Elvis Dohmatob

Elvis Dohmatob
  • PhD
  • Rsearcher at Criteo

About

51
Publications
23,281
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
910
Citations
Introduction
Research scientist, Criteo AI Lab. Previously Phd student a post-doct at Parietal Team (headed by @Bertrand Thirion), INRIA
Current institution
Criteo
Current position
  • Rsearcher

Publications

Publications (51)
Article
Full-text available
"It's opening night at the opera, and your friend is the prima donna (the lead female singer). You will not be in the audience, but you want to make sure she receives a standing ovation -- with every audience member standing up and clapping their hands for her."
Preprint
Machine learning models may capture and amplify biases present in data, leading to disparate test performance across social groups. To better understand, evaluate, and mitigate these possible biases, a deeper theoretical understanding of how model design choices and data distribution properties could contribute to bias is needed. In this work, we c...
Article
Full-text available
The Individual Brain Charting (IBC) is a multi-task functional Magnetic Resonance Imaging dataset acquired at high spatial-resolution and dedicated to the cognitive mapping of the human brain. It consists in the deep phenotyping of twelve individuals, covering a broad range of psychological domains suitable for functional-atlasing applications. Her...
Preprint
In this paper, we investigate the impact of test-time adversarial attacks on linear regression models and determine the optimal level of robustness that any model can reach while maintaining a given level of standard predictive performance (accuracy). Through quantitative estimates, we uncover fundamental tradeoffs between adversarial robustness an...
Preprint
Full-text available
In this paper, we investigate the impact of neural networks (NNs) topology on adversarial robustness. Specifically, we study the graph produced when an input traverses all the layers of a NN, and show that such graphs are different for clean and adversarial inputs. We find that graphs from clean inputs are more centralized around highway edges, whe...
Preprint
Full-text available
We consider Contextual Bandits with Concave Rewards (CBCR), a multi-objective bandit problem where the desired trade-off between the rewards is defined by a known concave objective function, and the reward vector depends on an observed stochastic context. We present the first algorithm with provably vanishing regret for CBCR without restrictions on...
Preprint
Full-text available
As recommender systems become increasingly central for sorting and prioritizing the content available online, they have a growing impact on the opportunities or revenue of their items producers. For instance, they influence which recruiter a resume is recommended to, or to whom and how much a music track, video or news article is being exposed. Thi...
Preprint
A determinantal point process (DPP) is an elegant model that assigns a probability to every subset of a collection of $n$ items. While conventionally a DPP is parameterized by a symmetric kernel matrix, removing this symmetry constraint, resulting in nonsymmetric DPPs (NDPPs), leads to significant improvements in modeling power and predictive perfo...
Preprint
In this note, we initiate a rigorous study of the phenomenon of low-dimensional adversarial perturbations in classification. These are adversarial perturbations wherein, unlike the classical setting, the attacker's search is limited to a low-dimensional subspace of the feature space. The goal is to fool the classifier into flipping its decision on...
Preprint
Neural networks are known to be highly sensitive to adversarial examples. These may arise due to different factors, such as random initialization, or spurious correlations in the learning problem. To better understand these factors, we provide a precise study of robustness and generalization in different scenarios, from initialization to the end of...
Preprint
A determinantal point process (DPP) on a collection of $M$ items is a model, parameterized by a symmetric kernel matrix, that assigns a probability to every subset of those items. Recent work shows that removing the kernel symmetry constraint, yielding nonsymmetric DPPs (NDPPs), can lead to significant predictive performance gains for machine learn...
Preprint
This work studies the (non)robustness of two-layer neural networks in various high-dimensional linearized regimes. We establish fundamental trade-offs between memorization and robustness, as measured by the Sobolev-seminorm of the model w.r.t the data distribution, i.e the square root of the average squared $L_2$-norm of the gradients of the model...
Article
Full-text available
Functional neuroimaging provides the unique opportunity to characterize brain regions based on their response to tasks or ongoing activity. As such, it holds the premise to capture brain spatial organization. Yet, the conceptual framework to describe this organization has remained elusive: on the one hand, parcellations build implicitly on a piecew...
Article
Full-text available
Functional magnetic resonance imaging (fMRI) has opened the possibility to investigate how brain activity is modulated by behavior. Most studies so far are bound to one single task, in which functional responses to a handful of contrasts are analyzed and reported as a group average brain map. Contrariwise, recent data‐collection efforts have starte...
Preprint
