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Abstract
This work describes longitudinal modeling of detailed, micro-level automo-

bile insurance records. We consider 1993-2001 data from the General Insurance
Association of Singapore, an organization of insurance companies. By detailed
micro-level records, we refer to experience at the individual vehicle level. The
data consists of vehicle characteristics, insurance coverage (including the pre-
mium) and claims experience, by year. The claims experience consists of de-
tailed information on the type of insurance claim, such as whether the claim is
due to injury to a third party, property damage to a third party or claims for
damage to the insured, as well as the corresponding claim amount.

We propose statistical models for three components, corresponding to the
frequency, type and severity of claims. The first is a random effects Poisson
regression model for assessing claim frequency, using the policyholder file to cal-
ibrate the model. Vehicle type and no claims discount turn out to be important
variables for predicting the event of a claim. The second is a multinomial logit
model to predict the type of insurance claim, whether it is third party injury,
third party property damage, insured damage or some combination. Premiums
turn out to be important predictors for this component.

Our third model for the severity component is the most innovative. Here,
we use a Burr XII long-tailed distribution for claim amounts and also incorpo-
rate predictor variables. Not surprisingly, we show that there is a significant
dependence among the different claim types; we use a t-copula to account for
this dependence.

The three component models provide justification for assessing the impor-
tance of a rating variable. When taken together, the integrated model allows an
actuary to predict automobile claims more efficiently than traditional methods.
We demonstrate this by developing predictive distributions via simulation.
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1 Introduction

A primary attribute of the actuary has been the ability to successfully apply statis-
tical techniques in the analysis and interpretation of data. In this paper, we analyze
a highly complex data structure and demonstrate the use of modern statistical tech-
niques in solving actuarial problems. Specifically, we focus on a portfolio of motor
(or automobile) insurance policies and, in analyzing the historical data drawn from
this portfolio, we are able to re-visit some of the classical problems faced by actuaries
dealing with insurance data. This paper explores longitudinal models that can be
constructed when detailed, micro-level records of automobile insurance policies are
available.

To an actuarial audience, the paper provides a fresh outlook into the process of
modeling and estimation of insurance data. For a statistical audience, we wish to
emphasize:

• the highly complex data structure, making the statistical analysis and proce-
dures interesting. Despite this complexity, the automobile insurance problem
is common and many readers will be able to relate to the data.

• the long-tail nature of the distribution of insurance claims. This, and the multi-
variate nature of different claim types, is of broad interest. Using the additional
information provided by the frequency and type of claims, the actuary will be
able to provide more accurate estimates of the claims distribution.

• the interpretation of the models and their results. We introduce a hierarchical,
three-component model structure to help interpret our complex data.

In analyzing the data, we focus on three concerns of the actuary. First, there is
a consensus, at least for motor insurance, of the importance of identifying key ex-
planatory variables for rating purposes, see for example, LeMaire (1985) or the guide
available from the General Insurance Association (G.I.A.) of Singapore1. Insurers
often adopt a so-called “risk factor rating system” in establishing premiums for mo-
tor insurance so that identifying these important risk factors is a crucial process in
developing insurance rates. To illustrate, these risk factors include driver (e.g. age,
gender) and vehicle (e.g. make/brand/model of car, cubic capacity) characteristics.

Second is one of the most important aspects of the actuary’s job: to be able
to predict claims as accurately as possible. Actuaries require accurate predictions
for pricing, for estimating future company liabilities, and for understanding the im-
plications of these claims to the solvency of the company. For example, in pricing
the actuary may attempt to segregate the “good drivers” from the “bad drivers”
and assess the proper increment in the insurance premium for those considered “bad
drivers”. This process is important to ensure equity in the premium distribution
available to the consumers.

Third is the concern of establishing a rating system based on variables that are
exogenous, or “outside,” of the claims process. The actuary needs to account for the

1See the organization’s website at: http://www.gia.org.sg.
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behavioral aspects of consumers when designing an insurance system. For example,
it would not be surprising to learn that consumers may be hiding important rating
information in an attempt to acquire the most favorable insurance quotation. In
a statistical modeling framework, actuaries employ variables that are useful deter-
minants of insurance claims and that are not themselves determined by insurance
claims. To illustrate, we will consider the use of gross premiums as a determinant of
insurance claims. As we will see, a premium is a variable that is statistically posi-
tively related to an insurance claim (the larger the premium, the higher is the claim).
One viewpoint is that a premium is simply the insurance company actuary’s (pos-
sibly nonlinear) summary measure of several risk factors. If one is using the model
to predict claims for solvency purposes, then premiums may be thought of as exoge-
nous. Another viewpoint is that premiums evolve over time and that high insurance
claims in one year lead to high premiums in subsequent years. From this viewpoint,
premiums are only sequentially exogenous and special techniques are required. For
the purposes of this paper, our examples treat all variables as exogenous. For further
reading, Pinquet (2000) discusses exogeneity in an insurance rating context and Frees
(2004, Chapter 6) provides an overview of exogeneity in longitudinal models.

In this paper, we consider policy exposure and claims experience data derived
from vehicle insurance portfolios of general insurance companies in Singapore. The
primary source of this data is the General Insurance Association of Singapore, an
organization consisting of most of the general insurers in Singapore. The observations
are from each policyholder over a period of nine years: January 1993 until December
2001. Thus, our data comes from financial records of automobile insurance policies.
In many countries, owners of automobiles are not free to drive their vehicles without
some form of insurance coverage. Singapore is no exception; it requires drivers to
have minimum coverage for personal injury to third parties.

