
Emanuela Del Gado- PhD in Physics
- Professor (Full) at Georgetown University
Emanuela Del Gado
- PhD in Physics
- Professor (Full) at Georgetown University
About
175
Publications
26,050
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,914
Citations
Introduction
Current institution
Publications
Publications (175)
We use numerical simulations and an athermal quasistatic shear protocol to investigate the yielding
of a model colloidal gel. Under increasing deformation, the elastic regime is followed by a significant stiffening before yielding takes place. A space-resolved analysis of deformations and stresses unravel how the complex load curve observed is the...
We demonstrate that the spatial correlations of microscopic stresses in 2D model colloidal gels obtained in computer simulations can be quantitatively described by the predictions of a theory for emergent elasticity of pre-stressed solids (vector charge theory). By combining a rigidity analysis with the characterization provided by the stress corre...
Nature uses discrete molecular building blocks to form polymers that assemble into multicomponent, multi-dynamic networks, inside (cytoskeleton) and outside (extracellular matrix) the cell. Both the intra-fibrous molecular dynamics and interactions between fibers dictate (non)linear mechanics, such as stress stiffening and relaxation, and ultimatel...
Natural and synthetic multi-component gels display emergent properties, which implies that they are more than just the sum of their components. This warrants the investigation of the role played by inter-species interactions in shaping gel architecture and rheology. Here, using computer simulations, we investigate the effect of changing the strengt...
Cessation of flow in yield stress fluids results in a stress relaxation process that eventually leads to a finite residual stress. Both the rate of stress relaxation and the magnitude of the residual stresses systematically depend on the preceding flow conditions. To assess the microscopic origin of this memory effect, we combine experiments with l...
Soft amorphous materials are viscoelastic solids ubiquitously found around us, from clays and cementitious pastes to emulsions and physical gels encountered in food or biomedical engineering. Under an external deformation,...
Earth's surface materials constitute the basis for life and natural resources. Most of these materials can be catergorized as soft matter, yet a general physical understanding of the ground beneath our feet is still lacking. Here we provide some perspectives.
Discontinuous shear thickening (DST) is associated with a sharp rise in a suspension’s viscosity with increasing applied shear rate or stress. Key signatures of DST, highlighted in recent studies, are the very large fluctuations of the measured stress as the suspension thickens with increasing rate. A clear link between microstructural development...
Soft materials are usually defined as materials made of mesoscopic entities, often self-organized, sensitive to thermal fluctuations and to weak perturbations. Archetypal examples are colloids, polymers, amphiphiles, liquid crystals, foams. The importance of soft materials in everyday commodity products, as well as in technological applications, is...
Nearly, all dense suspensions undergo dramatic and abrupt thickening transitions in their flow behavior when sheared at high stresses. Such transitions occur when the dominant interactions between the suspended particles shift from hydrodynamic to frictional. Here, we interpret abrupt shear thickening as a precursor to a rigidity transition and giv...
Inspired by presentations by the authors during a workshop organized at the Princeton Center for Theoretical Science (PCTS) in January 2022, we present a perspective on some of the outstanding questions related to the "physics of the ground beneath our feet." These identified challenges are intrinsically shared with the field of Soft Matter but als...
Identifying the necessary conditions for the onset of rigidity in a gel remains a challenge. It has been suggested that local particle coordination could be used to establish such conditions, but rigid gels occur for various coordination numbers. Combining simulations, oscillatory rheology, and a percolation analysis, for particles where the valenc...
Soft particulate gels are composed of a small amount of particulate matter dispersed in a continuous fluid phase. The solid components assemble to form a porous matrix, providing rigidity and control of the mechanical response, despite being the minority constituent. The rheological response and gel elasticity are direct functions of the particle v...
We investigate the spatial correlations of microscopic stresses in soft particulate gels using 2D and 3D numerical simulations. We use a recently developed theoretical framework predicting the analytical form of stress-stress correlations in amorphous assemblies of athermal grains that acquire rigidity under an external load. These correlations exh...
Cement-based construction 3D printing (C3DP) has the potential to be a climate solution by promoting cement decarbonization. Here we propose five policy actions that can guide C3DP toward becoming an emission abating tool.
