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A CONVERSE OF THE GALE-KLEE-ROCKAFELLAR

THEOREM: CONTINUITY OF CONVEX FUNCTIONS

AT THE BOUNDARY OF THEIR DOMAINS

EMIL ERNST

(Communicated by Thomas Schlumprecht)

Abstract. Given x0, a point of a convex subset C of a Euclidean space,
the two following statements are proven to be equivalent: (i) every convex
function f : C → R is upper semi-continuous at x0, and (ii) C is polyhedral
at x0. In the particular setting of closed convex functions and Fσ domains,
we prove that every closed convex function f : C → R is continuous at x0 if
and only if C is polyhedral at x0. This provides a converse to the celebrated
Gale-Klee-Rockafellar theorem.

1. Introduction

One basic fact about real-valued convex functions on Euclidean spaces is that
they are continuous at each point of their domain’s relative interior (see for instance
[14, Theorem 10.1]).

On the other hand, it is not difficult to define a convex function which is discon-
tinuous at every point of the relative boundary of its domain. As stated by Carter
in his treatise “Foundations of Mathematical Economics” [4, page 334]: This is not
a mere curiosity. Economic life often takes place at the boundaries of convex sets,
where the possibility of discontinuities must be taken into account.

The celebrated Gale-Klee-Rockafellar (GKR) theorem ([6, Theorem 2]; see also
[14, Theorem 10.2]) is a major step toward an accurate understanding of continuity
properties for convex functions at points belonging to the relative boundary of their
domain. This result is particularly meaningful when applied to the class of closed
convex functions, as defined in the seminal work of W. Fenchel ([5]).

GKR Theorem. A convex function is upper semi-continuous at every point at
which its domain is polyhedral. Accordingly, a closed convex function is continuous
at each such point.

Besides its intrinsic interest, this theorem has proved itself a fertile source of ap-
plications. Taking one example out of many, let us remark that since a polyhedron
is everywhere polyhedral, the GKR theorem proves the ubiquitous mathematical
economics and game theory lemma ([2, Theorem 4.2]), which says that each concave
function defined on Pn

+, the cone of the vectors from Rn with positive coordinates,
is lower semi-continuous.
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The GKR theorem also provides powerful tools in establishing continuity of
special convex functions issued from particular optimization problems, such as the
M-convex and L-convex functions of Murota and Shioura ([13]).

The example of the closed convex function

f : C → R, f(x, y) =
x2

y
if (x, y) "= (0, 0) and f(0, 0) = 0

defined on the disk

C = {(x, y) ∈ R2 : x2 + (1− y)2 ≤ 1},

yet discontinuous at the point (0, 0) ∈ C, is well-known ([14, page 83]).
Let us remark that the point at which the previously defined function is dis-

continuous may (inter alia) be characterized as being the limit of a non-constant
sequence made of extreme points of the disk. The lemma on page 870 in [6] proves
that this is a very general feature; more precisely, its proof can easily be modified
in order to state the following result.

Converse GKR Theorem. Let C be a closed and convex subset of X, and x0 ∈ C
be the limit of a non-constant sequence of extreme points of C (such a point exists
if and only if C is not polyhedral at each and every one of its points). Then there
exists at least one closed convex function f : C → R which is not continuous at x0.

A standard observation proves that if C is conical at some point x0 ∈ C, then
none of the non-constant sequences of extreme points of C can converge to x0. In
this respect, the following result by Howe ([8, Proposition 2]) provides an extension
of the reciprocal GKR theorem.

Howe’s Theorem. Let C be a closed and convex subset of X and x0 ∈ C be a
point at which C is not conical. Then there exists at least one closed convex function
f : C → R which is not continuous at x0.

An obvious limitation of the previous theorem is that Howe’s result is bound to
the setting of closed domains, and no conclusion can be drawn for the larger class
of convex domains over which closed convex functions may be defined (that is, Fσ

convex sets).
Moreover, this result leaves unanswered the decidedly non-trivial question of the

continuity of a closed convex function at points at which the domain is conical
without being polyhedral (typically the apex of a circular cone). Indeed, the hy-
pothesis that a closed convex function is automatically continuous at such types of
points seems very natural, and this claim has been made (in an implicit form) at
least once ([3, Proposition 5, p. 183]). However, this conjecture has been proved
false when Goossens ([7, p. 609]) provided a (very elaborate) example of a closed
convex function defined on a circular cone and discontinuous at its apex.

This note attempts to fill in the gap between the direct GKR theorem and Howe’s
result by proving (Theorem 2.4, Section 2) the following statement.

Second Converse GKR Theorem. Given C, a convex subset of the Euclidean
space X, and x0, a point at which C is not polyhedral, then there is a convex
function f : C → R which is not upper semi-continuous at x0.