We examined three databases: the policy, claims and payment files. The policy file
consists of all policyholders with vehicle insurance coverage purchased from a general
insurer during the observation period. Each vehicle is identified with a unique code.
This file provides characteristics of the policyholder and the vehicle insured, such as
the level of gross premium, driver information, and brand or make of vehicle insured.
There are well over 5 million records in the policy file, with each record corresponding
to a vehicle. The claims file provides a record of each accident claim that has been
filed with the insurer during the observation period and is linked to the policyholder
file. The payment file consists of information on each payment that has been made
during the observation period and is linked to the claims file. It is common to see
that a claim will have multiple payments made. There are over 700,000 recorded
claims in the claims file, whereas the payment file has more than 4 million recorded
payments.

To provide focus, we restrict our considerations to “fleet” policies from one insur-
ance company. These are policies issued to customers whose insurance covers more
than a single vehicle. A typical situation of “fleet” policies is motor insurance cov-
erage provided to a taxicab company, where several taxicabs are insured. The unit
of observation in our analysis is therefore a registered vehicle insured under a fleet
policy. We further break down these registered vehicles according to their exposure
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in each calendar year 1993 to 2001.
In predicting or estimating claims distributions, at least for motor insurance, we

often associate the cost of claims with two components: the event of an accident and
the amount of claim, if an accident occurs. Actuaries term these the claims frequency
and severity components, respectively. This is the traditional way of decomposing
this so-called “two-part” data, where one can think of a zero as arising from a vehicle
without a claim. Further, this decomposition easily allows us to incorporate having
multiple claims per vehicle.

Moreover, records from our databases show that when a claim payment is made,
we can also identify the type of claim. For our data, there are three types: (1)
claims for injury to a party other than the insured, (2) claims for damages to the
insured including injury, property damage, fire and theft, and (3) claims for property
damage to a party other than the insured. Thus, instead of a traditional univariate
claim analysis, we potentially observe a trivariate claim amount, one claim for each
type. For each accident, it is possible to have more than a single type of claim
incurred; for example, an automobile accident can result in damages to a driver’s
own property as well as damages to a third party who might be involved in the
accident. Modelling therefore the joint distribution of the simultaneous occurrence
of these claim types, when an accident occurs, provides the unique feature in this
paper. From a multivariate analysis standpoint, this is a nonstandard problem in
that we rarely observe all three claim types simultaneously (see Section 3.3 for the
distribution of claim types). Further, not surprisingly, it turns out that claim amounts
among types are related. To further complicate matters, it turns out that one type
of claim is censored (see Section 2.1). We use copula functions to specify the joint
multivariate distribution of the claims arising from these various claims types. See
Frees and Valdez (1998) and Nelsen (1999) for introductions to copula modeling.

In constructing the longitudinal models for our portfolio of policies, we there-
fore focus on the development of the claims distribution according to three different
components: (1) the claims frequency, (2) the conditional claim type, and (3) the
conditional severity. The claims frequency provides the likelihood that an insured
registered vehicle will have an accident and will make a claim in a given calendar
year. Given that a claim is to be made when an accident occurs, the conditional
claim type model describes the probability that it will be one of the three claim
types, or any possible combination of them. The conditional severity component
describes the claim amount structure according to the combination of claim types
paid. In this paper, we provide appropriate statistical models for each component,
emphasizing that the unique feature of this decomposition is the joint multivariate
modelling of the claim amounts arising from the various claim types. Because of the
short term nature of the insurance coverages investigated here, we summarize the
many payments per claim into a single claim amount.

The organization of the rest of the paper follows. First, in Section 2, we introduce
the observable data, summarize its important characteristics and provide details of
the statistical models chosen for each of the three components of frequency, condi-
tional claim type and conditional severity. In Section 3, we proceed with fitting the
statistical model to the data and interpreting the results. The likelihood function
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construction for the estimation of the conditional severity component is detailed in
the Appendix. In Section 4, we describe how one can use the modeling construction
and results, focusing on its usefulness for prediction purposes. We provide concluding
remarks in Section 5.

2 Modeling

2.1 Data

As explained in the introduction, the data available are disaggregated by risk class
i, denoting vehicle, and over time t, denoting calendar year. For each observational
unit {it} then, the potentially observable responses consist of

• Nit - the number of claims within a year;

• Mit,j - the type of claim, available for each claim, j = 1, ..., Nit; and

• Cit,jk - the loss amount, available for each claim, j = 1, ..., Nit, and for each
type of claim k = 1, 2, 3.

When a claim is made, it is possible to have one or a combination of three types
of claims. To reiterate, we consider: (1) claims for injury to a party other than the
insured, (2) claims for damages to the insured, including injury, property damage,
fire and theft, and (3) claims for property damage to a party other than the insured.
Occasionally, we shall simply refer to them as “injury”, “own damage”, and “third
party property”. It is not uncommon to have more than one type of claim incurred
with each accident.

For the two third party types, claims amounts are available. However, for claims
for damages to the insured (“own damages”), only a loss amount is available. Here,
we follow standard actuarial terminology and define the loss amount, Cit,2k, to be
equal to the excess of a claim over a known deductible, dit (and equal to zero if
the claim is less than the deductible). For notation purposes, we will sometimes use
C∗

it,2k to denote the claim amount; this quantity is not known when it falls below the
deductible. Thus, it is possible to have observed a zero loss associated with an “own
damages” claim. For our analysis, we assume that the deductibles apply on a per
accident basis.

