Emma C Teeling

Emma C Teeling
  • University College Dublin

About

214
Publications
137,237
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
13,957
Citations
Current institution
University College Dublin
Additional affiliations
September 1999 - December 2001
University of California, Riverside
Position
  • PhD Student

Publications

Publications (214)
Article
We present a genome assembly from a specimen of Barbarea vulgaris (winter-cress or yellow rocket; Streptophyta; Magnoliopsida; Brassicales; Brassicaceae). The genome sequence has a total length of 246.25 megabases. Most of the assembly (99.45%) is scaffolded into 8 chromosomal pseudomolecules. The mitochondrial and plastid genome assemblies have le...
Article
Full-text available
Background Bats possess a uniquely adapted immune system that enables them to live with viral infections without the expected maladies. The molecular basis and regulation of bats’ immune response is still not fully understood. Long non-coding RNAs (lncRNAs) represent an emerging class of molecules with critical regulatory roles in multiple biologic...
Article
Full-text available
We present a genome assembly from an individual male Artibeus lituratus (Chordata; Mammalia; Chiroptera; Phyllostomidae). The genome sequence is 2.15 in span. The majority of the assembly is scaffolded into 30 chromosomal pseudomolecules, with the X and Y sex chromosomes assembled.
Article
Full-text available
Zoonoses are infectious diseases transmitted from animals to humans. Bats have been suggested to harbour more zoonotic viruses than any other mammalian order¹. Infections in bats are largely asymptomatic2,3, indicating limited tissue-damaging inflammation and immunopathology. To investigate the genomic basis of disease resistance, the Bat1K project...
Article
Full-text available
We present a genome assembly from an individual male Saccopteryx bilineata (Chordata; Mammalia; Chiroptera; Emballonuridae). The genome sequence is 2.62Gb in span. The majority of the assembly is scaffolded into 13 chromosomal pseudomolecules, with the X sex chromosome assembled.
Article
Full-text available
To gain insight into how researchers of aging perceive the process they study, we conducted a survey among experts in the field. While highlighting some common features of aging, the survey exposed broad disagreement on the foundational issues. What is aging? What causes it? When does it begin? What constitutes rejuvenation? Not only was there no c...
Article
We present a genome assembly from an individual male Myotis mystacinus (whiskered bat; Chordata; Mammalia; Chiroptera; Vespertilionidae). The genome sequence has a total length of 2,081.20 megabases. Most of the assembly (97.52%) is scaffolded into 23 chromosomal pseudomolecules, including the X and Y sex chromosomes. The mitochondrial genome has a...
Article
Full-text available
Bats are becoming recognised as new model species to study naturally evolved mammalian extended healthspan and disease tolerance. However, this research is limited by the lack of bat specific cellular resources. Here we describe an optimised protocol to develop both primary and immortalised fibroblast cell-lines from wing biopsy punches from the Eg...
Article
Full-text available
The recent unprecedented progress in ageing research and drug discovery brings together fundamental research and clinical applications to advance the goal of promoting healthy longevity in the human population. We, from the gathering at the Aging Research and Drug Discovery Meeting in 2023, summarised the latest developments in healthspan biotechno...
Article
Full-text available
Bats (order Chiroptera) are emerging as instructive animal models for aging studies. Unlike some common laboratory species, they meet a central criterion for aging studies: they live for a long time in the wild or in captivity, for 20, 30, and even >40 years. Healthy aging (i.e., healthspan) in bats has drawn attention to their potential to improve...
Article
Full-text available
We present a genome assembly from an individual female Molossus alvarezi (Chordata; Mammalia; Chiroptera; Molossidae). The genome sequence is 2.490 Gb in span. The majority of the assembly is scaffolded into 24 chromosomal pseudomolecules, with the X sex chromosomes assembled.
