Emilio Andreozzi

Emilio Andreozzi
University of Naples Federico II | UNINA · Department of Electrical Engineering and Information Technology

PhD in Information Technology and Electrical Engineering

About

47
Publications
26,258
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
782
Citations

Publications

Publications (47)
Article
Full-text available
This paper presents forcecardiography (FCG), a novel technique to measure local, cardiac-induced vibrations onto the chest wall. Since the 19th century, several techniques have been proposed to detect the mechanical vibrations caused by cardiovascular activity, the great part of which was abandoned due to the cumbersome instrumentation involved. Th...
Article
Full-text available
Computational models of ion channels represent the building blocks of conductance-based, biologically inspired models of neurons and neural networks. Ion channels are still widely modelled by means of the formalism developed by the seminal work of Hodgkin and Huxley (HH), although the electrophysiological features of the channels are currently know...
Article
Full-text available
Continuous monitoring of pacemaker activity can provide valuable information to improve patients' follow-up. Concise information is stored in some types of pacemakers, whereas ECG can provide more detailed information, but requires electrodes and cannot be used for continuous monitoring. This study highlights the possibility of a continuous monitor...
Article
Full-text available
Measurement of muscle contraction is mainly achieved through electromyography (EMG) and is an area of interest for many biomedical applications, including prosthesis control and human machine interface. However, EMG has some drawbacks, and there are also alternative methods for measuring muscle activity, such as by monitoring the mechanical variati...
Article
Full-text available
In this paper we propose a new algorithm for real-time filtering of video sequences corrupted by Poisson noise. The algorithm provides effective denoising (in some cases overcoming the filtering performances of state-of-the-art techniques), is ideally suited for hardware implementation, and can be implemented on a small field-programmable gate arra...
Article
Full-text available
Long-term patient monitoring is required for detection of episodes of atrial fibrillation, one of the most widespread cardiac pathologies. Today, the most used non-invasive technique is Holter electrocardiographic (ECG) monitoring, which can often prove ineffective because of the short duration of recordings (e.g., one day). Other techniques such a...
Article
Full-text available
Cardiac auscultation is an essential part of physical examination and plays a key role in the early diagnosis of many cardiovascular diseases. The analysis of phonocardiography (PCG) recordings is generally based on the recognition of the main heart sounds, i.e., S1 and S2, which is not a trivial task. This study proposes a method for an accurate r...
Article
Full-text available
Auscultation of heart sounds is important to perform cardiovascular assessment. External noises may limit heart sound perception. In addition, heart sound bandwidth is concentrated at very low frequencies, where the human ear has poor sensitivity. Therefore, the acoustic perception of the operator can be significantly improved by shifting the heart...
Article
Full-text available
Cardio-mechanical monitoring techniques, such as Seismocardiography (SCG) and Gyrocardiography (GCG), have received an ever-growing interest in recent years as potential alternatives to Electrocardiography (ECG) for heart rate monitoring. Wearable SCG and GCG devices based on lightweight accelerometers and gyroscopes are particularly appealing for...
Article
Full-text available
Objective: The auscultatory technique is still considered the most accurate method for non-invasive blood pressure (NIBP) measurement, although its reliability depends on operator's skills. Various methods for automated Korotkoff sounds analysis have been proposed for reliable estimation of systolic (SBP) and diastolic (DBP) blood pressures. To th...
Article
Full-text available
A heartbeat generates tiny mechanical vibrations, mainly due to the opening and closing of heart valves. These vibrations can be recorded by accelerometers and gyroscopes applied on a subject’s chest. In particular, the local 3D linear accelerations and 3D angular velocities of the chest wall are referred to as seismocardiograms (SCG) and gyrocardi...
Article
Full-text available
Electromyography (EMG) is widely used in human–machine interfaces (HMIs) to measure muscle contraction by computing the EMG envelope. However, EMG is largely affected by powerline interference and motion artifacts. Boards that directly provide EMG envelope, without denoising the raw signal, are often unreliable and hinder HMIs performance. Sophisti...
Article
Full-text available
Cardiac monitoring can be performed by means of an accelerometer attached to a subject’s chest, which produces the Seismocardiography (SCG) signal. Detection of SCG heartbeats is commonly carried out by taking advantage of a simultaneous electrocardiogram (ECG). SCG-based long-term monitoring would certainly be less obtrusive and easier to implemen...
Article
Full-text available
The cardiac function is influenced by respiration. In particular, various parameters such as cardiac time intervals and the stroke volume are modulated by respiratory activity. It has long been recognized that cardio-respiratory interactions modify the morphology of cardio-mechanical signals, e.g., phonocardiogram, seismocardiogram (SCG), and balli...