We also have the exposure eit, measured in (a fraction of) years, which provides
the length of time throughout the calendar year for which the vehicle had insurance
coverage. The various vehicle and policyholder characteristics are described by the
vector xit and will serve as explanatory variables in our analysis. For notational pur-
poses, let Mit denote the vector of claim types for an observational unit and similarly
for Cit. Finally, the observable data available consist of the following information

{dit, eit, Nit,Mit,Cit,xit, t = 1, . . . , Ti, i = 1, . . . , n}.
In summary, there are n = 9, 409 subjects for which each subject is observed Ti times.
The maximum value of Ti is 9 years because our data consists only of policies from
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1993 up until 2001. Even though a policy issued in 2001 may well extend coverage
into 2002, we ignore the exposure and claims behavior beyond 2001. The motivation
is to follow standard accounting periods upon which actuarial reports are based.

2.2 Decomposing the Joint Distribution into Components

Suppressing the {it} subscripts, we decompose the joint distribution of the dependent
variables as:

f (N,M,C) = f (N) × f (M|N) × f (C|N,M)

joint = frequency × conditional claim type × conditional severity,

where f (N,M,C) denotes the joint distribution of (N,M,C). This joint distribution
equals the product of the three components:

1. claims frequency: f (N) denotes the probability of having N claims;

2. conditional claim type: f (M|N) denotes the probability of having a claim type
of M, given N ; and

3. conditional severity: f (C|N,M) denotes the conditional density of the claim
vector C given N and M.

It is customary in the actuarial literature to condition on the frequency component
when analyzing the joint frequency and severity distributions. See, for example,
Klugman, Panjer and Willmot (2004). As described in Section 2.2.2, we incorporate
an additional claims type layer. An alternative approach was taken by Pinquet (1998).
Pinquet was interested in two lines of business, claims at fault and not at fault with
respect to a third party. For each line, Pinquet hypothesized a frequency and severity
component that were allowed to be correlated to one another. In particular, the
claims frequency distribution was assumed to be bivariate Poisson. In contrast, our
approach is to have a univariate claims number process and then decompose each
claim via claim type. As will be seen in Section 2.2.3, we also allow for dependent
claim amounts arising from the different claim types using the copula approach.
Under this approach, a wide range of possible dependence structure can be flexibly
specified.

We now discuss each of the three components in the following subsections.

2.2.1 Frequency Component

The frequency component, f (N), has been well analyzed in the actuarial literature
and we will use these developments. The modern approach of fitting a claims number
distribution to longitudinal data can be attributed to the work of Dionne and Vanasse
(1989) who applied a random effects Poisson count model to automobile insurance
claims. Here, a (time-constant) latent variable was used to represent the heterogene-
ity among the claims, which also implicitly induces a constant correlation over time.
Pinquet (1997, 1998) extended this work, considering severity as well as frequency

6



distributions. He also allowed for different lines of business, as well as an explicit
correlation parameter between the frequency and the severity components. Later,
Pinquet, Guillén and Bolancé (2001) and Bolancé, Guillén and Pinquet (2003) intro-
duced a dynamic element into the observed latent variable. Here, claims frequency
was modeled using Poisson distribution, conditional on a latent variable that was log-
normally distributed with an autoregressive order structure. Examining claims from
a Spanish automobile insurer, they found evidence of positive serial dependencies.
Purcaru and Denuit (2003) studied the type of dependence introduced through cor-
related latent variables; they suggested using copulas to model the serial dependence
of latent variables.

For our purposes, we use the standard random effects Poisson count model.
See, for example, Diggle et al. (2002) or Frees (2004). For this model, one uses
exp (αλi + x′

itβλ) to be the Poisson parameter for the {it} observational unit, where
αλi is a time-constant latent random variable to account for the heterogeneity. We
also allow for the fact that an observational unit may be exposed only partially during
the year. If we denote by eit the length of exposure, then we adjust the Poisson mean
parameter to be λit = eit exp (αλi + x′

itβλ). With this, the frequency component
likelihood for the i-th subject can be expressed as

LF,i =

∫
Pr (Ni1 = ni1, ..., NiTi

= niTi
|αλi) f (αλi) dαλi.

Typically one uses a normal distribution for f (αλi), and this has also been our dis-
tributional choice. Furthermore, we assume that (Ni1, ..., NiTi

) are independent, con-
ditional on αλi. Thus, the conditional joint distribution for all observations from the
i-th subject is given by

Pr (Ni1 = ni1, ..., NiTi
= niTi

|αλi) =

Ti∏
t=1

Pr (Nit = nit|αλi) .

With the Poisson distribution for counts, recall that we have Pr (N = n|λ) = λne−λ/n!.
To get a sense of the empirical observations for claim frequency, we present Table

2.1 showing the frequency of claims during the entire observation period. According
to this table, there were a total of 25,440 observations of which 93.2% did not have
any claims. There are a total of 1,872 (=1,600×1 + 121×2 + 10×3) claims, from
1,731 (=1,600+121+10) subject-year {it} observations.