Article
Full-text available
We present a reference genome assembly from an individual male Rhynchonycteris naso (Chordata; Mammalia; Chiroptera; Emballonuridae). The genome sequence is 2.46 Gb in span. The majority of the assembly is scaffolded into 22 chromosomal pseudomolecules, with the Y sex chromosome assembled.
Article
We present a genome assembly from a female Plecotus auritus (Brown Long-eared bat; Chordata; Mammalia; Chiroptera; Vespertilionidae). The genome sequence is 2163.2 megabases in span. Most of the assembly is scaffolded into 16 chromosomal pseudomolecules, including the X sex chromosome. The mitochondrial genome has also been assembled and is 16.91 k...
Preprint
Full-text available
Bats are remarkably long-lived for their size with many species living more than 20-40 years, suggesting that they possess efficient anti-aging and anti-cancer defenses. Here we investigated requirements for malignant transformation in primary bat fibroblasts in four bat species - little brown bat (Myotis lucifugus), big brown bat (Eptesicus fuscus...
Article
We present a genome assembly from an individual male Myotis daubentonii (Daubenton's bat; Chordata; Mammalia; Chiroptera; Vespertilionidae). The genome sequence is 2,127.8 megabases in span. Most of the assembly is scaffolded into 23 chromosomal pseudomolecules, including the X and Y sex chromosomes. The mitochondrial genome has also been assembled...
Preprint
Full-text available
We present a genome assembly from an individual male Tadarida brasiliensis (The Brazilian free-tailed bat; Chordata; Mammalia; Chiroptera; Molossidae). The genome sequence is 2.28 Gb in span. The majority of the assembly is scaffolded into 25 chromosomal pseudomolecules, with the X and Y sex chromosomes assembled.
Article
Full-text available
The emergence of COVID-19 and severe acute respiratory syndrome (SARS) has prioritized understanding bats’ viral tolerance. Myotis bats are exceptionally species rich and have evolved viral tolerance. They also exhibit swarming, a cryptic behavior where large, multi-species assemblages gather for mating, which has been hypothesized to promote inter...
Article
Full-text available
The escape of DNA from mitochondria into the nuclear genome (nuclear mitochondrial DNA, NUMT) is an ongoing process. Although pervasively observed in eukaryotic genomes, their evolutionary trajectories in a mammal-wide context are poorly understood. The main challenge lies in the orthology assignment of NUMTs across species due to their fast evolut...
Article
Full-text available
Hibernation is linked with various hypotheses to explain the extended lifespan of hibernating mammals compared with their non-hibernating counterparts. Studies on telomeres, markers of ageing and somatic maintenance, suggest telomere shortening slows during hibernation, and lengthening may reflect self-maintenance with favourable conditions. Bats i...
Article
Full-text available
We present a genome assembly from an individual Eptesicus nilssonii (the northern bat; Chordata; Mammalia; Chiroptera; Vespertilionidae), derived from the placental tissue of a pregnancy that resulted a male pup. The genome sequence is 2,064.1 megabases in span. Most of the assembly is scaffolded into 26 chromosomal pseudomolecules, including the X...
Article
Full-text available
Bats host a range of disease-causing viruses without displaying clinical symptoms. The mechanisms behind this are a continuous source of interest. Here, we studied the antiviral response in the Egyptian fruit bat and Kuhl’s pipistrelle, representing two subordinal clades. We profiled the antiviral response in fibroblasts using RNA sequencing and co...
Article
Current knowledge of cancer genomics remains biased against noncoding mutations. To systematically search for regulatory noncoding mutations, we assessed mutations in conserved positions in the genome under the assumption that these are more likely to be functional than mutations in positions with low conservation. To this end, we use whole-genome...
Article
Full-text available
The cinnabar moth Tyria jacobaeae (Linnaeus) is a common species of Lepidoptera found throughout Ireland on grasslands, heathland, wasteland and sand dunes. Currently there are no known records of bat predation of this toxic moth. Using DNA barcoding of a partially digested fragment from the faeces of a brown long-eared bat Plecotus auritus collect...
