Emily S Bernhardt

Emily S Bernhardt
Duke University | DU · Department of Biology

Ph.D. Ecology and Evolutionary Biology, Cornell University

About

363
Publications
99,966
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
29,502
Citations
Introduction
I am a biogeochemist and ecosystem ecologist whose research is focused on understanding how human accelerated environmental change (global warming, rising CO2, urbanization) alters the biogeochemical cycling of elements within watersheds.
Additional affiliations
August 1996 - May 2001
August 1996 - May 2001
Cornell University
Position
  • PhD Student
August 2002 - August 2004
University of Maryland, College Park
Position
  • PostDoc Position
Education
August 1996 - May 2001
Cornell University
Field of study
  • Ecology and Evolutionary Biology
August 1992 - May 1996

Publications

Publications (363)
Article
Full-text available
Salt-sensitive trees in coastal wetlands are dying as forests transition to marsh and open water at a rapid pace. Forested wetlands are experiencing repeated saltwater exposure due to the frequency and severity of climatic events, sea-level rise, and human infrastructure expansion. Understanding the diverse responses of trees to saltwater exposure...
Article
Full-text available
Modeling and sensor innovations in the last decade have enabled routine and continuous estimation of daily gross primary productivity (GPP) for rivers. Here, we generate and evaluate within and across year variability for 59 US rivers for which we have compiled a 14‐yr time series of daily GPP estimates. River productivity varied widely across (med...
Article
Full-text available
Salinization threatens freshwater resources and freshwater‐dependent wetlands in coastal areas worldwide. Many research efforts focus on gradual or chronic salinization, but the phenomenon is also episodic in nature, particularly in small streams and artificial waterways. In surface waters, salinization events may coincide with storms, droughts, wi...
Article
Full-text available
Methane (CH4) is a potent greenhouse gas emitted by archaea in anaerobic environments such as wetland soils. Tidal freshwater wetlands are predicted to become increasingly saline as sea levels rise due to climate change. Previous work has shown that increases in salinity generally decrease CH4 emissions, but with considerable variation, including i...
Article
Full-text available
Artisanal and small-scale gold mining (ASGM) is the largest global anthropogenic mercury (Hg) source and is widespread in the Peruvian Amazon. Consuming Hg-laden foods exposes people to this potent neurotoxin. While numerous studies have examined fish Hg content near ASGM, Hg accumulation in other commonly consumed animal-and plant-based foods from...
Article
Full-text available
Wetlands are integral to the global carbon cycle, serving as both a source and a sink for organic carbon. Their potential for carbon storage will likely change in the coming decades in response to higher temperatures and variable precipitation patterns. We characterized the dissolved organic carbon (DOC) and dissolved organic matter (DOM) compositi...
Preprint
Full-text available
Methane (CH 4 ) is a potent greenhouse gas emitted by archaea in anaerobic environments such as wetland soils. Tidal freshwater wetlands are predicted to become increasingly saline as sea levels rise due to climate change. Previous work has shown that increases in salinity generally decrease CH 4 emissions, but with considerable variation, includin...
Article
Full-text available
Quantifying continuous discharge can be difficult, especially for nascent monitoring efforts, due to the challenges of establishing gauging locations, sensor protocols, and installations. Some continuous discharge series generated by the National Ecological Observatory Network (NEON) during its pre- and early-operational phases (2015–present) are m...
Preprint
Streams and rivers export dissolved materials and eroded sediments from the watersheds they drain. Much can be learned about rivers and their watersheds by measuring the magnitude, timing and form of these exports. Such watershed load datasets are used to gain fundamental understanding of watershed ecosystems as well as to assess water quality and...
Article
Full-text available
Salinization of coastal freshwater wetlands is an increasingly common and widespread phenomenon resulting from climate change. The ecosystem consequences of added salinity are poorly constrained and highly variable across prior observational and experimental studies. We added 1.8 metric tons of marine salts to replicated 200 m² plots within a resto...
