
Emma PuighermanalAutonomous University of Barcelona | UAB · Institute of Neuroscience (INc)
Emma Puighermanal
PhD
About
44
Publications
9,686
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,699
Citations
Introduction
Emma Puighermanal currently works at the Department of Neurosurgery , Stanford University. Emma does research in Neuroscience.
Publications
Publications (44)
As central nervous system (CNS)-related disorders present an increasing cause of global morbidity, mortality, and high pressure on our healthcare system, there is an urgent need for new insights and treatment options. The endocannabinoid system (ECS) is a critical network of endogenous compounds, receptors, and enzymes that contribute to CNS develo...
Travel can induce motion sickness (MS) in susceptible individuals. MS is an evolutionary conserved mechanism caused by mismatches between motion-related sensory information and past visual and motion memory, triggering a malaise accompanied by hypolocomotion, hypothermia, hypophagia, and nausea. Vestibular nuclei (VN) are critical for the processin...
Mutations in mitochondrial energy-producing genes lead to a heterogeneous group of untreatable disorders known as primary mitochondrial diseases (MD). Leigh syndrome (LS) is the most common pediatric MD and is characterized by progressive neuromuscular affectation and premature death. Here, we show that daily cannabidiol (CBD) administration signif...
In mammals, the ability to optimize and select behavioral strategies is a cardinal and conserved psychophysiological feature for maximizing the chances of survival. However, the neural circuits and underlying mechanisms regulating this flexible feature remain yet unsolved. Here, we demonstrate that such optimization relies on dopamine D2 receptors...
The cerebellum, a primary brain structure involved in the control of sensorimotor tasks, also contributes to higher cognitive functions including reward, emotion and social interaction. Although the regulation of these behaviors has been largely ascribed to the monoaminergic system in limbic regions, the contribution of cerebellar dopamine signalin...
The ability to efficiently switch from one defensive strategy to another maximizes an animals chance of survival. Here, we demonstrate that the selection of active defensive behaviors requires the coordinated activation of dopamine D2 receptor (D2R) signaling within the central extended amygdala (EA) comprising the nucleus accumbens, the oval bed n...
Prescription stimulants, such as d‐amphetamine or methylphenidate are used to treat suffering from attention‐deficit hyperactivity disorder (ADHD). They potently release dopamine (DA) and norepinephrine (NE) and cause phosphorylation of the α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid (AMPA) receptor subunit GluA1 in the striatum. Whether o...
Prescription stimulants, such as d-amphetamine or methylphenidate, are potent dopamine (DA) and norepinephrine (NE) releasers used to treat children and adults diagnosed for attention-deficit/hyperactivity disorder (ADHD). Although increased phosphorylation of the AMPA receptor subunit GluA1 at Ser845 (pS845-GluA1) in the striatum has been identifi...
Background
As an integrator of molecular pathways, mTOR has been associated with diseases including neurodevelopmental, psychiatric and neurodegenerative disorders as autism, schizophrenia, and Huntington’s disease. An important brain area involved in all these diseases is the striatum. However, the mechanisms behind how mTOR is involved in striata...
Action control is a key brain function determining the survival of animals in their environment. In mammals, neurons expressing dopamine D2 receptors (D2R) in the dorsal striatum (DS) and the nucleus accumbens (Acb) jointly but differentially contribute to the fine regulation of movement. However, their region-specific molecular features are presen...
The cerebellum, a primary center involved in the control of sensorimotor tasks, also contributes to higher cognitive functions including reward, emotion and social interaction. The regulation of these behaviors has been largely ascribed to the monoaminergic system in limbic regions. However, the contribution of cerebellar dopamine signaling in the...
As an integrator of molecular pathways, mTOR has been associated with diseases including neurodevelopmental, psychiatric and neurodegenerative disorders as autism, schizophrenia, and Huntington’s disease. An important brain area involved in all these diseases is the striatum. However, the mechanisms behind how mTOR is involved in striatal physiolog...
Dopamine signaling is a crucial part of the brain reward system and can affect feeding behavior. Dopamine receptors are also expressed in the hypothalamus, which is known to control energy metabolism in peripheral tissues. Here we show that pharmacological or chemogenetic stimulation of dopamine receptor 2 (D2R) expressing cells in the lateral hypo...
Hevin, also known as SPARC-like 1, is a member of the secreted protein acidic and rich in cysteine family of matricellular proteins, which has been implicated in neuronal migration and synaptogenesis during development. Unlike previously characterized matricellular proteins, hevin remains strongly expressed in the adult brain in both astrocytes and...
The striatum integrates dopamine-mediated reward signals to generate appropriate behavior in response to glutamate-mediated sensory cues. Such associative learning relies on enduring neural plasticity in striatal GABAergic spiny projection neurons which, when altered, can lead to the development of a wide variety of pathological states. Considerabl...
Addictive drugs trigger persistent synaptic and structural changes in the neuronal reward circuits that are thought to underlie the development of drug-adaptive behavior. While transcriptional and epigenetic modifications are known to contribute to these circuit changes, accumulating evidence indicates that altered mRNA translation is also a key mo...