Article
We present a genome assembly from an individual male Molossus nigricans (Chordata; Mammalia; Chiroptera; Molossidae). The genome sequence is 2.41 gigabases in span. The majority of the assembly is scaffolded into 24 chromosomal pseudomolecules, with the X sex chromosome assembled.
Article
Protein-coding differences between species often fail to explain phenotypic diversity, suggesting the involvement of genomic elements that regulate gene expression such as enhancers. Identifying associations between enhancers and phenotypes is challenging because enhancer activity can be tissue-dependent and functionally conserved despite low seque...
Article
The precise pattern and timing of speciation events that gave rise to all living placental mammals remain controversial. We provide a comprehensive phylogenetic analysis of genetic variation across an alignment of 241 placental mammal genome assemblies, addressing prior concerns regarding limited genomic sampling across species. We compared neutral...
Article
Conserved genomic sequences disrupted in humans may underlie uniquely human phenotypic traits. We identified and characterized 10,032 human-specific conserved deletions (hCONDELs). These short (average 2.56 base pairs) deletions are enriched for human brain functions across genetic, epigenomic, and transcriptomic datasets. Using massively parallel...
Article
We reconstruct the phenotype of Balto, the heroic sled dog renowned for transporting diphtheria antitoxin to Nome, Alaska, in 1925, using evolutionary constraint estimates from the Zoonomia alignment of 240 mammals and 682 genomes from dogs and wolves of the 21st century. Balto shares just part of his diverse ancestry with the eponymous Siberian hu...
Article
Species persistence can be influenced by the amount, type, and distribution of diversity across the genome, suggesting a potential relationship between historical demography and resilience. In this study, we surveyed genetic variation across single genomes of 240 mammals that compose the Zoonomia alignment to evaluate how historical effective popul...
Article
Zoonomia is the largest comparative genomics resource for mammals produced to date. By aligning genomes for 240 species, we identify bases that, when mutated, are likely to affect fitness and alter disease risk. At least 332 million bases (~10.7%) in the human genome are unusually conserved across species (evolutionarily constrained) relative to ne...
Article
Full-text available
Understanding the regulatory landscape of the human genome is a long-standing objective of modern biology. Using the reference-free alignment across 241 mammalian genomes produced by the Zoonomia Consortium, we charted evolutionary trajectories for 0.92 million human candidate cis-regulatory elements (cCREs) and 15.6 million human transcription fac...
Preprint
Full-text available
Bats host a range of viruses that cause severe disease in humans without displaying clinical symptoms to these infections. The mechanisms of bat adaptation to these viruses are a continuous source of interest but remain largely unknown. To understand the landscape of bat antiviral response in a comprehensive and comparative manner, we studied this...
Preprint
Full-text available
The escape of DNA from mitochondria into the nuclear genome (nuclear mitochondrial DNA, NUMT) is an ongoing process. Although pervasively observed in eukaryotic genomes, their evolutionary trajectories in a mammal-wide context are poorly understood. The main challenge lies in the orthology assignment of NUMTs across species due to their fast evolut...
Preprint
Full-text available
Horizontal transfer of transposable elements is an important mechanism contributing to genetic diversity and innovation. Bats (order Chiroptera) have repeatedly been shown to experience horizontal transfer of transposable elements at what appears to be a high rate compared to other mammals. We investigated the occurrence of horizontally transferred...
Preprint
Full-text available
Evolutionary constraint and acceleration are powerful, cell-type agnostic measures of functional importance. Previous studies in mammals were limited by species number and reliance on human-referenced alignments. We explore the evolution of placental mammals, including humans, through reference-free whole-genome alignment of 240 species and protein...
Article
Full-text available
Bats are distinctive among mammals due to their ability to fly, use laryngeal echolocation, and tolerate viruses. However, there are currently no reliable cellular models for studying bat biology or their response to viral infections. Here, we created induced pluripotent stem cells (iPSCs) from two species of bats: the wild greater horseshoe bat (R...
