Emily Burdfield-Steel

Emily Burdfield-Steel
University of Amsterdam | UVA · Institute of Systematics and Population Biology

PhD

About

46
Publications
14,853
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
482
Citations
Introduction
I am interested in how intra- and inter-specific species communication shapes evolutionary processes. My areas of study are the evolution of mating communication systems in response to reproductive interference and the role of chemical defence in aposematic insect populations.
Additional affiliations
January 2019 - present
University of Amsterdam
Position
  • Professor (Assistant)
Description
  • Investigating the evolution of mating communication systems in response to reproductive interference and the role of chemical defence in aposematic insect populations.
March 2014 - December 2018
University of Jyväskylä
Position
  • PostDoc Position
Description
  • Variation in chemical protection in the wood tiger moth
September 2011 - April 2014
University of St Andrews
Position
  • PhD Student

Publications

Publications (46)
Preprint
Chemical defences often vary within and between populations both in quantity and quality, which is puzzling if prey survival is dependent on the strength of the defence. We investigated the within- and between-population variability in chemical defence of the wood tiger moth (Arctia plantaginis). The major components of its defences, SBMP (2secbuty...
Article
Full-text available
Sexual signals are important in speciation, but understanding their evolution is complex as these signals are often composed of multiple, genetically interdependent components. To understand how signals evolve, we thus need to consider selection responses in multiple components and account for the genetic correlations among components. One intrigui...
Preprint
Full-text available
Sexual signals are important in speciation, but understanding their evolution is complex as these signals are often composed of multiple, genetically interdependent components. To understand how signals evolve, we thus need to consider selection responses in multiple components and account for the genetic correlations among components. One intrigui...
Article
Sex pheromones in many insect species are important species-recognition signals that attract conspecifics and inhibit attraction between heterospecifics; therefore, sex pheromones have predominantly been considered to evolve due to interactions between species. Recent research, however, is uncovering roles for these signals in mate choice, and that...
Preprint
Full-text available
Sexual signals are important in speciation, but understanding their evolution is complex as these signals are often composed of multiple, genetically interdependent components. To understand how signals evolve, we thus need to consider selection responses in multiple components and account for the genetic correlations among components. One intrigui...
Preprint
Full-text available
Background Under strong sexual selection, certain species evolve distinct intrasexual, alternative reproductive tactics (ARTs). In many cases, ARTs can be viewed as environmentally cued threshold traits, such that ARTs coexist if their relative fitness alternates over the environmental cue gradient. Surprisingly, the chemical ecology of ARTs has be...
Article
Sex pheromones in many insect species are important species-recognition signals that attract conspecifics and inhibit attraction between heterospecifics; therefore, sex pheromones have predominantly been considered to evolve due to interactions between species. Recent research, however, is uncovering roles for these signals in mate choice, and that...
Article
Full-text available
Despite the fact their coloration functions as an aposematic signal, and is thus expected to be under stabilizing selection, hibiscus harlequin bugs (Tectocoris diophthalmus) show an impressive level of variation in their iridescent coloration both within and between populations. To date the heritability of coloration in this species remains unknow...
Article
Full-text available
Polymorphic warning signals in aposematic systems are enigmatic because predator learning should favor the most common form, creating positive frequency-dependent survival. However, many populations exhibit variation in warning signals. There are various selective mechanisms that can counter positive frequency-dependent selection and lead to tempor...
Article
Full-text available
Sexual reproduction places constraints on both the place and time in which individuals can reproduce, as the sperm and ova need to meet in a certain location within a specific time frame for successful reproduction [...]
Article
Full-text available
Warning signals are predicted to develop signal monomorphism via positive frequency‐dependent selection (+FDS) albeit many aposematic systems exhibit signal polymorphism. To understand this mismatch, we conducted a large‐scale predation experiment in four countries, among which the frequencies of hindwing warning coloration of the aposematic moth,...
Article
Full-text available
Insects live in a dangerous world and may fall prey to a wide variety of predators, encompassing multiple taxa. As a result, selection may favour defences that are effective against multiple predator types, or target-specific defences that can reduce predation risk from particular groups of predators. Given the variation in sensory systems and hunt...
Article
Full-text available
To understand how variation in warning displays evolves and is maintained, we need to understand not only how perceivers of these traits select color and toxicity but also the sources of the genetic and phenotypic variation exposed to selection by them. We studied these aspects in the wood tiger moth Arctia plantaginis, which has two locally co-occ...
Preprint
Full-text available
Warning signals are predicted to develop signal monomorphism via positive frequency-dependent selection (+FDS) albeit many aposematic systems exhibit signal polymorphism. To understand this mismatch, we conducted a large-scale predation experiment in four locations, among which the frequencies of hindwing warning coloration of aposematic Arctia pla...