Table 2.1. Frequency of Claims
Count 0 1 2 3 Total

Number 23,709 1,600 121 10 25,440
Percentage 93.2 6.3 0.5 0.1 100.0

2.2.2 Claims Type Component

In Section 2.1, we described the three types of claims which may occur in any com-
bination for a given accident: “injury”, “third party property”, and “own damages”.
Conditional on having observed at least one type of claim, the random variable M
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describes the combination observed. Table 2.2 provides the distribution of M . Here,
we see that third party injury (C1) is the least prevalent. Moreover, Table 2.2 shows
that all combinations of claims occurred in our data.

Table 2.2. Distribution of Claims, by Claim Type Observed
Value of M 1 2 3 4 5 6 7 Total
Claim Type (C 1) (C 2) (C 3) (C 1,C 2) (C 1,C 3) (C 2,C 3) (C 1,C 2,C 3)
Number 22 959 681 3 10 196 1 1,872
Percentage 1.2 51.2 36.4 0.2 0.5 10.5 0.1 100.0

To incorporate explanatory variables, we model the claim type as a multinomial
logit of the form

Pr (M = r) =
exp (Vr)∑7
s=1 exp (Vs)

, (1)

where Vitj,r = x′
itβM,r. This is known as a “selection” or “participation” equation

in econometrics; see, for example, Jones (2000). Note that for our application, the
covariates do not depend on the accident number j nor on the claim type r although
we allow parameters (βM,r) to depend on r.

2.2.3 Severity Component

Table 2.3 provides a first look at the severity component of our data. For each type of
claim, we see that the standard deviation exceeds the mean, suggesting the long-tail
nature of the data. Third party injury claims, although the least frequent, have the
strongest potential for large consequences. There are 97 losses for damages to the
insured (“own damages”) that are censored, indicating that a formal mechanism for
handling the censoring is important.

Table 2.3. Summary Statistics of Claim Losses, by Type of Claim
Statistic Third Party Own Damage (C 2) Third Party

Injury (C 1) non-censored all Property (C 3)
Number 36 1,062 1,159 888
Mean 7,303 2,631 2,410 2,803
Standard Deviation 12,297 3,338 3,277 3,415
Median 1,716 1,459 1,267 1,768
Minimum 14 3 0 5
Maximum 51,000 32,490 32,490 35,544

Note: Censored “own damages” losses have values of zero.

To accommodate the long-tail nature of claims, we use the Burr XII marginal
distribution for each claim type. This has distribution function

FC (c) = 1 −
(

γ

γ + cτ

)η

, c ≥ 0, (2)
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where τ is a shape parameter and γ is a scale parameter. This distribution is well
known in actuarial modeling of univariate loss distributions (see for example, Klug-
man, Panjer and Willmot, 2004). Not only is the Burr XII useful in handling long-tail
distributions, but from equation (2) we see that the inverse distribution function is
readily computable; this feature will turn out to be computationally useful in our
residual analysis that follows.

We will use this distribution but will allow parameters to vary by type and thus
consider γk and ηk for k = 1, 2, 3. Further, recently Beirlant et al. (1998) have
demonstrated the usefulness of the Burr XII distribution in regression applications
by allowing covariates to appear through the shape parameter τ . For a more general
approach, Beirlant et al. (2004) suggested allowing all the parameters to depend on
covariates. We use the simpler specification and, following the work of Beirlant et
al. (1998), parameterize the shape parameter as τ it,k = exp

(
x′

itβC,k

)
. With this

notation, we define the distribution function for the {it} observational unit and the
kth type of claim as

Fit,k (c) = 1 −
(

γk

γk + cτ

)ηk

, where τ = exp
(
x′

itβC,k

)
.

To accommodate dependencies among claim types, we use a parametric copula.
See Frees and Valdez (1998) for an introduction to copulas. Suppressing the {it}
subscripts, we may write the joint distribution of claims (C1, C2, C3) as

F (c1, c2, c3) = Pr (C1 ≤ c1, C2 ≤ c2, C3 ≤ c3)

= Pr (F1 (C1) ≤ F1 (c1) , F2 (C2) ≤ F2 (c2) , F3 (C3) ≤ F3 (c3))

= H (F1 (c1) , F2 (c2) , F3 (c3)) .

Here, the marginal distribution of Cj is given by Fj(·) and H (·) is the copula. We
use a trivariate t-copula with an unstructured correlation matrix. The multivariate
t-copula has been shown to work well on loss data (see Frees and Wang, 2005). As
a member of the elliptical family of distributions, an important property is that the
family is preserved under the marginals (see Landsman and Valdez, 2003) so that
when we observe only a subset of the three types, one can still use the t-copula.

The likelihood, developed formally in the Appendix, depends on the association
among claim amounts. To see this, suppose that all three types of claims are observed
(M = 7) and that each are uncensored. In this case, the joint density would be

fuc,123 (c1, c2, c3) = h3 (Fit,1 (c1) , Fit,2 (c2) , Fit,3 (c3))
3∏

k=1

fit,k (ck) , (3)

where fit,k is the density associated with the {it} observation and the kth type of claim
and h3(.) is the probability density function for the trivariate t-copula. Specifically,
we can define the density for the trivariate t-distribution to be

t3 (z) =
Γ

(
r+3
2

)
(rπ)3/2 Γ

(
r
2

) √
det (Σ)

(
1 +

1

r
z′Σ−1z

) r+3
2

, (4)
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and the corresponding copula as

h3 (u1, u2, u3) = t3
(
G−1

r (u1) , G−1
r (u2) , G−1

r (u3)
) 3∏

k=1

1

gr (G−1
r (uk))

. (5)

Here, Gr is the distribution function for a t-distribution with r degrees of freedom,
G−1

r is the corresponding inverse and gr is the probability density function. Using
the copula in equation (3) allows us to compute the likelihood. We will also consider
the case where r → ∞ , so that the multivariate t-copula becomes the well-known
Normal copula.