Prestress in amorphous solids bears the memory of their formation and plays a profound role in their mechanical properties. Here we develop a set of mathematical tools to investigate mechanical response of prestressed systems, using stress rather than strain as the fundamental variable. This theory allows microscopic prestress to vary for the same...
Soft particulate gels include materials we can eat, squeeze, or 3D print. From foods to bio-inks to cement hydrates, these gels are composed of a small amount of particulate matter (proteins, polymers, colloidal particles, or agglomerates of various origins) embedded in a continuous fluid phase. The solid components assemble to form a porous matrix...
DOI:https://doi.org/10.1103/PhysRevE.106.050001
Soft particulate gels can reversibly yield when sufficient deformation is applied, and the characteristics of this transition can be enhanced or limited by designing hybrid hydrogel composites. While the microscopic dynamics and macroscopic rheology of these systems have been studied separately in detail, the development of direct connections betwe...
We investigate the spatial correlations of microscopic stresses in soft particulate gels, using 2D and 3D numerical simulations. We use a recently developed theoretical framework predicting the analytical form of stress-stress correlations in amorphous assemblies of athermal grains that acquire rigidity under an external load. These correlations ex...
Discontinuous shear thickening (DST) is associated with a sharp rise of a suspension's viscosity with increasing applied shear rate. A key signature of DST, highlighted in recent studies, is the very large fluctuations of the measured stress as the suspension thickens. A clear link between microstructural development and the dramatic increase of th...
Monodisperse suspensions of Brownian colloidal spheres crystallize at high densities, and ordering under shear has been observed at densities below the crystallization threshold. We perform large-scale simulations of a model suspension containing over [Formula: see text] particles to quantitatively study the ordering under shear and to investigate...
Arrested soft materials such as gels and glasses exhibit a slow stress relaxation with a broad distribution of relaxation times in response to linear mechanical perturbations. Although this macroscopic stress relaxation is an essential feature in the application of arrested systems as structural materials, consumer products, foods, and biological m...
Ion specificity and related Hofmeister effects, which are ubiquitous in aqueous systems, can have spectacular consequences in hydrated clays, where ion-specific nanoscale surface forces can determine large-scale cohesive swelling and shrinkage behaviors of soil and sediments. We have used a semiatomistic computational approach and examined sodium,...
Soft particulate gels can reversibly yield when sufficient deformation is applied, and the characteristics of this transition can be enhanced or limited by designing hybrid hydrogel composites. While the microscopic dynamics and macroscopic rheology of these systems have been studied separately in detail, the development of direct connections betwe...
Ion specificity and related Hofmeister effects, ubiquitous in aqueous systems, can have spectacular consequences in hydrated clays, where ion-specific nanoscale surface forces can determine large scale cohesive, swelling and shrinkage behaviors of soil and sediments. We have used a semi-atomistic computational approach and examined sodium, calcium...
Like-charge attraction, driven by ionic correlations, challenges our understanding of electrostatics both in soft and hard matter. For two charged planar surfaces confining counterions and water, we prove that even at relatively low correlation strength, the relevant physics is the ground-state one, oblivious of fluctuations. Based on this, we deri...
Monodisperse suspensions of Brownian colloidal spheres crystallize at high densities, and ordering under shear has been observed at densities below the crystallization threshold. We perform large-scale simulations of a model suspension containing over $10^5$ particles to quantitatively study the ordering under shear and to investigate its link to t...
Prestress in amorphous solids bears the memory of their formation, and plays a profound role in their mechanical properties, from stiffening or softening elastic moduli to shifting frequencies of vibrational modes, as well as directing yielding and solidification in the nonlinear regime. Here we develop a set of mathematical tools to investigate el...
Cement is one of the most produced materials in the world. A major player in greenhouse gas emissions, it is the main binding agent in concrete, to which it provides a cohesive strength that rapidly increases during setting. Understanding how such cohesion emerges has been a major obstacle to advances in cement science and technology. Here, we comb...
We discuss a class of models for particulate gels in which the particle contacts are described by an effective interaction combining a two-body attraction and a three-body angular repulsion. Using molecular dynamics, we show how varying the model parameters allows us to sample, for a given gelation protocol, a variety of gel morphologies. For a spe...