Article
Full-text available
Piezoresistive or piezoelectric force sensors are widely available today. These sensors are preferred to loadcells because of their extremely reduced size, slimness, and low cost, which allow their easy inclusion in a large variety of devices including wearables. In particular, many applications are devoted to monitoring human body movements, such...
Article
Full-text available
Pulse waves (PWs) are mechanical waves that propagate from the ventricles through the whole vascular system as brisk enlargements of the blood vessels’ lumens, caused by sudden increases in local blood pressure. Photoplethysmography (PPG) is one of the most widespread techniques employed for PW sensing due to its ability to measure blood oxygen sat...
Article
Full-text available
Forcecardiography (FCG) is a novel technique that records the weak forces induced on the chest wall by cardio-respiratory activity, by using specific force sensors. FCG sensors feature a wide frequency band, which allows us to capture respiration, heart wall motion, heart valves opening and closing (similar to the Seismocardiogram, SCG) and heart s...
Article
Full-text available
During surgical procedures, real-time estimation of the current position of a metal lead within the patient’s body is obtained by radiographic imaging. The inherent opacity of metal objects allows their visualization using X-ray fluoroscopic devices. Although fluoroscopy uses reduced radiation intensities, the overall X-ray dose delivered during pr...
Article
Full-text available
Seismocardiography (SCG) is largely regarded as the state-of-the-art technique for continuous, long-term monitoring of cardiac mechanical activity in wearable applications. SCG signals are acquired via small, lightweight accelerometers fixed on the chest. They provide timings of important cardiac events, such as heart valves openings and closures,...
Article
Full-text available
Forcecardiography (FCG) is a novel technique that measures the local forces induced on the chest wall by the mechanical activity of the heart. Specific piezoresistive or piezoelectric force sensors are placed on subjects’ thorax to measure these very small forces. The FCG signal can be divided into three components: low-frequency FCG, high-frequenc...
Article
Full-text available
Voluntary hand movements are usually impaired after a cerebral stroke, affecting millions of people per year worldwide. Recently, the use of hand exoskeletons for assistance and motor rehabilitation has become increasingly widespread. This study presents a novel hand exoskeleton, designed to be low cost, wearable, easily adaptable and suitable for...
Article
Full-text available
The precordial mechanical vibrations generated by cardiac contractions have a rich frequency spectrum. While the lowest frequencies can be palpated, the higher infrasonic frequencies are usually captured by the seismocardiogram (SCG) signal and the audible ones correspond to heart sounds. Forcecardiography (FCG) is a non-invasive technique that mea...
Article
Full-text available
Triage is the first interaction between a patient and a nurse/paramedic. This assessment, usually performed at Emergency departments, is a highly dynamic process and there are international grading systems that according to the patient condition initiate the patient journey. Triage requires an initial rapid assessment followed by routine checks of...
Article
Full-text available
As a definition, Human–Machine Interface (HMI) enables a person to interact with a de‐ vice. Starting from elementary equipment, the recent development of novel techniques and unob‐ trusive devices for biosignals monitoring paved the way for a new class of HMIs, which take such biosignals as inputs to control various applications. The current surve...
Article
Full-text available
Hand prostheses partially restore hand appearance and functionalities. In particular, 3D printers have provided great opportunities by simplifying the manufacturing process and reducing costs. The "Federica" hand is 3D-printed and equipped with a single servomotor, which synergically actuates its five fingers by inextensible tendons; no springs are...
Article
Full-text available
In the last few decades, a number of wearable systems for respiration monitoring that help to significantly reduce patients’ discomfort and improve the reliability of measurements have been presented. A recent research trend in biosignal acquisition is focusing on the development of monolithic sensors for monitoring multiple vital signs, which coul...
Article
Full-text available
Background Low-dose X-ray images have become increasingly popular in the last decades, due to the need to guarantee the lowest reasonable patient’s exposure. Dose reduction causes a substantial increase of quantum noise, which needs to be suitably suppressed. In particular, real-time denoising is required to support common interventional fluoroscop...
Article
Full-text available
Purpose People with drug-refractory epilepsy are potential candidates for surgery. In many cases, epileptogenic zone localization requires intracranial investigations, e.g., via ElectroCorticoGraphy (ECoG), which uses subdural electrodes to map eloquent areas of large cortical regions. Precise electrodes localization on cortical surface is mandator...
Data