3 Data Analysis

3.1 Covariates

As noted in Section 2.1, several characteristics of the vehicles were available to explain
and predict automobile accident frequency, type and severity. Because only fleets
policies are being considered, driver characteristics (e.g. age, gender) do not appear
in our analysis. Table 3.1 summarizes these characteristics.

Table 3.1 Description of Covariates
Covariate Description
Year The calendar year. This varies from 1993-2001.
Premium The level of gross premium for the policy in the calendar year.
Cover Type The type of coverage on the insurance policy. It is either

comprehensive (C), third party fire and theft (F) or third
party (T).

NCD No Claims Discount. This is a categorical variable based on
the previous accident record of a vehicle.
The categories are 0%, 10%, 20%, 30%, 40% and 50%. The
higher the discount, the better is the prior accident record.

Vehicle Type The type of vehicle being insured, either automobile (A) or
other (O).

The Section 2 description uses a generic vector x to indicate the availability of
covariates that are common to the three outcome variables. In our investigation,
we found that the usefulness of covariates depended on the type of outcome and
used a parsimonious selection of covariates for each type. The following subsections
describe how the covariates can be used to fit our frequency, type and severity models.
For congruence with Section 2, the data summaries refer to the full data set that
comprise years 1993-2001, inclusive. However, when fitting models, we only used
1993-1999, inclusive. We reserved observations in years 2000 and 2001 for out-of-
sample validation, the topic of Section 4.
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3.2 Fitting the Frequency Component Model

We begin by displaying summary statistics to suggest the effects of each Table 3.1
covariates on claim frequency. We then show a fitted model that summarizes all of
these effects in a single model.

Table 3.2 displays the claims frequency distribution over time, showing no strong
trends.

Table 3.2. Number and Percentages of Claims, by Count and Year
Count 1993 1994 1995 1996 1997 1998 1999 2000 2001 Total

0 4,015 3,197 1,877 2,291 2,517 2,711 2,651 2,624 1,826 23,709
93.4 94.0 94.1 94.5 92.3 93.7 91.7 93.1 91.7 93.2

1 267 195 108 127 196 168 216 175 148 1,600
6.2 5.7 5.4 5.2 7.2 5.8 7.5 6.2 7.5 6.3

2 17 10 9 5 12 15 21 17 15 121
0.4 0.3 0.5 0.2 0.4 0.5 0.7 0.6 0.8 0.5

3 0 0 0 0 1 0 4 3 2 10
0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.1 0.1 0.1

Total 4,299 3,402 1,994 2,423 2,726 2,894 2,892 2,819 1,991 25,440

Table 3.3 shows the distribution of premiums, given in thousands of Singaporean
dollars (not adjusted for inflation), by claims count. Not surprisingly, we see that
policies with zero claims have lower premiums, suggesting a positive relation between
premiums and claims count. Insurance companies compute premiums based on policy
type, vehicle type, driving history and so forth. By restricting considerations to a
single company, we do not introduce the heterogeneity of different expense loadings by
different companies; this suggests using a single parameter to incorporate premiums.

Table 3.3. Summary Statistics of Premiums, by Claims Count
Standard

Count Number Mean Median Deviation Minimum Maximum
0 23,709 0.623 0.388 0.663 0.001 11.634
1 1,600 0.830 0.626 0.703 0.001 6.849
2 121 0.888 0.723 0.643 0.004 3.554
3 10 0.674 0.587 0.459 0.006 1.566

Tables 3.4-3.6 show the effects of coverage type, no claims discount (NCD) and
vehicle type on the frequency distribution. The comprehensive coverage type is the
most widely used (57.9%) and also is the most likely to incur a claim (9.2%). Most
policies did not have a no claims discount (85.1%). Somewhat surprisingly, those with
a positive NCD did not seem to have a lower accident frequency. Finally, automobiles
have slightly higher accident rates than the other category (7.5% versus 5.9%).
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Table 3.4. Number and Percentages of Claims,
by Cover Type