Cement is the most produced material in the world. A major player in greenhouse gas emissions, it is the main binding agent in concrete, providing a cohesive strength that rapidly increases during setting. Understanding how such cohesion emerges is a major obstacle to advances in cement science and technology. Here, we combine computational statist...
Nearly all dense suspensions undergo dramatic and abrupt thickening transitions in their flow behavior when sheared at high stresses. Such transitions occur when the dominant interactions between the suspended particles shift from hydrodynamic to frictional. Here, we interpret abrupt shear thickening as a precursor to a rigidity transition, and giv...
We discuss a class of models for particulate gels in which the particle contacts are described by an effective interaction combining a two-body attraction and a three-body angular repulsion. Using molecular dynamics, we show how varying the model parameters allows us to sample, for a given gelation protocol, a variety of gel morphologies. For a spe...
The topic of rheology was discussed at the virtual symposium entitled ‘Physics of Dense Suspensions’ (PDS) held from n July 9–10, 2020, in response to the broad interest raised by the special issue of the Journal of Rheology. A virtual meeting was, organized to accommodate the desire expressed by many to discuss the fundamental questions brought to...
Supramolecular polymers are known to form strong and resilient hydrogels which can take up large amounts of water while exhibiting ease of processing and self-healing. They also possess similarities with networks of biological macromolecules. The combination of these features makes supramolecular polymers ideal candidates for studying mechanisms an...
We have designed three-dimensional numerical simulations of a soft spheres model, with size polidispersity and in athermal conditions, to study the transient shear banding that occurs during yielding of jammed soft solids. We analyze the effects of different types of drag coefficients used in the simulations and compare the results obtained using L...
During cement hydration, C-S-H nanoparticles precipitate and form a porous and heterogeneous gel that glues together the hardened product. C-S-H nucleation and growth is driven by dissolution of the cement grains, posing the question of how cement grain surfaces induce spatial heterogeneities in the formation of C-S-H and affect the overall microst...
We present a detailed numerical study of multi-component colloidal gels interacting sterically and obtained by arrested phase separation. Under deformation, we found that the interplay between the different intertwined networks is key. Increasing the number of component leads to softer solids that can accomodate progressively larger strain before y...
Dense suspensions can undergo a dramatic increase in viscosity at a critical value of the shear stress. This phenomenon, termed discontinuous shear thickening (DST), has been attributed to an increase in the fraction of particle interactions becoming frictional with increasing shear stress, and a successful mean-field theory has been developed to e...
We present a detailed numerical study of multi-component colloidal gels interacting sterically and obtained by arrested phase separation. Under deformation, we found that the interplay between the different intertwined networks is key. Increasing the number of component leads to softer solids that can accomodate progressively larger strain before y...
We have designed 3D numerical simulations of a soft spheres model, with size polidispersity and in athermal conditions, to study the transient shear banding that occurs during yielding of jammed soft solids. We analyze the effects of different types of drag coefficients used in the simulations and compare the results obtained using Lees-Edwards per...
Rigidity percolation (RP) occurs when mechanical stability emerges in disordered networks as constraints or components are added. Here we discuss RP with structural correlations, an effect ignored in classical theories albeit relevant to many liquid-to-amorphous-solid transitions, such as colloidal gelation, which are due to attractive interactions...
Soft amorphous solids such as gels made of particles or small aggregates form in a variety of soft matter systems. The complexity of the large scale organization of the gel network, its elasticity, and the mechanical heterogeneities that can be easily generated during the gel self-assembly have implications for the aging properties of those materia...
Rigidity percolation (RP) occurs when mechanical stability emerges in disordered networks as constraints or components are added. Here we discuss RP with structural correlations, an effect ignored in classical theories albeit relevant to many liquid-to-amorphous-solid transitions, such as colloidal gelation, which are due to attractive interactions...
We use molecular dynamics simulations to investigate the linear viscoelastic response of a model three-dimensional particulate gel. The numerical simulations are combined with a novel test protocol (the optimally windowed chirp or OWCh), in which a continuous exponentially varying frequency sweep windowed by a tapered cosine function is applied. Th...
We use molecular dynamics simulations of a model three-dimensional particulate gel, to investigate the linear viscoelastic response. The numerical simulations are combined with a novel test protocol (the optimally- windowed chirp or OWCh), in which a continuous exponentially-varying frequency sweep windowed by a tapered cosine function is applied....