Preprint
Full-text available
Bats have evolved features unique amongst mammals, including flight, laryngeal echolocation, and certain species have been shown to have a unique immune response that may enable them to tolerate viruses such as SARS-CoVs, MERS-CoVs, Nipah, and Marburg viruses. Robust cellular models have yet to be developed for bats, hindering our ability to furthe...
Article
Full-text available
High-quality reference genomes for non-model species can benefit conservation.
Article
Full-text available
Seven species of the Asian torrent frogs (genus Amolops) have previously been reported from the eastern Himalayan country of Bhutan. Species identifications from the region have been largely based on photographed animals with few voucher specimens available and no molecular sampling. Understanding the taxonomic status of Bhutan’s torrent frogs has...
Article
This article talks about the Amolops species in Bhutan and also describes new to science species from Bhutan.
Article
Full-text available
Relationships among laurasiatherian clades represent one of the most highly disputed topics in mammalian phylogeny. In this study, we attempt to disentangle laurasiatherian interordinal relationships using two independent genome-level approaches: (1) quantifying retrotransposon presence/absence patterns, and (2) comparisons of exon datasets at the...
Preprint
Full-text available
The development of methods for individual identification in wild species and the refinement of Capture-Mark-Recapture (CMR) models during the past decades has greatly improved the assessment of population demographic rates to answer ecological and conservation questions. In particular, multistate models, with their flexibility for the analysis of c...
Article
Full-text available
Despite the global investment in One Health disease surveillance, it remains difficult and costly to identify and monitor the wildlife reservoirs of novel zoonotic viruses. Statistical models can guide sampling target prioritisation, but the predictions from any given model might be highly uncertain; moreover, systematic model validation is rare, a...
Article
Full-text available
Over 20% of all living mammals are bats (order Chiroptera). Bats possess extraordinary adaptations including powered flight, laryngeal echolocation and a unique immune system that enables them to tolerate a diversity of viral infections without presenting clinical disease symptoms. They occupy multiple trophic niches and environments globally. Sign...
Article
Comprising more than 1,400 species, bats possess adaptations unique among mammals including powered flight, unexpected longevity, and extraordinary immunity. Some of the molecular mechanisms underlying these unique adaptations includes DNA repair, metabolism and immunity. However, analyses have been limited to a few divergent lineages, reducing the...
Article
Full-text available
We present a genome assembly from an individual female Pipistrellus pipistrellus (the common pipistrelle; Chordata; Mammalia; Chiroptera; Vespertilionidae). The genome sequence is 1.76 gigabases in span. The majority of the assembly is scaffolded into 21 chromosomal pseudomolecules, with the X sex chromosome assembled.
Article
Full-text available
Autophagy maintains cellular homeostasis and its dysfunction has been implicated in aging. Bats are the longest-lived mammals for their size, but the molecular mechanisms underlying their extended healthspan are not well understood. Here, drawing on >8 years of mark-recapture field studies, we report the first longitudinal analysis of autophagy reg...
Article
Full-text available
Exceptionally long-lived species, including many bats, rarely show overt signs of aging, making it difficult to determine why species differ in lifespan. Here, we use DNA methylation (DNAm) profiles from 712 known-age bats, representing 26 species, to identify epigenetic changes associated with age and longevity. We demonstrate that DNAm accurately...
Article
Full-text available
Understanding antiviral immune responses in bats, which are reservoirs for many emerging viruses, could aid the response to future epidemics. Here, we discuss five key areas in which greater consensus among the bat research community is necessary to drive breakthroughs in the field. The COVID-19 pandemic has stressed the importance of understanding...
Preprint
Comprising more than 1400 species, bats possess adaptations unique among mammals including powered flight, unexpected longevity given small body size, and extraordinary immunity. Some of the molecular mechanisms underlying these unique adaptations includes DNA repair, metabolism and immunity. However, analyses have been limited to a few divergent l...
