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A B S T R A C T   

Background: The recent, rapid development of digital technologies offers new possibilities for more efficient 
implementation of electronic health record (EHR) and personal health record (PHR) systems. A growing volume 
of healthcare data has been the hallmark of this digital transformation. The large healthcare datasets’ complexity 
and their dynamic nature pose various challenges related to processing, analysis, storage, security, privacy, data 
exchange, and usability. 
Materials and Methods: We performed a systematic review of systematic reviews to assess technological progress 
in EHR and PHR systems. We searched MEDLINE, Cochrane, Web of Science, and Scopus for systematic literature 
reviews on technological advancements that support EHR and PHR systems published between January 1, 2010, 
and October 06, 2020. 
Results: The searches resulted in a total of 2,448 hits. Of these, we finally selected 23 systematic reviews. Most of 
the included papers dealt with information extraction tools and natural language processing technology (n = 10), 
followed by studies that assessed the use of blockchain technology in healthcare (n = 8). Other areas of digital 
technology research included EHR and PHR systems in austere settings (n = 1), de-identification methods 
(n = 1), visualization techniques (n = 1), communication tools within EHR and PHR systems (n = 1), and 
methodologies for defining Clinical Information Models that promoted EHRs and PHRs interoperability (n = 1). 
Conclusions: Technological advancements can improve the efficiency in the implementation of EHR and PHR 
systems in numerous ways. Natural language processing techniques, either rule-based, machine-learning, or deep 
learning-based, can extract information from clinical narratives and other unstructured data locked in EHRs and 
PHRs, allowing secondary research (i.e., phenotyping). Moreover, EHRs and PHRs are expected to be the primary 
beneficiaries of the blockchain technology implementation on Health Information Systems. Governance regu-
lations, lack of trust, poor scalability, security, privacy, low performance, and high cost remain the most critical 
challenges for implementing these technologies.   
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1. Introduction 

Recent developments in technology have impacted the digitalization 
of health data and facilitated the adoption of electronic health record 
(EHR) systems, which have become mandatory in some countries [1]. 
There are many definitions of Electronic Health Records (EHR). For the 
purpose of this paper we will use the broadly accepted ISO (Interna-
tional Organization for Standardization) definition [2]: 

“An EHR is a data repository regarding the health and healthcare of a 
subject of care where all information is stored on electronic media”. 

Furthermore, a personal health record (PHR) will be defined by ISO/ 
TR 14292:2012(en) [3] as: 

“A representation of information regarding, or relevant to, the 
health, including wellness, development and welfare of that individual, 
which may be stand-alone or may integrate health information from 
multiple sources, and for which the individual, or the representative to 
whom the individual delegated his or her rights, manages and controls 
the PHR content and grants permissions for access by, and/or sharing 
with, other parties.” 

Growing volumes of healthcare data managed and stored electroni-
cally are inherent to the digital transformation [4]. The complexity and 
dynamic nature of large healthcare datasets pose challenges related to 
processing, storing, and analyzing such vast amounts of data. One of the 
main issues is that nearly 80 % of EHR data is unstructured (i.e., natural 
text language, diagnostic imaging) [5], making specialized data 
extraction tools necessary to derive meaningful information. Medical 
researchers cannot utilize the vast amount of health data locked in 
fragmented clinical databases to its full potential for personalized 
medicine and improved health outcomes [5]. Additionally, as more EHR 
data becomes accessible, more sophisticated methods are needed to 
safeguard data security and patient privacy (i.e., access-control policies, 
scrubbing, consent management). Blockchain technology is also gaining 
momentum in both industry and the public sector [6–9]. 

With the rapidly changing digital landscape, it is important to 
develop an overview of the impact of digital solutions in individual 
health record systems, including both electronic and personal health 
records. The purpose of this systematic review of systematic reviews is to 
provide an overview and a summary of the challenges, opportunities, 
and implementation status of core technologies that may potentially 
impact and leverage EHRs and PHRs. 

2. Materials and methods 

2.1. Search strategy 

Prior to conducting the review, we drafted a written protocol 
following the Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) [10] (Appendix A), including the review 
question, search strategy, methods, inclusion/exclusion criteria, risk of 
bias assessment, a synthesis plan, and a plan for investigating causes of 
heterogeneity. 