Cover Type Count
0 1 2 3 Total

Comprehensive (C) 13,375 1,238 107 10 14,730
90.8 8.4 0.7 0.1

Third Party 627 16 1 0 644
Fire&Theft (F) 97.4 2.5 0.1 0.0

Third Party (T) 9,707 346 13 0 10,066
96.4 3.4 0.1 0.0

Total 23,709 1,600 121 10 25,440

Table 3.5. Number and Percentages
of Claims, by No Claims Discount

NCD Count
0 1 2 3 Total

0% 20,205 1,326 105 10 21,646
93.3 6.1 0.5 0.1

10% 683 65 2 0 750
91.0 8.9 0.3 0.0

20% 1,365 77 7 0 1,449
94.2 5.3 0.5 0.0

30% 361 34 5 0 400
90.3 8.5 1.3 0.0

40% 234 29 0 0 263
89.0 11.0 0.0 0.0

50% 861 69 2 0 932
92.4 7.4 0.2 0.0

Total 23,709 1,600 121 10 25,440

Table 3.6. Number and Percentages
of Claims, by Vehicle Type

Vehicle Count
Type 0 1 2 3 Total

Auto 13,204 993 76 7 14,280
92.5 7.0 0.5 0.1

Others 10,505 607 45 3 11,160
94.1 5.5 0.4 0.1

Total 23,709 1,600 121 10 25,440

After additional examination of the data, the Section 2.2.1 random effects Poisson
model was fit. As part of the examination process, we investigated interaction terms
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among the covariates and nonlinear fits with regard to year and premiums. The
final fitted model, summarized in Table 3.7, does not include a time effect (year).
Premium enters the systematic component linearly, and we used binary variables for
comprehensive coverage (Cover=Comp), automobile vehicle type (Vtype=Auto) and
zero no claims discount (NCD=0). The random effects component was treated as
normally distributed with mean 0 and variance σ2

λ.
Table 3.7 shows that comprehensive coverage, automobile vehicle type and zero

no claims discount are each associated with a higher tendency for accidents. Further,
higher premiums are associated with more accidents, except for the case of automobile
vehicle type.

Table 3.7. Fitted Claims Frequency Model
Variable Regression coefficient Standard

(βλ) estimate error t-statistic p-value
intercept -4.215 0.152 -27.81 <0.001
Premium 0.329 0.231 1.42 0.155
Cover=Comp 1.600 0.128 12.49 <0.001
VType=Auto 0.217 0.117 1.86 0.064
NCD=0 0.062 0.094 0.66 0.510
(Cover=Comp)*Premium -0.321 0.231 -1.39 0.165
(VType=Auto)*Premium -0.511 0.133 -3.96 <0.001
Log σ2

λ 0.633 0.030 21.16 <0.001

3.3 Fitting the Claim Type Model

Table 3.8 shows the relation between claim type and premiums. Here, we see that
third party damages to property (C3) are associated with small premiums and an
insured’s own damages (C2) are associated with large premiums. Not surprisingly,
larger premiums are associated with accidents having more than one claim type.

Table 3.8. Summary Statistics of Premiums, by Claims Type
Standard

M Type Number Mean Median Deviation Minimum Maximum
1 C1 22 0.665 0.367 0.742 0.188 1.314
2 C2 959 0.986 0.784 0.735 0.004 6.849
3 C3 681 0.592 0.393 0.554 0.001 3.132
4 C1, C2 3 0.869 0.632 0.441 0.597 3.661
5 C1, C3 10 0.713 0.629 0.605 0.091 1.720
6 C2, C3 196 0.962 0.804 0.674 0.004 4.724
7 C1, C2, C3 1 0.775 0.775 0 0.775 0.775

Table 3.9 reports the results from a fitted multinomial logit model using premiums
(in thousands of Singaporean dollars) as the explanatory variable. Here, C2 is the
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omitted category. Using equation (1), these parameter estimates provide predictions
of claim type. The usual interpretations are also available. To illustrate, comparing
two policies that differ by 10 Singaporean dollars, we interpret the slope for type
M = 1 to mean that the policy is 1.05% (=e1.047/100 − 1) times more likely to have
an injury (C1) compared to an insureds own damage claim (C2).

Table 3.9. Fitted Multinomial Logit Model
Intercept Slope
Standard Standard

M Type Estimate Error p-value Estimate Error p-value
1 C1 -2.031 0.135 <.001 1.047 0.130 <.001
3 C3 -6.950 1.621 <.001 0.630 1.650 0.703
4 C1, C2 -3.612 0.347 <.001 0.287 0.410 0.485
5 C1, C3 -4.510 0.514 <.001 0.446 0.567 0.432
6 C2, C3 -0.486 0.086 <.001 1.090 0.098 <.001
7 C1, C2, C3 -6.040 0.946 <.001 0.860 0.863 0.319

Notes: Response is claim type, explanatory variable is premium (in thousands).
Omitted category is C2.

3.4 Fitting the Severity Component Model

As noted in Section 2.2.3, it is important to consider long-tail distributions when
fitting models of insurance claims. Table 2.3 provided some evidence and Figure 1
reinforces this concept with an empirical histogram for each type of claim; this figure
also suggests the importance of long-tail distributions.

In Section 2.2.3, we discussed the appropriateness of the Burr XII distribution as a
model for losses. Figure 2 provides QQ plots, described in Beirlant et al. (1998). Here,
we see that this distribution fits the data well, even without the use of covariates. The
poorest part of the fit is in the lower quantiles. However, for insurance applications,
most of the interest is in the upper tails of the distribution (corresponding to large
claim amounts) so that poor fit in the lower quantiles is of less concern.

An advantage of the copula construction is that each of the marginal distribu-
tions can be specified in isolation of the others and then be joined by the copula.
Thus, we fit each type of claim amount using the Burr regression model described
in Section 2.2.3. Standard variable selection procedures were used for each marginal
and the resulting fitted parameter estimates are summarized in Table 3.10 under the
“Independence” column. As noted in Section 2.2.3, all three parameters of the Burr
distribution varied by claim type. In the interest of parsimony, no covariates were
used for the 30 injury claims, whereas an intercept, Year and Premium were used for
the Third Party Property and automobile coverage type was used for Own Damage.
For Own Damage, a censored likelihood was used. All parameter estimates were
calculated via maximum likelihood; see the Appendix for a detailed description.