Article
Full-text available
Nitrogen (N) is a critical element in many ecological and biogeochemical processes in forest ecosystems. Cycling of N is sensitive to changes in climate, atmospheric carbon dioxide (CO2) concentrations, and air pollution. Streamwater nitrate draining a forested ecosystem can indicate how an ecosystem is responding to these changes. We observed a pu...
Article
Full-text available
Environmental mercury (Hg) contamination of the global tropics outpaces our understanding of its consequences for biodiversity. Knowledge gaps of pollution exposure could obscure conservation threats in the Neotropics: a region that supports over half of the world's species, but faces ongoing land-use change and Hg emission via artisanal and small-...
Article
We rarely consider light limitation in ecosystem productivity, yet light limitation is a major constraint on river autotrophy. Because the light that reaches benthic autotrophs must first pass through terrestrial vegetation and an overlying water column that can be loaded with sediments or colored organic material, there is strong selection for riv...
Article
Gold nanoparticles (AuNPs) are used as models to track and predict NP fates and effects in ecosystems. Previous work found that aquatic macrophytes and their associated biofilm primarily drove the fate of AuNPs within aquatic ecosystems and that seasonality was an important abiotic factor in the fate of AuNPs. Therefore, the present work aims to st...
Preprint
Full-text available
Streamflow, or discharge, is an essential measure in the study of rivers and streams. However, quantifying continuous discharge can be difficult, especially for nascent monitoring efforts, due to the challenges of establishing gauging locations, sensor protocols, and installations. Here, we investigate the potential for both simple and complex mode...
Article
Freshwater ecosystems are exposed to engineered nanoparticles (NPs) through discharge from wastewater and agricultural runoff. We conducted a 9-month mesocosm experiment to examine the combined effects of chronic NP additions on insect emergence and insect-mediated contaminant flux to riparian spiders. Two NPs (copper, gold, plus controls) were cro...
Article
Applying World Heritage status to highly valuable environmental records would spotlight the vital insights they provide into how Earth is changing and would ensure their longevity and accessibility.
Article
Full-text available
Documenting trends of stream macroinvertebrate biodiversity is challenging because biomonitoring often has limited spatial, temporal, and taxonomic scopes. We analyzed biodiversity and composition of assemblages of >500 genera, spanning 27 years, and 6131 stream sites across forested, grassland, urban, and agricultural land uses throughout the Unit...
Article
Full-text available
Abstract The US Federal Government supports hundreds of watershed monitoring efforts from which solute fluxes can be calculated. Although instrumentation and methods vary between studies, the data collected and their motivating questions are remarkably similar. Nevertheless, little effort toward their compilation has previously been made. The Macro...
Article
Full-text available
Accurately estimating stream discharge is crucial for many ecological, biogeochemical, and hydrologic analyses. As of September 2022, The National Ecological Observatory Network (NEON) provided up to 5 years of continuous discharge estimates at 28 streams across the United States. NEON created rating curves at each site in a Bayesian framework, par...
Article
River networks represent the largest biogeochemical nexus between the continents, ocean and atmosphere. Our current understanding of the role of rivers in the global carbon cycle remains limited, which makes it difficult to predict how global change may alter the timing and spatial distribution of riverine carbon sequestration and greenhouse gas em...
Article
Full-text available
Streams and rivers are major sources of greenhouse gases (GHGs) to the atmosphere, as carbon and nitrogen are converted and outgassed during transport. Although our understanding of drivers of individual GHG fluxes has improved with numerous site-specific studies and global-scale compilations, our ability to parse out interrelated physical and biog...
Article
Full-text available
Freshwater ecosystems are globally significant sources of greenhouse gases (GHGs) to the atmosphere. Previous work has indicated that GHG flux in headwater streams is dominated by terrestrially derived gases, with in situ production limited by short organic matter residence times and high dissolved oxygen concentrations due to turbulent reaeration....
Preprint
The U.S. Federal Government supports hundreds of watershed ecosystem monitoring efforts from which solute fluxes can be calculated. While details of instrumentation and sampling methods vary across these studies, the types of data collected and the questions that motivate their analysis are remarkably similar. Nevertheless, little effort toward the...