We consider gradient-flow (GF) and gradient-descent (GD) on linear classification problems in possibly infinite-dimensional and non-hilbertian Banach spaces. For exponential-tailed loss functions, including the usual exponential and logistic loss functions, we establish $\mathcal O (\log (n)/ t)$ convergence rate for the bias in case of GF, and $\w...
Article
Full-text available
We present an extension of the Individual Brain Charting dataset –a high spatial-resolution, multi-task, functional Magnetic Resonance Imaging dataset, intended to support the investigation on the functional principles governing cognition in the human brain. The concomitant data acquisition from the same 12 participants, in the same environment, al...
Preprint
Determinantal point processes (DPPs) have attracted significant attention from the machine learning community for their ability to model subsets drawn from a large collection of items. Recent work shows that nonsymmetric DPP kernels have significant advantages over symmetric kernels in terms of modeling power and predictive performance. However, th...
Preprint
We theoretically analyse the limits of robustness to test-time adversarial and noisy examples in classification. Our work focuses on deriving bounds which uniformly apply to all classifiers (i.e all measurable functions from features to labels) for a given problem. Our contributions are three-fold. (1) In the classical framework of adversarial atta...
Preprint
Typical architectures of Generative AdversarialNetworks make use of a unimodal latent distribution transformed by a continuous generator. Consequently, the modeled distribution always has connected support which is cumbersome when learning a disconnected set of manifolds. We formalize this problem by establishing a no free lunch theorem for the dis...
Article
Full-text available
The default mode network (DMN) is believed to subserve the baseline mental activity in humans. Its higher energy consumption compared to other brain networks and its intimate coupling with conscious awareness are both pointing to an unknown overarching function. Many research streams speak in favor of an evolutionarily adaptive role in envisioning...
Conference Paper
This manuscript introduces the idea of using Distributionally Robust Optimization (DRO) for the Counterfactual Risk Minimization (CRM) problem. Tapping into a rich existing literature, we show that DRO is a principled tool for counterfactual decision making. We also show that well-established solutions to the CRM problem like sample variance penali...
Preprint
Algorithms based on the entropy regularized framework, such as Soft Q-learning and Soft Actor-Critic, recently showed state-of-the-art performance on a number of challenging reinforcement learning (RL) tasks. The regularized formulation modifies the standard RL objective and thus, generally, converges to a policy different from the optimal greedy p...
Preprint
We study Label-Smoothing as a means for improving adversarial robustness of supervised deep-learning models. After establishing a thorough and unified framework, we propose several novel Label-Smoothing methods: adversarial, Boltzmann and second-best Label-Smoothing methods. On various datasets (MNIST, CIFAR10, SVHN) and models (linear models, MLPs...
Preprint
Full-text available
This manuscript introduces the idea of using Distributionally Robust Optimization (DRO) for the Counterfactual Risk Minimization (CRM) problem. Tapping into a rich existing literature, we show that DRO is a principled tool for counterfactual decision making. We also show that well-established solutions to the CRM problem like sample variance penali...
Preprint
Generalization to unknown/uncertain environments of reinforcement learning algorithms is crucial for real-world applications. In this work, we explicitly consider uncertainty associated with the test environment through an uncertainty set. We formulate the Distributionally Robust Reinforcement Learning (DR-RL) objective that consists in maximizing...
Preprint
Full-text available
This manuscript presents some new results on adversarial robustness in machine learning, a very important yet largely open problem. We show that if conditioned on a class label the data distribution satisfies the generalized Talagrand transportation-cost inequality (for example, this condition is satisfied if the conditional distribution has densit...
Article
Full-text available
Functional Magnetic Resonance Imaging (fMRI) has furthered brain mapping on perceptual, motor, as well as higher-level cognitive functions. However, to date, no data collection has systematically addressed the functional mapping of cognitive mechanisms at a fine spatial scale. The Individual Brain Charting (IBC) project stands for a high-resolution...
Article
Full-text available
Predictive models can be used on high-dimensional brain images to decode cognitive states or diagnosis/prognosis of a clinical condition/evolution. Spatial regularization through structured sparsity offers new perspectives in this context and reduces the risk of overfitting the model while providing in-terpretable neuroimaging signatures by forcing...
Technical Report
Full-text available
Predictive models can be used on high-dimensional brain images for diagnosis of a clinical condition. Spatial regularization through structured sparsity offers new perspectives in this context and reduces the risk of overfitting the model while providing interpretable neuroimaging signatures by forcing the solution to adhere to domain-specific cons...
Article
Full-text available