Then, we performed a systematic literature search using MEDLINE 
(accessed by PubMed), Cochrane (Cochrane Database of Systematic 
Reviews, Cochrane Central Register of Controlled Trials, Cochrane 
Methodology Register, Database of Abstracts of Reviews of Effects, 
Health Technology Assessment, Evidence-Based Practice Center pro-
gram, National Health Service Economic Evaluation Database), Web of 
Science (including SciELO Citation Index, Current Contents Connect, 
KCI-Korean Journal Database, Russian Science Citation Index) and 
Scopus. A manual search of references supplemented the database 
search. Instead of using a combination of EHRs and digital technologies 
keywords, we chose a more sensitive search strategy by using terms only 
related to EHRs and PHRs. Although this choice required more studies to 
be screened (n = 2,448), we purposefully intended to minimize the risk 
of missing any potentially eligible studies. There were no significant 
deviations from the protocol. The search strategies for each database are 

available in Appendix B. We identified keywords through a preliminary 
search (Textbox 1). 

Textbox 1. Search terms  
Search terms related to health technologies: health informatics OR mobile health 

OR mobile phone applications OR smartphone OR apps OR telemedicine OR 
interoperability OR Internet OR digital health literacy OR social media (Facebook, 
Twitter, YouTube, Instagram, Flickr, Google, LinkedIn, blog, wiki) OR big data OR 
open data OR personalized medicine OR data mining OR wearable OR smart health 
OR internet of things OR Wireless Technology OR cloud OR Bluetooth OR eHealth 
OR digital health OR information and communication technology OR SMS OR 
blockchain OR data science OR artificial intelligence OR machine learning OR deep 
learning 
Search terms related to electronic health records: individual health record OR 
electronic medical records OR electronic personal health record OR digital record 
OR health record OR personal health record OR medical record system OR 
electronic health record.  

2.2. Eligibility criteria and study selection 

We searched for systematic literature reviews where the intervention 
was any digital solution, and the outcome was the intervention’s impact 
on personal and electronic health records. Articles published between 
January 2010 and October 2020 in English, French, Spanish, Italian, and 
Portuguese were eligible. Exclusion criteria were (1) studies not relevant 
to the purpose of the review, (2) studies about usability or user accep-
tance, (3) studies about the impact of EHRs or personal health records on 
specific health outcomes, (4) studies with a focus on privacy and 
cyberthreats, (5) studies on legislation related to EHRs, (6) non- 
systematic reviews, (7) studies written in another language, (8) 
studies published before 2010, (9) non-human studies, or (10) studies 
for which full-text was not available. We imported references into 
Endnote X7.8 (Thomson Reuters, Toronto, ON, Canada) and removed 
duplicates. The selection process took place in two steps. First, we 
screened titles and abstracts applying the criteria above. Secondly, we 
reviewed the full text of articles retrieved in the first step. The screening 
and full-text review were carried out independently by two reviewers. 
Studies were selected once a consensus was reached. 

2.3. Data collection process 

Data from the full-text selected papers were exported into MS Excel 
by a single reviewer and verified by a second reviewer. We extracted the 
following data: journal, publication year, databases searched, study 
period, setting/scenario, purpose, intervention type, number of studies, 
study design, main results, opportunities, and implementation 
challenges. 

2.4. Quality assessment 

We contemplated using the assessment of multiple systematic re-
views tool (AMSTAR2) [11] for assessing methodological quality. 
However, since descriptive studies are not the primary target of 
AMSTAR2, we found the applicability of some checklist items unclear. 
Moreover, consensus on quality assessment tools for descriptive studies 
is still lacking [12–14]. Therefore, we deviated from the original 
AMSTAR2 checklist and adapted the list of questions, which better fit 
the methodological focus of the selected systematic reviews. The 
tailored checklist for assessing the quality of the selected studies is 
available in Table 1. 

3. Results 

A flow chart of the literature search and study selection results is 
shown in Fig. 1. 