When, in addition, C is a Fσ set, then there is f : C → R, a closed convex
function which is discontinuous at x0.
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1.1. Definitions and notation. Let us consider X, a Euclidean space endowed
with the usual topology, and let us set x · y for the scalar product between the
vectors x and y of X, and ‖ · ‖ for the associated norm.

Given A a subset of X, let XA be its affine span (that is, the intersection of all
the hyperplanes of X containing A). The relative boundary of A is defined by the
formula

r∂(A) = A ∩ XA \A,
where a superposed bar denotes the closure of a set, while the relation

ri(A) = A \ r∂(A)

defines the relative interior of the set A. Let us recall ([14, Theorem 6.2, p. 45])
that the relative interior of a non-empty convex set is non-empty.

As is customary, a subset A of X is said to be an Fσ set if it is the countable
union of a family of closed subsets of X:

A =
∞⋃

i=1

Ai, Ai = Ai ∀i ∈ N.

Obviously, a closed and convex set is Fσ. In order to provide an example of a convex
subset of X which is not Fσ, let us recall ([1, exercise 145, p. 103, and exercise 269,
p. 145]) that the set of the irrationals is not Fσ. By homeomorphism, the same
holds in R2 for the set of points on the unit circle possessing an irrational angular
coordinate.

On the other hand, it is an easy exercise to show that the union between an open
disk and an arbitrary subset of its boundary is convex. Therefore, the subset of R2

obtained by putting together the open unit disk and all the points of its boundary
possessing an irrational angular coordinate is a convex set but not an Fσ one.

A function f : A → R is called closed if its epigraph

epi f = {(x, r) ∈ A× R : f(x) ≤ r}

is a closed subset of X × R. Let us notice that the domain of a closed function is
necessarily an Fσ set. The function f : A → R is upper semi-continuous at x0 if

f(x0) ≥ lim sup
x∈A, x→x0

f(x).

In this article, by a polyhedron we mean a set obtained as the intersection of
a finite family of closed half-spaces of X; accordingly, polyhedra are closed convex
sets, not always bounded. Following Klee ([10, p. 86]), we call the set A polyhedral
at x0 ∈ A if there are U , a neighborhood of x0, and B, a polyhedron, such that

A ∩ U = A ∩B.

Similarly, we call a set A conical at x0 ∈ A if there are U , a neighborhood of x0,
and K, a shifted closed convex cone (meaning that 0 is not necessarily its apex),
such that

A ∩ U = A ∩K.

In other words (Howe, [8, p. 1198]), “near x0, the set A looks like a [. . . ] cone.”
Obviously, a convex set is polyhedral at each point of its relative interior. Moreover,
if a set is polyhedral at some point, it is also conical at the same point, but the
converse does not generally hold.
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2. Continuity of convex functions at points of the relative
boundary of their domain

A key step in proving our main result is provided by Theorem 2.2. This result
features a geometrical property of points belonging to the relative boundary of a
convex set, which, to the best of our knowledge, has never been addressed.

Following Klee ([9, p. 448]), we call a point x ∈ X linearly accessible from the
subset A of X if there is a point a such that the half-open segment [a;x[ is contained
in A. Of course, the linearly accessible points belong to the closure of A, but the
converse does not generally hold.

For convex sets, however, all points of the closure are linearly accessible (an
obvious application of the fact that their relative interior is always non-empty).
Theorem 2.2 addresses the question of the linear accessibility of the boundary points
for sets which can be expressed as the difference between two convex sets.

Let us first establish to what extent studying this topic helps to demonstrate the
converse GKR theorem.

Proposition 2.1. Let C be a subset of X and x0 one of its points, and assume
that there is a closed convex set D containing x0 such that x0 ∈ C \D, yet x0 is
not linearly accessible from C \D.

i) If C is convex, then there is a convex function f : C → R which is not upper
semi-continuous at x0.

ii) If C is a Fσ convex set, then it is possible to find a closed convex function
f : C → R which is not continuous at x0.

Proof of Proposition 2.1. Without loss of generality, we can assume that x0 = 0.
Let us consider the cone spanned by D,

CD = {x ∈ X : λx ∈ D for some λ > 0},
and µD : CD → R, the Minkowski gauge of D,

µD(x) = inf

{
γ > 0 :

1

γ
x ∈ D

}
.

It is clear that CD is a convex cone and µD(0) = 0. Moreover, it is well-known
(see for instance [14, Corollary 9.7.1, p. 79]) that µD is a closed convex function.