In Echo-Planar Imaging (EPI)-based Magnetic Resonance Imaging (MRI), inter-subject registration typically uses the subject's T1-weighted (T1w) anatomical image to learn deformations of the subject's brain onto a template. The estimated deformation fields are then applied to the subject's EPI scans (functional or diffusion-weighted images) to warp t...
Thesis
Mapping the functions of the human brain using fMRI data has become a very active field of research. However, the available theoretical and practical tools are limited and many important tasks like the empirical definition of functional brain networks, are difficult to implement due to lack of a framework for statistical modelling of such networks....
Preprint
Full-text available
Predictive models can be used on high-dimensional brain images for diagnosis of a clinical condition. Spatial regularization through structured sparsity offers new perspectives in this context and reduces the risk of overfitting the model while providing interpretable neuroimaging signatures by forcing the solution to adhere to domain-specific cons...
Conference Paper
So far considered as noise in neuroscience, irregular arrhyth-mic field potential activity accounts for the majority of the signal power recorded in EEG or MEG [1, 2]. This brain activity follows a power law spectrum P (f) ∼ 1/f β in the limit of low frequencies, which is a hallmark of scale invariance. Recently, several studies [1, 3–6] have shown...
Conference Paper
We study the convergence of the ADMM (Alternating Direction Method of Multipliers) algorithm on a broad range of penalized regression problems including the Lasso, Group-Lasso and GraphLasso,(isotropic) TV-L1, Sparse Variation, and others. First, we establish a fixed-point iteration –via a nonlinear operator– which is equivalent to the ADMM iterate...
Article
Full-text available
The total variation (TV) penalty, as many other analysis-sparsity problems, does not lead to separable factors or a proximal operatorwith a closed-form expression, such as soft thresholding for the $\ell\_1$ penalty. As a result, in a variational formulation of an inverse problem or statisticallearning estimation, it leads to challenging non-smooth...
Conference Paper
Full-text available
Functional brain imaging provides key information to characterize neurodegenerative diseases, such as Alzheimer’s disease (AD). Specifically, the metabolic activity measured through fluorodeoxyglucose positron emission tomography (FDG-PET) and the connectivity extracted from resting-state functional magnetic resonance imaging (fMRI), are promising...
Article
We present a simple primal-dual algorithm for computing approximate Nash equilibria in two-person zero-sum sequential games with imcomplete information and perfect recall (like Texas Hold'em Poker). Our algorithm only performs basic iterations (i.e iterations involving no calls to external first-order oracles, etc.) and is applicable to a broad cla...
Conference Paper
Full-text available
Prediction from medical images is a valuable aid to diagnosis. For instance, anatomical MR images can reveal certain disease conditions, while their functional counterparts can predict neuropsychi-atric phenotypes. However, a physician will not rely on predictions by black-box models: understanding the anatomical or functional features that underpi...
Conference Paper
The Graph Net (aka S-Lasso), as well as other "spar-sity + structure" priors like TV-L1, are not easily applicable to brain data because of technical problems concerning the selection of the regularization parameters. Also, in their own right, such models lead to challenging high-dimensional optimization problems. In this manuscript, we present som...
Research
Full-text available
PRNI 2015 paper, to appear in IEEE proceedings (image processing)
Article
Full-text available
Functional Magnetic Resonance Images acquired during resting-state provide information about the functional organization of the brain through measuring correlations between brain areas. Independent components analysis is the reference approach to estimate spatial components from weakly structured data such as brain signal time courses; each of thes...
Article
Full-text available
Analysis and interpretation of neuroimaging data often require one to divide the brain into a number of regions, or parcels, with homogeneous characteristics, be these regions defined in the brain volume or on the cortical surface. While predefined brain atlases do not adapt to the signal in the individual subject images, parcellation approaches us...
Preprint
Full-text available
The default mode network (DMN) is believed to subserve the baseline mental activity in humans. Its highest energy consumption compared to other brain networks and its intimate coupling with conscious awareness are both pointing to an overarching function. Many research streams support an evolutionarily adaptive role in envisioning experience to ant...
Conference Paper
Full-text available
Learning predictive models from brain imaging data, as in decoding cognitive states from fMRI (functional Magnetic Resonance Imaging), is typically an ill-posed problem as it entails estimating many more parameters than available sample points. This estimation problem thus requires regularization. Total variation regularization, combined with spars...
Conference Paper
Full-text available
Spontaneous brain activity reveals mechanisms of brain function and dysfunction. Its population-level statistical analysis based on functional images often relies on the definition of brain regions that must summarize efficiently the covariance structure between the multiple brain networks. In this paper, we extend a network-discovery approach, nam...

Network

Cited By