Using the parameter estimates from the independence model as initial values, we
then estimated the full copula model via maximum likelihood. Two choices of copulas
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were used, the standard Normal (Gaussian) copula and the t-copula. An examination
of the likelihood and information statistics show that the Normal copula model was
an improvement over the independence model and the t-copula was an improvement
over the Normal copula. These models are embedded within one another in the sense
that the Normal copula with zero correlation parameters reduces to the independence
model and the t-copula tends to the Normal copula as the degrees of freedom r tends
to infinity. Thus, it is reasonable to compare the likelihoods and argue that the
Normal copula is statistically significantly better than the independence copula using
a likelihood ratio test. Furthermore, although a formal hypothesis test is not readily
available, a quick examination of the information statistics shows that the t-copula
indeed provides a better fit to the data than the Normal copula.

We remark that there are different perspectives on the choice of the degrees of
freedom for the t-copula. One argument is to choose the degrees of freedom as one
would for a standard analysis of variance procedure, as the number of observations
minus the number of parameters. One could also choose the degrees of freedom to
maximize the likelihood but restrict it to be an integer. Because of the widespread
availability of modern computational tools, we determined the degrees of freedom
parameter, r, via maximum likelihood without restricting it to be an integer.

From Table 3.10, one also sees that parameter estimates are qualitatively similar
under each copula. Interestingly, the correlation coefficient estimates indicate signifi-
cant relationships among the three claim types. Although not presented here, it turns
out that these relations were not evident when simply examining the raw statistical
summaries.

4 Prediction

As noted in the introduction, an important application of the modeling process for
the actuary involves predicting claims arising from insurance policies. We illustrate
the prediction process in two different ways: (1) prediction based on an individual
observation and (2) out-of-sample validation for a portfolio of claims. For both types
of prediction problems, the first step is to generate a prediction of the claims frequency
model that we fit in Section 3.2. Because this problem has been well discussed in the
literature (see, for example, Bolancé et al., 2003), we focus on prediction conditional
on the occurrence of a claim, that is, N = 1.

It is common for actuaries to examine one or more “test cases” when setting
premium scales or reserves. To illustrate what an actuary can learn when predicting
based on an individual observation, we chose an observation from our out-of-sample
period consisting of years 2000 and 2001. Claim number 215 from our database
involves a policy for a 1996 BMW with a premium of $215.83 for two months during
2001, and with a $750 deductible for comprehensive coverage.
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Using the claim type model in Section 3.3, it is straightforward to generate pre-
dicted probabilities for claim type as shown in Table 4.1.

Table 4.1. Prediction of Claim Type for Claim Number 215
Claim Type (C 1) (C 2) (C 3) (C 1,C 2) (C 1,C 3) (C 2,C 3) (C 1,C 2,C 3) Total
Percentage 1.24 48.96 38.95 0.16 0.56 10.09 0.05 100.0

We then generated 5,000 simulated values of total claims. For each simulation,
we used three random variates to generate a realization from the trivariate joint
distribution function of claims. (See, for example, DeMarta and McNeil, 2005, for
techniques on simulating realizations using t-copulas.) After adjusting for the “Own
Damage” deductible or excess, we then combined these three random claims using an
additional random variate for the claim type into a single predicted total claim for the
policy. Figure 3 summarizes the result of this simulation. This figure underscores the
long-tailed nature of this predictive distribution, an important point for the actuary
when pricing policies and setting reserves. For reference, it turned out that the
actual claim for this policy was $10,438.68, corresponding to the 98th percentile of
the predictive distribution.

For the out-of-sample validation procedure, we consider 375 claims that were ob-
served during 2000 and 2001. For each claim, we generated 5,000 simulated values
of total claims as described above. Figure 4 summarizes the relationship between
the simulated predicted and the actual held-out values. Depending on the purposes
of the prediction, the actuary can select a predicted value from the predictive dis-
tribution generated for each of the 375 claims. In the figure, we show the resulting
comparison with the actual held-out values using either the average, the median, the
90th percentile or the 95th percentile of the predictive distributions. For each of the
375 claims, the actual values are on the vertical axis and the predicted value from
the 5,000 simulations are on the horizontal axis. Not surprisingly, these graphs show
the large variability in actual losses compared to the point prediction. They also
demonstrate that choosing a high percentile for a predictive value leads to higher
probability of covering most claims.

With the entire predictive distribution, the actuary need not restrict him or herself
to using the mean. Table 4.2 summarizes results using alternative summary measures
of the simulated distribution, including not only the mean of the 5,000 simulations but
also the median, the 90th and the 95th percentiles. These alternative measures can be
used for different business purposes. For example, one might use the 95th percentile
to set reserves for statutory purposes, where the concern is to set aside a sufficient
amount to safeguard against insolvency. Alternatively, one might use the median to
set reserves for generally accepted accounting purposes (GAAP in the USA). Here,
the actuary uses a “best” estimate of future liabilities when setting the reserve to
balance competing interests of shareholders (who would like company liabilities to
be low) and policyholders (who would like the company to retain a larger reserve in
order to be in a better position to pay future losses).
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Table 4.2. Comparison of Actual Loss Distribution to
Summary Measures of the Simulated Predictive Distribution

Standard
Mean Median Deviation Minimum Maximum

Actual Loss Distribution 3,047.5 1,773.9 3,407.5 5.2 19,528.9
Predictive Distribution