Article
Full-text available
Nonpoint source urban nutrient loading into streams and receiving water bodies is widely recognized as a major environmental management challenge. A dominant research and management paradigm assumes that loading primarily derives from elevated stormwater. However, baseflow can account for a large portion of total loading, especially for low develop...
Article
Full-text available
Creative solutions are needed to sustain the diversity of coastal wetland ecosystems as sea levels rise.
Article
Full-text available
Coastal forested wetlands support many endemic species, sequester substantial carbon stocks, and have been reduced in extent due to historic drainage and agricultural expansion. Many of these unique coastal ecosystems have been drained, while those that remain are now threatened by saltwater intrusion and sea level rise in hydrologically modified c...
Article
Full-text available
Artisanal and small‐scale gold mining (ASGM) is the primary global source of anthropogenic mercury (Hg) emissions and a large source of landscape change. ASGM occurs throughout the world, including in the Peruvian Amazon. This data set contains measurements of surface water, precipitation, throughfall, leaves, sediment, soil, and air samples from a...
Article
Full-text available
The effects of sea level rise and coastal saltwater intrusion on wetland plants can extend well above the high-tide line due to drought, hurricanes, and groundwater intrusion. Research has examined how coastal salt marsh plant communities respond to increased flooding and salinity, but more inland coastal systems have received less attention. The a...
Article
Full-text available
Significance This paper provides a comprehensive analysis of the annual patterns of ecosystem productivity and respiration for more than 200 rivers, comparing the magnitude and phenology of river metabolic regimes with annual estimates from more than 150 terrestrial ecosystems. Although mean annual temperature and mean annual precipitation explain...
Article
Full-text available
Mercury emissions from artisanal and small-scale gold mining throughout the Global South exceed coal combustion as the largest global source of mercury. We examined mercury deposition and storage in an area of the Peruvian Amazon heavily impacted by artisanal gold mining. Intact forests in the Peruvian Amazon near gold mining receive extremely high...
Article
Full-text available
A variety of antibiotics are ubiquitous in all freshwater ecosystems that receive wastewater. A wide variety of antibiotics have been developed to kill problematic bacteria and fungi through targeted application, and their use has contributed significantly to public health and livestock management. Unfortunately, a substantial fraction of the antib...
Article
Full-text available
Salinization of freshwater ecosystems impacts carbon cycling, a particular concern for coastal wetlands, which are important agents of carbon sequestration. Previous experimental work using salt additions as a proxy for sea level rise, reveals widely divergent effects of salt on soil carbon processes. We performed a laboratory salt addition experim...
Article
With advances in eDNA metabarcoding, environmental microbiomes are increasingly used as cost-effective tools for monitoring ecosystem health. Stream ecosystems in Central Appalachia, heavily impacted by alkaline drainage from mountaintop coal mining, present ideal opportunities for biomonitoring using stream microbiomes, but the structural and func...
Article
Aquatic-terrestrial contaminant transport via emerging aquatic insects has been studied across contaminant classes and aquatic ecosystems, but few studies have quantified the magnitude of these insect-mediated contaminant fluxes, limiting our understanding of their drivers. Using a recent conceptual model, we identified watershed mining extent, set...
Preprint
Full-text available
The effects of sea level rise and coastal saltwater intrusion on wetland plants can extend well above the high-tide line due to drought, hurricanes, and groundwater intrusion. Research has examined how coastal salt marsh plant communities respond to increased flooding and salinity, but more inland coastal systems have received less attention. The a...
Article
Current land‐use classifications used to assess urbanization effects on stream water quality date back to the 1980s when limited information was available to characterize watershed attributes that mediate non‐point source pollution. With high resolution remote sensing and widely used GIS tools, there has been a vast increase in the availability and...
Article
Full-text available
The rivers of Appalachia (United States) are among the most biologically diverse freshwater ecosystems in the temperate zone and are home to numerous endemic aquatic organisms. Throughout the Central Appalachian ecoregion, extensive surface coal mines generate alkaline mine drainage that raises the pH, salinity, and trace element concentrations in...