Data
Table S1. Examples of warning‐colour variation described in existing literature.
Article
Full-text available
Allocation to different components of defence has been suggested as an explanation for the existence of multiple aposematic morphs in a single population. We tested whether there are trade-offs between warning colouration and chemical defence or whether these have an additive effect when combined, using blue tits (Cyanistes caeruleus) as predators...
Article
Full-text available
Color variation in aposematic (conspicuous and defended) prey should be suppressed by frequency-based selection by predators. However selection of color traits is confounded by the fact that coloration also plays an important role in many biological processes, and warning coloration may be constrained by biotic or abotic factors. Temperature, in pa...
Article
Full-text available
Aposematic theory has historically predicted that predators should select for warning signals to converge on a single form, as a result of frequency‐dependent learning. However, widespread variation in warning signals is observed across closely related species, populations and, most problematically for evolutionary biologists, among individuals in...
Article
Full-text available
Chemically defended animals often display conspicuous color patterns that predators learn to associate with their unprofitability and subsequently avoid. Such animals (i.e., aposematic), deter predators by stimulating their visual and chemical sensory channels. Hence, aposematism is considered to be "multimodal." The evolution of warning signals (a...
Article
Full-text available
Research shows that gender inequality is still a major issue in academic science, yet academic societies may serve as underappreciated and effective avenues for promoting female leadership. That is, society membership is often self-selective, and board positions are elected (with a high turnover compared to institutions)—these characteristics, amon...
Data
Database. All Raw Data collected from each society included in the study. (XLSX)
Data
Natural model averages for variables in predicting the proportion of females on society boards. (DOCX)
Data
Natural model averages for variables in predicting the presence of a female executive on society boards. (DOCX)
Data
Natural model averages for variables in predicting the number of female leaders on society boards. (DOCX)
Article
Full-text available
Many animals protect themselves from predation with chemicals, both self-made or sequestered from their diet. The potential drivers of the diversity of these chemicals have been long studied, but our knowledge of these chemicals and their acquisition mode is heavily based on specialist herbivores that sequester their defenses. The wood tiger moth (...
Article
Full-text available
Animals have evolved different defensive strategies to survive predation, among which chemical defences are particularly widespread and diverse. Here we investigate the function of chemical defence diversity, hypothesizing that such diversity has evolved as a response to multiple enemies. The aposematic wood tiger moth (Arctia plantaginis) displays...
Article
Full-text available
Reproductive interference occurs when members of different species engage in reproductive interactions, leading to a fitness cost to one or both actors. 2. These interactions can arise through signal interference (‘signal-jamming’), disrupted mate searching, heterospecific rivalry, mate choice errors, or misplaced courtship, mating attempts or copu...
Article
Full-text available
There have been many potential explanations put forward as to why polyandry often persists despite the multiple costs it can inflict on females. One such explanation is avoidance of costs associated with mating with genetically incompatible males. Genetic incompatibility can be thought of as a spectrum from individuals that are genetically too simi...
Article
Full-text available
It is now clear in many species that male and female genital evolution has been shaped by sexual selection. However, it has historically been difficult to confirm correlations between morphology and fitness, as genital traits are complex and manipulation tends to impair function significantly. In this study,we investigate the functional morphology...
Article
Full-text available
Reproductive interference arises when individuals of one species engage in reproductive activities with individuals of another, leading to fitness costs in one or both species. Reproductive interference (RI) therefore has two components. First, there must be mis-directed mating interactions. Second, there must be costs associated with these mis-dir...
Article
Full-text available
Mating strategy is often informed by social context. However, information on social environment may be sensitive to interference by nearby heterospecifics, a process known as reproductive interference (RI). When heterospecific individuals are present in the environment, failures in species discrimination can lead to sub-optimal mating behaviours, s...
Article
Full-text available
The Lygaeidae (sensu lato) are a highly successful family of true bugs found worldwide, yet many aspects of their ecology and evolution remain obscure or unknown. While a few species have attracted considerable attention as model species for the study of insect physiology, it is only relatively recently that biologists have begun to explore aspects...
Article
Full-text available
There is a long-standing debate within the field of sexual selection regarding the potential projection of stereotypical sex roles onto animals by researchers. It has been argued that this anthropomorphic view may be hampering research in this area, for example by prioritizing the study of male sexual adaptations over female ones. We investigated h...

Network

Cited By

Projects

Projects (2)
Archived project
To characterise the chemical defenses of the wood tiger moth, and their variation both within and between populations.