A total of 3,093 articles were retrieved. After removing duplicates, 
we screened 2,448 records by title and abstract. Of these, 964 (39.4 %) 
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articles were not relevant to the research question. We identified and 
removed another 59 overlapping publications. Seventy-two full-text 
articles were reviewed, and 23 systematic reviews were selected for the 
study [15–37]. An overview of all selected studies is presented in 

Table 2, with the first author, year of publication, journal, and research 
area. The list of 49 studies that were excluded after full-text review with 
reasons for exclusion can be found in Appendix C. 

Searching for multiple systematic reviews on the same topic defini-
tively resulted in some overlap. Specifically, 8 out of the 23 studies 
included, which represented nearly 35 % of all systematic literature 
reviews, dealt with the impact and uses of blockchain technology in 
EHR/PHR. When checking for overlap we found that of the 332 studies 
included in these 8 reviews, there were 70 duplicate citations and 262 
unique studies. On further analysis we still considered all 23 studies 
qualified for inclusion. 

3.1. Quality of included studies 

The proposed quality criteria scores were assessed for each selected 
article. Although none of the items fully satisfied the eleven criteria for 
quality assessment, all articles clearly presented their research purpose, 
used a comprehensive search strategy, described the background and 
included papers in detail, and discussed any heterogeneity found. No 
reviews provided a list of excluded studies during full-text screening, but 
two provided the full list of studies included at each step of the screening 
process. Twelve reviews did not use any method for quality assessment. 
Most reviews (20/23) reported any potential conflicts of interest and 

Table 1 
Quality assessment criteria.  

Question 
number 

Issue 

Q1 Did the review clearly show the purpose of the research? 
Q2 Did the review adequately describe the literature review, 

background, or context? 
Q3 Did the review authors use a comprehensive literature search 

strategy? 
Q4 Did the review authors perform study selection in duplicate? 
Q5 Did the review authors perform data extraction in duplicate? 
Q6 Did the review authors provide a list of excluded studies and justify 

the exclusions? 
Q7 Did the review authors describe the included studies in adequate 

detail? 
Q8 Was the scientific quality of the individual studies assessed? 
Q9 Did the review authors provide a satisfactory explanation for, and 

discussion of, any heterogeneity observed in the results? 
Q10 Did the review authors report any potential conflict of interest? 
Q11 Did the review authors report on sources of funding?  

Fig. 1. PRISMA flow chart of the systematic review of systematic reviews on the impact of technological advancements on electronic health record systems.  
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funding sources (20/23). Appendix D shows the results of the quality 
assessment of the 23 systematic reviews. 

3.2. Study characteristics 

All included papers were published between 2013 and 2020 in 11 
journals. Considering the format and content of each review, we clas-
sified each into seven general classes. Most studies (n = 10) assessed 
information extraction (IE) and natural language processing technology 
(NLP) followed by studies that evaluated the use of blockchain tech-
nology in healthcare (n = 8). Other areas included digital solutions for 
EHR systems in austere settings of low-income countries (n = 1), de- 
identification methods (n = 1), visualization techniques for EHR data 
(n = 1), communication tools within EHR systems between healthcare 
providers (n = 1), and the processes and methodologies for defining 
Clinical Information Models (CIM) that promote EHR interoperability 
(n = 1). None of the systematic reviews performed a meta-analysis. The 
analysis of results is shown in Table 3, where the potential impact of the 
technical solutions, opportunities, and the outstanding issues to be 
addressed for each of these tools is available. In addition, a descriptive 
summary of the 23 systematic reviews included is in Appendix E. 

3.3. Digital solutions for EHR systems in austere settings 

One systematic review assessed technological EHR solutions specif-
ically designed for mobile medical missions working in austere condi-
tions [16]. Their comprehensive search only yielded two publications, 
each describing a system (iChart, SmartList To Go) [38,39]. Another 
thirteen EHR systems were found through internet searches. Three 
(Project Buendia, TEBOW, and a University of Central Florida’s inter-
nally developed EMR) were based on modified versions of OpenMRS 
software, whereas another three were smartphone apps (QuickChart 
EMR, iChart, NotesFirst). The availability of numerous independent 
EMR systems may further fragment medical care in low resource set-
tings. An important caveat of these systems related to limited internet 
access. Connectivity can only be guaranteed through expensive satellite 
connections, opportunistic internet connections or local networks, 
which sometimes exceed logistic capabilities existing in those settings. 
Most EHR systems for austere settings are still at the pilot phase, and 
further development is needed. Specifically, interoperability and data 
sharing with larger systems should be considered a priority before 
widespread implementation. 