Summary Measure
Mean 2,255.3 2,320.4 307.2 715.2 2,864.0

Median 337.1 357.3 211.6 0.0 1,045.1
90th Percentile 6,240.7 6,341.9 790.1 1,867.8 7,727.7
95th Percentile 9,421.2 9,395.3 1,060.5 3,216.8 11,862.6

5 Summary and Concluding Remarks

One way to think of the insurance claims data used in this paper is as a set of
multivariate longitudinal responses, with covariate information. The longitudinal
nature is because vehicles are observed over time. For each vehicle, there are three
responses in a given year; the claims amount for injury, own damage and property
damage. One approach to modeling this dataset would be to use techniques from
multivariate longitudinal data (see, for example, Fahrmeir and Tutz, 2001). However,
as we have pointed out, in most years policyholders do not incur a claim, resulting in
many repeated zeroes (see, for example, Olsen and Shafer, 2001) and, when a claim
does occur, the distribution is long-tailed. Both of these features are not readily
accommodated using standard multivariate longitudinal data models that generally
assume data are from an exponential family of distributions.

Another approach would be to model the claims count for each of the three types
jointly and thus consider a trivariate Poisson process. This was the approach taken by
Pinquet (1998) when considering two types of claims, those at fault and no-fault. This
approach is comparable to the one taken in this paper in that linear combinations
of Poisson process are also Poisson processes. We have chosen to re-organize this
multivariate count data into count and type events because we feel that this approach
is more flexible and easier to implement, especially when the dimension of the types
of claims increases.

Further, our main contribution in this paper is the introduction of a multivariate
claims distribution for handling long-tailed, related claims using covariates. As in the
work of Beirlant et al. (1998), we used the Burr XII distribution to accommodate the
long-tailed nature of claims while at the same time, allowing for covariates. As an
innovative approach, this paper introduces copulas to allow for relationships among
different types of claims.

The focus of our illustrations in Section 4 was on predicting total claims arising
from an insurance policy on a vehicle. We also note that our model is sufficiently
flexible to allow the actuary to focus on a single type of claim. For example, this would
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be of interest when the actuary is designing an insurance contract and is interested in
the effect of different deductibles or policy limits on “own damages” types of claims.

The modeling approach developed in this paper is sufficiently flexible to handle
our complex data. Nonetheless, we acknowledge that many improvements can be
made. In particular, we did not investigate potential explanations for the lack of
balance in our data; we implicitly assumed that data were missing at random (Little
and Rubin, 1987). It is well known in longitudinal data modeling that attrition and
other sources of imbalance may seriously affect statistical inference. This is an area
of future investigation.
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A Appendix - Severity Likelihood

Consider the seven different combinations of claim types arising when a claim is made.
For claim types M = 1, 3, 5, no censoring is involved and we may simply integrate
out the effects of the types not observed. Thus, for example, for M = 1, 3, we have
the likelihood contributions to be L1 (c1) = f1 (c1) and L3 (c3) = f3 (c3), respectively.
The subscript of the likelihood contribution L refers to the claim type. For claim
type M = 5, there is also no own damage amount, so that the likelihood contribution
is given by

L5 (c1, c3) =

∫ ∞

0

h3 (F1 (c1) , F2 (z) , F3 (c3)) f1 (c1) f3 (c3) f2 (z) dz

= h2 (F1 (c1) , F3 (c3)) f1 (c1) f3 (c3)

= fuc,13 (c1, c3)

where h2 is the density of the bivariate t-copula, having the same structure as the
trivariate t-copula given in equation (5). Note that we are using the important
property that a member of the elliptical family of distributions (and hence elliptical
copulas) is preserved under the marginals.

The cases M = 2, 4, 6, 7 involve own damage claims and so we need to allow for
the possibility of censoring. Let c∗2 be the unobserved claim and c2 = max (0, c∗2 − d)
be the observed loss. Further define

δ =

{
1, if c∗2 ≤ d
0, otherwise

to be a binary variable that indicates censoring. Thus, the familiar M = 2 case is

given by

L2 (c2) =

{
f2 (c2 + d) / (1 − F2 (d)) , if δ = 0
F2 (d) , if δ = 1

=

[
f2 (c2 + d)

1 − F2 (d)

]1−δ

(F2 (d))δ .

For the M = 6 case, we have

L6 (c2, c3) =

[
fuc,23 (c2 + d, c3)

1 − F2 (d)

]1−δ

(Hc,23 (d, c3))
δ

where

Hc,23 (d, c3) =

∫ d

0

h2 (F2 (z) , F3 (c3)) f3 (c3) f2 (z) dz.

It is not difficult to show that this can also be expressed as

Hc,23 (d, c3) = f3 (c3) H2 (F2 (d) , F3 (c3)) .

The M = 4 case follows in the same fashion, reversing the roles of types 1 and 3. The
more complex M = 7 case is given by

L7 (c1, c2, c3) =

[
fuc,123 (c1, c2 + d, c3)

1 − F2 (d)

]1−δ

(Hc,123 (c1, d, c3))
δ
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where fuc,123 is given in equation (3) and

Hc,123 (c1, d, c3) =

∫ d

0

h3 (F1 (c1) , F2 (z) , F3 (c3)) f1 (c1) f3 (c3) f2 (z) dz.

With these definitions, the total severity log-likelihood for each observational unit
is log (LS) =

∑7
j=1 I (M = j) log (Lj) .
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