We claim that C ⊂ CD and that the restriction

f : C → R, f(x) = µD(x)

of µD to C fulfills point i) in Proposition 2.1.
Indeed, let x ∈ C. As 0 is not linearly accessible from C \ D, it follows in

particular that the segment [x; 0[ is not entirely contained in C \ D, and since
[x; 0[⊂ C, it results that

λx ∈ D for some 0 < λ < 1;

that is, x ∈ CD. Hence, C ⊂ CD.
To the end of analyzing the upper semi-continuity of the function f at 0, let us

recall, on one hand, that f(0) = 0 and, on the other, that the point 0 belongs to
the closure of the set C \D. One can thus find a sequence, say (xn)n∈N, of elements
from C \D converging to 0. Pick any of the vectors xn. As it does not belong to D,
the definition of the Minkowski gauge implies that f(xn) ≥ 1. The lack of upper
semi-continuity of f at 0 is therefore established.
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In order to address point ii) of Proposition 2.1, let us state the standard convex
analysis result saying that, given C a convex Fσ set, there exists at least one closed
convex function g : C → R. Indeed, C may be expressed as the union of an
increasing sequence of convex compact sets, say (An)n∈N, and we may set g for the
convex envelope of the function

h : C → R, h(x) = (min{n ∈ N : x ∈ An})2 .

Obviously, g is defined on the convex set C. Moreover, the technique used by Klee
to prove [10, Theorem 4.1] may be used with virtually no modifications to establish
that g is closed.

If the function g is discontinuous at 0, then it fulfills point ii). Assume now that
the function g is continuous at 0. The application

f : C → R, f(x) = g(x) + µD(x)

is closed and convex as the sum of closed and convex functions. Moreover, f is the
sum between a function which is continuous at 0 and a function which is discontin-
uous at the same point. Thus f is a closed convex application discontinuous at 0,
and Proposition 2.1 is completely proved. !

With the conclusions of Proposition 2.1 in mind, let us address Theorem 2.2, the
most technical part of our paper.

Theorem 2.2. Let C be a convex subset of X, and x0 be one of its points. The
two following statements are equivalent:

i) C is not polyhedral at x0.
ii) There is a closed convex set D containing x0 such that x0 ∈ C \D, yet x0 is

not linearly accessible from C \D.

Proof of Theorem 2.2. Without loss of generality, we can assume that x0 = 0.
i) ⇒ ii) Let us assume that C is not polyhedral at 0. By virtue of Corollary 3.3

in ([10, p. 88]), it results that the same holds for CC , the convex cone spanned by
C. Let us first prove a general result on non-polyhedral cones. !

Lemma 2.3. Let E be a non-polyhedral convex cone with apex 0. Then there is a
sequence (yn)n∈N ⊂ X such that:

i) for each x ∈ E and n large enough, the sequence (x · yn)n∈N takes only non-
positive values;

ii) for each n ∈ N, there is xn ∈ E such that xn · yn > 0.

Proof of Lemma 2.3. A far-reaching characterization of polyhedrality for cones was
achieved by Klee ([10, Theorem 4.11, p. 92]; the particular case of closed convex
cones had previously been provided by Mirkil [12, Theorem, p. 1]), which says that
a convex cone is polyhedral if and only if its projection on every two-dimensional
affine manifold of X is a closed set.

Accordingly, the convex cone Π(E) is not closed, where Π : X → X1 is the
operator of projection onto some plane X1 of X. Let v be a vector belonging to
the closure of Π(E) but not to Π(E) itself (as 0 = Π(0), it follows that v "= 0).

As the relative interiors of a convex set and of its closure coincide, the fact that
the vector v belongs to Π(E)\Π(E) implies that v lies within the relative boundary
of Π(E). A standard supporting hyperplane argument shows that there exists an
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element w ∈ X1 such that the function x → x ·w achieves its maximum over Π(E)
at v. On one hand, this fact implies that

(2.1) Π(x) · w ≤ v · w ∀x ∈ E;

on the other, since both the vectors 0 and 2 v belong to Π(E), it yields that

0 = 0 · w ≤ v · w, 2 v · w ≤ v · w.
Hence

(2.2) v · w = 0.

For every n ∈ N, let us set yn = w + v
n . As yn ∈ X1, it results that

(2.3) x · yn = Π(x) ·
(
w +

v

n

)
∀x ∈ E, n ∈ N.

We claim that the sequence (yn)n∈N fulfills relation i). Let us pick x ∈ E. In
view of relation (2.1), there are two possible cases: a) Π(x) · w < v · w and b)
Π(x) · w = v · w.

In case a), from relation (2.2) we infer that

(2.4) Π(x) · w < 0.

As obviously

(2.5) lim
n→∞

Π(x) · v
n
= 0,

statement i) comes from relations (2.3), (2.4) and (2.5).
In case b), Π(x) · w = 0, so Π(x) belongs to the hyperplane

Hw = {z ∈ X1 : z · w = 0}
of X1. But X1 is a two-dimensional vector space, and each of its hyperplanes is
in fact a line; moreover, we have already proved (relation (2.2)) that the non-null
vector v belongs to Hw. It results that Π(x) lies on the line R v.