3.4. Clinical Information Models 

Clinical Information Models (CIMs) are technical specifications that 
define how clinical information is managed inside an EHR system, 
determining how interoperable EHR systems are. One review [26] 
identified and compared processes and methodologies for defining CIMs 
that promoted EHR interoperability. Only 52.8 % of the included studies 
described the CIM process, and only 11.1 % provided a detailed 
description of the terminology binding process. The authors recom-
mended sharing CIMs openly. 

Despite using different technologies and standards (e.g., EN ISO 
13606 and openEHR), all reviewed papers used a similar methodolog-
ical approach to create CIMs. Thus, the review showed the possibility of 
developing a common standard and a unified best practice methodology 
for CIMs supporting EHR interoperability. The review did not find a 
unified standard CIM process in the literature. At the time, the Clinical 
Information Modelling Initiative (CIMI) was in a conceptual stage. 

3.5. De-identification methods 

De-identification scrubs patient identifiers while safeguarding rele-
vant health data. Eighteen methods for automatically de-identifying 
narrative text in EHR were reviewed by Meystre, et al. [24]. The 
methods used were Conditional Random Fields, Decision Trees, 
Maximum Entropy models, or Support Vector Machines (SVM), com-
bined with dictionaries and sometimes regular expressions. Most iden-
tified methods used pattern matching, rules, and dictionaries instead of 
machine learning-based methods. However, machine learning (ML) 
methods, and specially deep-learning, have shown a better performance 
[33]. No studies assessed the impact of de-identification on subsequent 
automated information extraction despite that technologies such as NLP 
may be less successful when processing de-identified reports compared 
to fully identified reports. 

3.6. Communication tools within EHR systems between healthcare 
providers 

Walsh et al. reviewed electronic communication tools between 
healthcare providers, both within and external to EHR systems [30]. The 
authors assessed to what extent EHRs might impede effective commu-
nication; however, data on unintended consequences of 
provider-to-provider electronic communication were limited. The most 
reported tools were electronic referrals to specialty providers, electronic 
prescribing, and messaging. Most studies reported on measures of us-
ability and adoption. Disadvantages of EHR communication related to 

Table 2 
List of selected studies organized by Area.  

Author, year Journal Area 

Dainton et al., 2017 
[16] 

J. Med. Internet 
Res. 

EMRs for austere settings 

West et al., 2015 [32] J. Am. Med. 
Inform. Assoc. 

EHR visualization tools 

Moreno-Conde et al., 
2015 [26] 

J. Am. Med. 
Inform. Assoc. 

Clinical Information Models (CIMs) 

Meystre et al., 2010 
[24] 

BMC Med. Res. 
Methodol. 

De-identification 

Walsh et al., 2013 
[30] 

J. Med. Internet 
Res. 

Provider-to provider electronic 
communication tools 

Dubovitskaya et al., 
2020 [17] 

Oncology Blockchain Technology 

Hasselgren et al., 
2020 [18] 

Int. J. Med. 
Inform. 

Blockchain Technology 

Mayer et al., 2020 
[23] 

Health Informatics 
J. 

Blockchain Technology 

O’Donoghue et al., 
2019 [27] 

J. Med. Internet 
Res. 

Blockchain Technology 

Chukwu et al., 2020 
[37] 

IEEE Access Blockchain Technology 

Mazlan et al., 2020 
[36] 

IEEE Access Blockchain Technology 

Hussien et al., 2019 
[35] 

J. Med Syst. Blockchain Technology 

Vazirani et al., 2019 
[29] 

J. Med. Internet 
Res. 

Blockchain Technology 

Mishra et al., 2014 
[25] 

J. Biomed. Inform. Information Extraction/ Natural 
Language Processing (NLP) 

Juhn et al., 2020 [19] J. Allergy Clin. 
Immunol. 