Translational control in the nervous system is important. Many physiological processes in the nervous system depend on accurate control of the proteome, which that is mediated through protein synthetic mechanisms; and thus, the nervous system is very sensitive to dysregulation of translational control. The Oxford Handbook of Neuronal Protein Synthe...
The phosphorylation of the ribosomal protein S6 (rpS6) is widely used to track neuronal activity. Although it is generally assumed that rpS6 phosphorylation has a stimulatory effect on global protein synthesis in neurons, its exact biological function remains unknown. By using a phospho-deficient rpS6 knockin mouse model, we directly tested the rol...
Fragile X syndrome (FXS) is a genetic disorder due to the silencing of the Fmr1 gene, causing intellectual disability, seizures, hyperactivity, and social anxiety. All these symptoms result from the loss of expression of the RNA binding protein fragile X mental retardation protein (FMRP), which alters the neurodevelopmental program to abnormal wiri...
Cannabis affects cognitive performance through the activation of the endocannabinoid system, and the molecular mechanisms involved in this process are poorly understood. Using the novel object-recognition memory test in mice, we found that the main psychoactive component of cannabis, delta9-tetrahydrocannabinol (THC), alters short-term object-recog...
In the hippocampus, a functional role of dopamine D1 receptors (D1R) in synaptic plasticity and memory processes has been suggested by electrophysiological and pharmacological studies. However, comprehension of their function remains elusive due to the lack of knowledge on the precise localization of D1R expression among the diversity of interneuro...
Repeated psychostimulant exposure induces persistent gene expression modifications that contribute to enduring changes in striatal GABAergic spiny projecting neurons (SPNs). However, it remains unclear whether changes in the control of mRNA translation are required for the establishment of these durable modifications. Here we report that repeated e...
Since the discovery of the phosphorylation of the 40S ribosomal protein S6 (rpS6) about four decades ago, much effort has been made to uncover the molecular mechanisms underlying the regulation of this post-translational modification. In the field of neuroscience, rpS6 phosphorylation is commonly used as a readout of the mammalian target of rapamyc...
Ribosomal protein S6 (rpS6), a component of the 40S ribosomal subunit, is phosphorylated on several residues in response to numerous stimuli. Although commonly used as a marker for neuronal activity, its upstream mechanisms of regulation are poorly studied and its role in protein synthesis remains largely debated. Here, we demonstrate that the psyc...
Increasing evidences suggest that dopamine facilitates the encoding of novel memories by the hippocampus. However, the role of dopamine D2 receptors (D2R) in such regulations remains elusive due to the lack of the precise identification of hippocampal D2R-expressing cells. To address this issue, mice expressing the ribosomal protein Rpl22 tagged wi...
Ecstasy is a drug that is usually consumed by young people at the weekends and frequently, in combination with cannabis. In the present study we have investigated the long-term effects of administering increasing doses of delta-9-tetrahydrocannabinol [THC; 2.5, 5, 10 mg/kg; i.p.] from postnatal day (pnd) 28 to 45, alone and/or in conjunction with 3...
Chronic cannabis exposure can lead to cerebellar dysfunction in humans, but the neurobiological mechanisms involved remain incompletely understood. Here, we found that in mice, subchronic administration of the psychoactive component of cannabis, delta9-tetrahydrocannabinol (THC), activated cerebellar microglia and increased the expression of neuroi...
The potential therapeutic benefits of cannabinoid compounds have raised interest in understanding the molecular mechanisms that underlie cannabinoid-mediated effects. We previously showed that the acute amnesic-like effects of delta9-tetrahydrocannabinol (THC) were prevented by the subchronic inhibition of the mammalian target of rapamycin (mTOR) p...
Exogenous cannabinoids, such as delta9-tetrahydrocannabinol (THC), as well as the modulation of endogenous cannabinoids, affect cognitive function through the activation of cannabinoid receptors. Indeed, these compounds modulate a number of signalling pathways critically implicated in the deleterious effect of cannabinoids on learning and memory. T...
Delta9-tetrahydrocannabinol (THC), the main psychoactive component in Cannabis sativa preparations, modulates several intracellular signaling pathways in the mouse brain after acute systemic administration. Some of these molecular events are related with its amnesic-like effect as measured in two cognitive tests. Using biochemical, pharmacological,...
Cannabinoid agonists are potential therapeutic agents because of their antinociceptive and anxiolytic-like effects, although an important caveat to their use is the possible adverse responses related to memory impairment. An alternative approach to circumvent this limitation consists of enhancing the concentration of the endocannabinoids anandamide...
Cognitive impairment is one of the most important negative consequences associated with cannabis consumption. We found that CB1 cannabinoid receptor (CB1R) activation transiently modulated the mammalian target of rapamycin (mTOR)/p70S6K pathway and the protein synthesis machinery in the mouse hippocampus, which correlated with the amnesic propertie...
Delta9-tetrahydrocannabinol (THC), the main psychoactive component in Cannabis sativa preparations, exerts its central effects mainly through the G-protein coupled receptor CB1, a component of the endocannabinoid system. Several in vitro and in vivo studies have reported neuroprotective effects of cannabinoids in excitotoxicity and neurodegeneratio...