Understanding protein adsorption onto polymer surfaces is of great importance in designing biomaterials, improving bioanalytical devices, and controlling biofouling, to name a few examples. Although steady research efforts have been advancing this field, our knowledge of this ubiquitous and complex phenomenon is still limited. In this study, we elu...
Significance
Point mutations in α-actinin-4 (ACTN4) cause a form of kidney disease in humans. Although we know these mutations affect kidney podocytes, the mechanism by which they lead to podocyte dysfunction remains unclear. Here, we show that homozygous mutant Actn4 podocytes developed irrecoverable reductions in their contraction and irreparable...
We use a combination of confocal microscopy, rheology, and molecular dynamics simulations to investigate jammed emulsions under shear, by analyzing the 3D droplets rearrangements in the shear frame. Our quantitative analysis of local dynamics reveals elementary nonaffine rearrangements that underlie the onset of the flow at small strains. We find t...
In endothelial gap formation, local tractions exerted by the cell upon its basal adhesions are thought to exceed balancing tensile stresses exerted across the cell-cell junction, thus causing the junction to rupture. To test this idea, we mapped evolving tractions, intercellular stresses, and corresponding growth of paracellular gaps in response to...
The structural complexity of soft gels is at the origin of a versatile mechanical response that allows for large deformations, controlled elastic recovery and toughness in the same material. A limit to exploiting the potential of such materials is the insufficient fundamental understanding of the microstructural origin of the bulk mechanical proper...
The structural complexity of soft gels entails a versatile mechanical response that allows for large deformations, controlled elastic recovery and toughness in the same material. A limit to exploiting the potential of such materials is the insufficient fundamental understanding of the microstructural origin of the bulk mechanical properties. Here w...
The response to shear of the dense soft solids features a stress overshoot and a persistent shear banding before reaching a homogeneously flowing state. In 3D large scale simulations we analyze the time required for the onset of homogeneous flow, the normal stresses and structural signatures at different shear rates and in different flow geometries...
The response to shear of the dense soft solids features a stress overshoot and a persistent shear banding before reaching a homogeneously flowing state. In 3D large scale simulations we analyze the time required for the onset of homogeneous flow, the normal stresses and structural signatures at different shear rates and in different flow geometries...
Mechanical behavior of concrete crucially depends on cement hydrates, the “glue” of cement. The design of high performance and more environmentally friendly cements demands a deeper understanding of the formation of the multiscale structure of cement hydrates, when they precipitate and densify. We investigate the precipitation and setting of nano-g...
Nanoscale structural heterogeneities were recently revealed in computational and experimental studies of calcium silicate hydrates in hardened cement pastes. In this work their consequences for the mechanics are analyzed by computing local pressures in model samples at different overall densities, corresponding to different initial water-to-cement...
It is well known that jammed soft materials will flow if sheared above their yield stress - think mayonnaise spread on bread - but a complete microscopic description of this seemingly sim- ple process has yet to emerge. What remains elusive is a microscopic framework that explains the macroscopic flow, derived from a 3-D spatially resolved analysis...
Gelation and densification of calcium-silicate-hydrate take place during cement hydration. Both processes are crucial for the development of cement strength, and for the long term evolution of concrete structures. However, the physico-chemical environment evolves during cement formation, making it difficult to disentangle what factors are crucial f...
Using numerical simulations of a model soft solid we show that the relaxation dynamics underlying the aging of those materials changes dramatically when the frozen-in enthalpic stresses are significantly larger than Brownian stresses. In such conditions, elastically induced stress fluctuations lead to intermittent microscopic dynamics and scale-fre...
Soft solids with tunable mechanical response are at the core of new material technologies, but a crucial limit for applications is their progressive aging over time, which dramatically affects their functionalities. The generally accepted paradigm is that such aging is gradual and its origin is in slower than exponential microscopic dynamics, akin...
Colloidal gels are defined as systems that, to exhibit solid-like properties, must fulfill both conditions, local arrest of the particles and formation of space spanning networks. This chapter highlights the essential components and properties of colloidal gelation. It focuses on three key concepts related to colloidal gels: namely the interactions...