Preprint
Full-text available
Comprising more than 1400 species, bats possess adaptations unique among mammals including powered flight, unexpected longevity given small body size, and extraordinary immunity. Some of the molecular mechanisms underlying these unique adaptations includes DNA repair, metabolism and immunity. However, analyses have been limited to a few divergent l...
Preprint
Comprising more than 1400 species, bats possess adaptations unique among mammals including powered flight, unexpected longevity given small body size, and extraordinary immunity. Some of the molecular mechanisms underlying these unique adaptations includes DNA repair, metabolism and immunity. However, analyses have been limited to a few divergent l...
Article
Full-text available
The Zoonomia Project is investigating the genomics of shared and specialized traits in eutherian mammals. Here we provide genome assemblies for 131 species, of which all but 9 are previously uncharacterized, and describe a whole-genome alignment of 240 species of considerable phylogenetic diversity, comprising representatives from more than 80% of...
Article
Telomeres are used increasingly in ecology and evolution as biomarkers for ageing and environmental stress, and are typically measured from DNA extracted from nonlethally sampled blood. However, obtaining blood is not always possible in field conditions and only limited amounts can be taken from small mammals, such as bats, which moreover lack nucl...
Article
Despite a small genome size, bats have comparable diversity of retroviral and non-retroviral endogenous sequences to other mammals. These include Class I and Class II retroviral sequences, foamy viruses, and deltaretroviruses, as well as filovirus, bornavirus, and parvovirus endogenous viral elements. Some of these endogenous viruses are sufficient...
Article
Full-text available
To increase the applicability and success of physiological approaches in conservation plans, conservation physiology should be based on ecologically relevant relationships between physiological markers and environmental variation that can only be obtained from wild populations. Given their integrative and multifaceted aspects, markers of oxidative...
Preprint
Bats hold considerable potential for understanding exceptional longevity because some species can live eight times longer than other mammals of similar size [1]. Estimating their age or longevity is difficult because they show few signs of aging. DNA methylation (DNAm) provides a potential solution given its utility for estimating age [2-4] and lif...
Article
Full-text available
Significance The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of COVID-19, a major pandemic that threatens millions of human lives and the global economy. We identified a large number of mammals that can potentially be infected by SARS-CoV-2 via their ACE2 proteins. This can assist the identification of intermedia...
Article
Full-text available
Bats possess extraordinary adaptations, including flight, echolocation, extreme longevity and unique immunity. High-quality genomes are crucial for understanding the molecular basis and evolution of these traits. Here we incorporated long-read sequencing and state-of-the-art scaffolding protocols¹ to generate, to our knowledge, the first reference-...
Article
Full-text available
Bats are the longest-lived mammals given their body size with majority of species exhibiting exceptional longevity. However, there are some short-lived species that do not exhibit extended lifespans. Here we conducted a comparative genomic and transcriptomic study on long-lived Myotis myotis (maximum lifespan = 37.1 years) and short-lived Molossus...
Article
Full-text available
Megophrys parva is currently considered to be among the most widely dispersed species within the genus, however, recent studies have provided compelling evidence that this species represents a complex of morphologically similar, deeply divergent taxa. The focus of this paper is to take a closer look at species from Northeast India (NEI) and Banglad...
Preprint
Full-text available
The novel coronavirus SARS-CoV-2 is the cause of Coronavirus Disease-2019 (COVID-19). As for other coronaviruses, there is transmission between animals and humans. The main receptor of SARS-CoV-2, angiotensin I converting enzyme-2 (ACE2), is now undergoing extensive scrutiny to understand the routes of transmission and sensitivity in different spec...
Article
Full-text available
Age related telomere shortening is considered a hallmark of the ageing process. However, a recent cross-sectional ageing study of relative telomere length (rTL) in bats failed to detect a relationship between rTL and age in the long-lived genus Myotis (M. myotis and M. bechsteinii), suggesting some other factors are responsible for driving telomere...
