systems.
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