Significance
Calcium–silicate–hydrate (C–S–H) nanoscale gels are the main binding agent in cement and concrete, crucial for the strength and the long-term evolution of the material. Even more than the molecular structure, the C–S–H mesoscale amorphous texture over hundreds of nanometers plays a crucial role for material properties. We use a statist...
Disruption of endothelial barrier function by edemagenic mediators such as thrombin occurs largely through the formation of paracellular gaps between the constituent cells. Classical understanding of this process emphasizes disruption of a localized balance of forces between the centripetal tractions exerted by the endothelial cell upon its substra...
Calcium-silicate hydrate (C-S-H) is the main binder in cement and concrete. It starts forming from the early stages of cement hydration and it progressively densifies as cement sets. C-S-H nanoscale building blocks form a cohesive gel, whose structure and mechanics are still poorly understood, in spite of its practical importance. Here we review a...
The logarithmic deviatoric creep of cement paste is a technical and scientific challenge. Transition State Theory (TST) indicates that some nanoscale mechanisms of shear deformation, associated with a specific kind of strain hardening, can explain the type of deviatoric creep observed experimentally in mature cement pastes. To test this possible ex...
By the end of cement hydration calcium-silicate-hydrate (C-S-H) gels extends over tens and hundreds of nanometers. Their complex texture affects directly, and to a large extent, the macroscopic hygrothermal and mechanical behavior of cement. Here we review a statistical physics approach recently developed, which allows us to investigate the gel for...
Despite their impact on longevity, serviceability, and environmental footprint of our built infrastructure, the chemo-physical origins of nanoscale properties of cementitious materials, and their link to macroscale properties still remain rather obscure. Here, we discuss a multi-scale approach that describes different aspects of physical properties...
Crystallographic surface-resolved examination of protein-ZnO interactions can greatly enhance the fundamental understanding of protein adsorption on these technologically important solid surfaces which, in turn, will be tremendously valuable for the emerging applications of ZnO-based biomaterials and biosensors. We examine experimentally and via co...
In the adsorption of nanoparticles at liquid interfaces, soft and short ranged repulsive effective interactions between the nanoparticles at the interface may eventually induce crowding, slow dynamics and jamming at high surface coverage. These phenomena can interfere with the adsorption process, significantly slowing down its kinetics. Here, by me...
We perform Atomic Force Microscopy and numerical simulations of a bimodal solution containing long, semiflexible β-lactoglobulin fibrils and short, flexible β-lactoglobulin linear aggregates at an air-water interface. Short aggregates orient perpendicular to fibrils at very short distances and preferentially parallel at intermediate distances. At e...
A contending technology for non volatile memories of the next generation is based on a remarkable property of chalcogenide alloys known as phase change materials, namely their ability to undergo a fast and reversible transition between the amorphous and crystalline phases upon heating. The fast crystallization has been ascribed to the persistence o...
We investigate conformations and effective interactions of polymer-coated nanoparticles adsorbed at a model liquid-liquid interface via molecular dynamics simulations. The polymer shells strongly deform at the interface, with the shape governed by a balance between maximising the decrease in interfacial area between the two solvent components, mini...
Calcium-silicate hydrate (C-S-H) is the main binding agent in cement and concrete. It forms at the beginning of cement hydration, it progressively densifies as cement hardens and is ultimately responsible of concrete performances. This hydration product is a cohesive nano-scale gel, whose structure and mechanics are still poorly understood, in spit...
We study the assembly into a gel network of colloidal particles, via effective interactions that yield local rigidity and make dilute network structures mechanically stable. The self-assembly process can be described by a Flory-Huggins theory, until a network of chains forms, whose mesh size is on the order of, or smaller than, the persistence leng...
We find that the hierarchical organization of the potential energy landscape in a model supercooled liquid can be related to a change in the spatial distribution of soft normal modes. For groups of nearby minima, between which fast relaxation processes typically occur, the localization of the soft modes is very similar. The spatial distribution of...
The mechanics and rheology of cement pastes are largely determined by the calcium-silicate-hydrate (C–S–H) gel, which is normally the main binding phase. The C–S–H gel is an amorphous material with a nanoscale pore network. Here we consider a model structure of the gel, where a continuous molecular model of non-porous C–S–H is combined with a collo...