As v /∈ Π(E) and since Π(E) is a cone with apex 0, it follows that the half-line
R∗

+ v is disjoint from Π(E). We may thus affirm that

(2.6) Π(x) = −λ v for some λ ≥ 0.

By combining relations (2.2), (2.3) and (2.6), we conclude that

x · yn = −λ
‖v‖2

n
≤ 0 ∀ n ∈ N.

Statement i) is therefore fulfilled in both situations a) and b).
Let us now address relation ii). As v ∈ Π(E), there is a sequence (zn)n∈N ⊂ E

such that the sequence (Π(zn))n∈N converges to v. Pick k ∈ N and apply relation
(2.3) for x = zn and yk:

zn · yk = Π(zn) ·
(
w +

v

k

)
∀n ∈ N.

Accordingly,

lim
n→∞

(zn · yk) = v ·
(
w +

v

k

)
;

by virtue of relation (2.2), we obtain that

lim
n→∞

(zn · yk) =
‖v‖2

k
> 0.
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The set Lk = {n ∈ N : zn · yk > 0} is therefore non-empty. Set u(k) = minLk,
and, for each positive integer n, define xn as being zu(n). The sequences (xn)n∈N
and (yn)n∈N obviously fulfill relation ii). !

Let us now get back to the proof of the implication i) ⇒ ii) from Theorem 2.2
and apply the conclusions of Lemma 2.3 to the non-polyhedral cone CC .

Accordingly, there are two sequences, (xn)n∈N ⊂ CC and (yn)n∈N ⊂ X, such that

(2.7) ∀x ∈ CC , x · yn ≤ 0 for n large enough,

and

(2.8) xn · yn > 0 ∀n ∈ N.
Since xn is a vector from the cone spanned by the convex set C and 0 ∈ C, we find
that there is a positive real number, say ζn, such that

λxn ∈ C ∀0 ≤ λ ≤ ζn.

Set

λn = min

(
ζn,

1

n ‖xn‖

)
∀n ∈ N.

It follows that λn xn∈C for each positive integer n and that the sequence (λn xn)n∈N
converges to 0.

Define the set

D = {x ∈ X : x · yn ≤ λn
xn · yn

2
∀n ∈ N}.

Obviously, D is a closed convex set which contains the point 0. Moreover, for every
positive integer n, the point λn xn belongs to C but does not belongs to D. As the
sequence λn xn converges to 0, we may conclude that 0 ∈ C \D.

To show that 0 is not linearly accessible from C \D, let us pick x ∈ C and recall
(see relation (2.7)) that the sequence (x · yn)n∈N takes only a finite number of pos-

itive values, while, by virtue of the inequality (2.8), the sequence
(
λn

xn · yn
2

)

n∈N

has only positive terms. Thus, the sequence

(
2 (x · yn)

λn (xn · yn)

)

n∈N
has a finite number

of positive values, so there is a positive real number a such that

2 (x · yn)
λn (xn · yn)

≤ a ∀n ∈ N.

For every positive number µ such that µa ≤ 1, it results that

µ (x · yn) ≤ (µa) λn
xn · yn

2
≤ λn

xn · yn
2

∀n ∈ N.

Accordingly,

µx ∈ D ∀0 ≤ µ ≤ 1

a
,

and we may conclude that there is no point x ∈ C such that the segment [x, 0[ is
entirely contained within C\D. In other words, the point 0 is not linearly accessible
from C \D.

ii) ⇒ i) This implication easily follows by combining the classical GKR theorem
and Proposition 2.1. !

The main result of this note now stems from combining Proposition 2.1 and
Theorem 2.2.
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Theorem 2.4. Given C, a convex subset of the Euclidean space X, and x0 ∈ C,
every convex function f : C → R is upper semi-continuous at x0 if and only if C
is polyhedral at x0.

When, in addition, C is an Fσ set, then each closed convex function f : C → R
is continuous at x0 if and only if C is polyhedral at x0.

Acknowledgment

The author is grateful to the anonymous referee for helpful comments and sug-
gestions, which have been included in the final version of this paper.

References

1. A. V. Arkhangel’skĭı, V. I. Ponomarev, Fundamentals of general topology: problems and exer-
cises, Mathematics and Its Applications, 13. Dordrecht - Boston - Lancaster, 1984. MR785749
(87i:54001)

2. M. Avriel, W. E. Diewert, S. Schaible, I. Zang, Generalized concavity, Classics in Applied
Mathematics, 63, Philadelphia, 2010. MR0927084 (89e:90155)
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