Preprint
Full-text available
Bats account for ~20% of all extant mammal species and are considered exceptional given their extraordinary adaptations, including biosonar, true flight, extreme longevity, and unparalleled immune systems. To understand these adaptations, we generated reference-quality genomes of six species representing the key divergent lineages. We assembled the...
Article
Bats are one of the most widespread and speciose orders of mammals. Despite their huge biodiversity, little is known about the natural behaviour and ecology of many species given the difficulty in monitoring and studying them. Pipistrellus kuhlii is one of the most common bats of the Mediterranean biome but its ecology remains ambiguous given the s...
Article
Full-text available
Bats are the longest-lived mammals, given their body size. However, the underlying molecular mechanisms of their extended healthspans are poorly understood. To address this question we carried out an eight-year longitudinal study of ageing in long-lived bats (Myotis myotis). We deep-sequenced ~1.7 trillion base pairs of RNA from 150 blood samples c...
Article
Full-text available
Through their unique use of sophisticated laryngeal echolocation bats are considered sensory specialists amongst mammals and represent an excellent model in which to explore sensory perception. While several studies have shown that the evolution of vision is linked to ecological niche adaptation in other mammalian lineages, this has not yet been fu...
Article
Full-text available
The Megophrys major species group (MMSG) is composed of typically medium to large sized frogs. Within the genus, it is the most geographically widespread clade ranging from the western Himalayas to southern Indochina. In this study, we examined in detail the extent of cryptic diversity within the MMSG-Indian populations based on molecular data (up...
Article
Full-text available
Given their cryptic behaviour, it is often difficult to establish kinship within microchiropteran maternity colonies. This limits understanding of group formation within this highly social group. Following a concerted effort to comprehensively sample a Natterer’s bat (Myotis nattereri) maternity colony over two consecutive summers, we employed micr...
Article
Full-text available
Bats are the only mammals capable of true, powered flight, which drives an extremely high metabolic rate. The "Free Radical Theory of Ageing" (FTRA) posits that a high metabolic rate causes mitochondrial heteroplasmy and the progressive ageing phenotype. Contrary to this, bats are the longest-lived order of mammals given their small size and high m...
Article
A number of limiting factors mean that traditional genome annotation tools either fail or perform sub-optimally when trying to detect coding sequences in poor quality genome assemblies/genome reports. This means that potentially useful data is accessible only to those with specific skills and expertise in assembly and annotation. We present an Asse...
Article
Full-text available
The olfactory receptor (OR) gene families, which govern mammalian olfaction, have undergone extensive expansion and contraction through duplication and pseudogenization. Previous studies have shown that broadly-defined environmental adaptations (e.g terrestrial vs aquatic) are correlated with the number of functional and non-functional OR genes ret...
Article
Full-text available
Understanding aging is a grand challenge in biology. Exceptionally long-lived animals have mechanisms that underpin extreme longevity. Telomeres are protective nucleotide repeats on chromosome tips that shorten with cell division, potentially limiting life span. Bats are the longest-lived mammals for their size, but it is unknown whether their telo...
Article
Full-text available
A changing microbiome has been linked to biological aging in mice and humans, suggesting a possible role of gut flora in pathogenic aging phenotypes. Many bat species have exceptional longevity given their body size and some can live up to ten times longer than expected with little signs of aging. This study explores the anal microbiome of the exce...
Data
Hierarchical clustering of sample data Myotis myotis samples were grouped using hierarchical clustering based on the number of different OTUs found across each individual.
Data
Core microbiome in half of all samples Heatmap displaying the core microbiome across samples (OTUs present in 50% of all samples), highlighting some inter-individual diversity between specific OTUs.
Data
Core microbiome in 80% of all samples Heatmap displaying OTUs present in the majority (80%) of Myotis myotis samples.
Data
Bacteria abundances across samples Bacteria abundances, determined using QIIME and Greengenes for each sample are displayed. Classifications are resolved to genus level where possible.

Network

Cited By