Article
Full-text available
Mountaintop mining, like all forms of surface mining, fundamentally alters the landscape to extract resources that lie 10-100 ms below the land surface. Despite these deep, critical zone alterations, post-mining landscapes are required by United States law to be restored to ecosystems of equal or greater value than the ones they replace. Yet, remot...
Article
Ecosystems constantly adjust to altered biogeochemical inputs, changes in vegetation and climate, and previous physical disturbances. Such disturbances create overlapping ‘biogeochemical legacies’ affecting modern nutrient mass balances. To understand how “legacies” affected watershed-ecosystem biogeochemistry during five decades of studies within...
Article
Mercury (Hg), a potent neurotoxic element, can biomagnify through food webs once converted into methylmercury (MeHg). Some studies have found that selenium (Se) exposure may reduce MeHg bioaccumulation and toxicity, though this pattern is not universal. Se itself can also be toxic at elevated levels. We experimentally manipulated the relative conce...
Article
Full-text available
Climate change is driving ecological shifts in coastal regions of the world, where low topographic relief makes ecosystems particularly vulnerable to sea‐level rise, salinization, storm surge, and other effects of global climate change. The consequences of rising water tables and salinity can penetrate well inland, and lead to particularly dramatic...
Article
Deoxygenation of aquatic ecosystems is a key feature of the Anthropocene. Studies are increasingly reporting low oxygen conditions in rivers and headwater streams even in the absence of high nutrient loads. We examined the frequency of river hypoxia (dissolved oxygen [DO] < 50% saturated in O2) in the North Carolina Piedmont by examining monitoring...
Article
The Hubbard Brook Experimental Forest (HBEF) was established in 1955 by the U.S. Department of Agriculture, Forest Service out of concerns about the effects of logging increasing flooding and erosion. To address this issue, within the HBEF hydrological and micrometeorological monitoring was initiated in small watersheds designated for harvesting ex...
Article
Stream solute monitoring has produced many insights into ecosystem and Earth system functions. Although new sensors have provided novel information about the fine‐scale temporal variation of some stream water solutes, we lack adequate sensor technology to gain the same insights for many other solutes. We used two machine learning algorithms – Suppo...
Article
Full-text available
Artisanal and small-scale gold mining (ASGM) is the largest global source of anthropogenic mercury emissions. However, little is known about how effectively mercury released from ASGM is converted into the bioavailable form of methylmercury in ASGM-altered landscapes. Through examination of ASGM-impacted river basins in Peru, we show that lake area...
Article
Full-text available
The increasing availability of high‐frequency freshwater ecosystem metabolism data provides an opportunity to identify links between metabolic regimes, as gross primary production and ecosystem respiration patterns, and consumer energetics with the potential to improve our current understanding of consumer dynamics (e.g., population dynamics, commu...
Article
Full-text available
Coal is naturally enriched in trace elements, including mercury (Hg) and selenium (Se). Alkaline mine drainage from mountaintop mining valley fill (MTM-VF)—the dominant form of surface coal mining in Appalachia, USA—releases large quantities of Se into streams draining mined catchments, resulting in elevated bioaccumulation of Se in aquatic and rip...
Article
Freshwater ecosystems are exposed to engineered nanoparticles through municipal and industrial wastewater-effluent discharges and agricultural non-point source runoff. Because previous work has shown that engineered nanoparticles from these sources can accumulate in freshwater algal assemblages, we hypothesized that nanoparticles may affect the bio...
Article
Mercury (Hg) is a pervasive environmental pollutant and contaminant of concern for both people and wildlife that has been a focus of environmental remediation efforts for decades. A growing body of literature has motivated calls for revising Hg consumption advisories to co-consider selenium (Se) levels in seafood and implies that remediating aquati...
Article
Full-text available
Selenium is highly elevated in Appalachian streams and stream organisms that receive alkaline mine drainage from mountaintop removal coal mining compared to unimpacted streams in the region. Adult aquatic insects can be important vectors of waterborne contaminants to riparian food webs, yet pathways of Se transport and exposure of riparian organism...