The study focuses on performance tests carried out on a low-cost and 3D printed prosthetic hand, named “Federica”. The prosthesis can perform an adaptive grasp function using a single servomotor, which actuates all the five fingers by inextensible tendons. A cylindrical handlebar with a built-in load cell was used to measure the prosthesis grip for...
Article
Full-text available
The actual grip force provided by a hand prosthesis is an important parameter to evaluate its efficiency. To this end, a split cylindrical handlebar embedding a single-axis load cell was designed, 3D printed and assembled. Various measurements were made to evaluate the performances of the “Federica” hand, a simple low-cost hand prosthesis. The hand...
Conference Paper
X-ray fluoroscopy is a medical imaging modality that provides continuous real-time screening of patient’s organs and various radiopaque surgical objects. Fluoroscopy usually requires long and unpredictable exposure times, thus radiation intensity must be heavily reduced to limit patient’s dose. This gives rise to the well-known Poisson noise, which...
Data
In this study, it’s presented a new simple sensor based on a Force-Sensitive Resistor (FSR) that, applied on the skin through a rigid dome, senses the mechanical force exerted by the underlying contracting muscle and also detects the little vibrations which occur during muscle contraction, i.e. the mechanomyogram (MMG). The new sensor does not requ...
Conference Paper
Comparison of derivative operators via quantitative performance analysis is rarely addressed in medical imaging. Indeed, the main application of such operators is the extraction of edges and, since there is no unequivocal definition of edges, the common trend is to identify the best performing operator based on a qualitative match between the extra...
Conference Paper
Active hand prostheses are usually controlled by electromyography (EMG) signals acquired from few muscles available in the residual limb. In general, it is necessary to estimate the envelope of the EMG in real-time to implement the control of the prosthesis. Recently, sensors based on Force Sensitive Resistor (FSR) proved to be a valid alternative...
Article
Full-text available
Human machine interfaces (HMIs) are employed in a broad range of applications, spanning from assistive devices for disability to remote manipulation and gaming controllers. In this study, a new piezoresistive sensors array armband is proposed for hand gesture recognition. The armband encloses only three sensors targeting specific forearm muscles, w...
Chapter
X-ray fluoroscopy provides various diagnosis and is widely used in interventional radiology. However, the low-dose involved in fluoroscopy generates an intense Poisson-distributed quantum noise. Object recognition and tracking help in many fluoroscopic applications. Edge-detection is essential, but common derivative operators require noise suppress...
Conference Paper
Traditional stethoscopes have remained virtually unchanged for nearly 200 years and remain the primary examination tool for all medical practitioners. While their use is prominent, their single user design and susceptibility to noise distortions can result in loss of critical diagnostic information. With the rise of cardiovascular disease worldwide...
Article
Full-text available
Quantum noise intrinsically limits the quality of fluoroscopic images. The lower is the X-ray dose the higher is the noise. Fluoroscopy video processing can enhance image quality and allows further patient’s dose lowering. This study aims to assess the performances achieved by a Noise Variance Conditioned Average (NVCA) spatio-temporal filter for r...
Chapter
Modern 3D printing technologies and wide availability of microcontroller boards allow to make active prosthetic devices in a simple way. This is the case of “Federica”, a very low-cost, under-actuated, active hand prosthesis. The five fingers of the prosthesis are moved by a single motor through inelastic tendons. The control system of the prosthes...
Chapter
Recent improvements in image segmentation techniques enabled the (semi)automatic extraction of biostructures surfaces from 3D medical imaging data. The diffusion of 3D printing technologies promoted their introduction in the medical field, giving rise to several applications, such as the development of 3D-printed anatomical imaging phantoms. These...
Preprint
Full-text available
Background: Computational models of ionic channels represent the building blocks of conductance-based, biologically inspired models of neurons and neural networks. Ionic channels are still widely modelled by means of the formalism developed by the seminal work of Hodgkin and Huxley, although the electrophysiological features of the channels are cur...
Conference Paper
Full-text available
The aim of this work is to design and develop a sensorized sock in Electronic Textile (ET), SWEET-Sock. The device has been realized by three textile sensor placed in a specific points of plantar arch and an accelerometer unit, both embedded and connected by conductive thread. The sensors allows the acquisition of plantar pressure and acceleration...
Article
Full-text available
Background: In spite of the complexity that the number of redundancy levels suggests, humans show amazingly regularities when generating movement. When moving the hand between pairs of targets, subjects tended to generate roughly straight hand trajectories with single-peaked, bell-shaped speed profiles. The original minimum-jerk model, in which lim...

Network

Cited By