Information Extraction/ Natural 
Language Processing (NLP) 

Koleck et al., 2019 
[20] 

J. Am. Med. 
Inform. Assoc. 

Information Extraction/ Natural 
Language Processing (NLP) 

Kreimeyer et al., 2017 
[21] 

J. Biomed. Inform. Information Extraction/ Natural 
Language Processing (NLP) 

Wang et al., 2020 [31] J. Biomed. Inform. Information Extraction/ Natural 
Language Processing (NLP) 

Kumah-Crystal et al., 
2018 [22] 

Appl. Clin. Inform. Information Extraction/ NPL/ 
Speech recognition (SR) 

Blackley et al., 2019 
[15] 

J. Am. Med. 
Inform. Assoc. 

Information Extraction/ NPL/ 
Speech recognition (SR) 

Shivade et al., 2014 
[28] 

J. Am. Med. 
Inform. Assoc. 

Information Extraction/ NLP/ 
Phenotyping 

Xu et al., 2015 [34] J. Am. Med. 
Inform. Assoc. 

Information Extraction/ NLP/ 
Phenotyping 

Xiao et al., 2018 [33] J. Am. Med. 
Inform. Assoc. 

Information Extraction/ NLP/ Deep 
learning  
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Table 3 
Opportunities, challenges, and technical solutions of EHR technological advancements identified in the review.  

Digital tool Opportunities Challenges Technical solutions 

Blockchain technology •Improved interoperability and data 
exchange amongst providers and patient- 
providers. 
•Improved data access 
•Consensus and immutability. 
•Potential improved operating efficiency. 
•Improved security of medical data stored 
in EHRs. 
•Improved health outcomes. 

•Poor scalability. 
•Low general performance. 
•High cost. 
•Maintaining data privacy. 
•Security vulnerabilities. 
•Block size. 
•High volume of data. 
•Number of nodes. 
•Protocol challenges. 
•Regulatory frameworks. 
•Lack of education and trust. 
•Agreement and consensus between network 
participants is needed  

•Decentralization of medical database. 
•Cryptographic techniques. 
•Blockchain authentication and authorization. 
•Storage optimization (mini blockchain; VerSum; 
Reference pointer FHIRChain). 
•Blockchain modeling (FHIRChain; HealthChain; 
DeepLinQ; OmniPHR). 
•Read mechanism (Short-term data sharing, Catching 
system). 
•Write mechanism (Smart contract; Cohort algorithm; 
Tokenization; Sharding; Practical Byzantine. Fault 
Tolerant consensus protocol; TrustChain). 
•Bi-directional (Lightning network). 

Advanced 
visualization 

•Knowledge discovery. 
•Better communication of information 
about EHR data. 

•Large EHR datasets. 
•Temporal complexity, diversity, and 
evolving nature of EHR data. 
•Outdated visualization techniques. 
•Low data quality and completeness.  

•LifeLines. 
•KNAVE-II/VISITORS. 
•Methods developed by other disciplines (i.e., computer 
science, engineering, and genetics) should be explored for 
their use with EHR data. 

EHR systems in 
austere settings 

•EHR systems are needed in austere settings 
where transport and storage of paper-based 
records are not feasible. 
•Improved data integrity, quality, and 
completeness. 
•Improved diagnosis and clinical 
management of patients. 
•Consistent standard of practice on medical 
service trips. 
•Better epidemiological analysis.  

•The setting only allows connectivity through 
expensive satellite connections, opportunistic 
internet connections, or local networks. 
•There are multiple EHR systems for austere 
settings, and most are still at the development 
stage. 
•Limited or no interoperability. 

•OpenMRS has potential to integrate MST medical 
records with local EHR systems. 
•Competing smaller EHR systems should consider further 
development for improved interoperability (i.e., iChart. 
SmartList To Go, Project Buendia, TEBOW, OpenMRS 
software, QuickChart EMR, NotesFirst). 

Clinical Information 
Models (CIM) 

•CIMs allow for semantic and structural 
interoperability of data between different 
EHR systems. 

•Different technologies and standards (e.g., 
EN ISO 13,606 and openEHR, using 
archetypes, or HL7 v3, using templates) are 
being used. 
•Immaturity of current modelling support 
tools.  

•Share CIMs openly. 
•Harmonize work amongst groups developing CIMs. 
•A common standard and a unified good practice 
methodology for CIMs needs to be developed. 

De-identification tools •Data privacy preservation. •The negative impact of de-identification on 
subsequent automated information 
extraction. 

•Machine learning-based methods based on: 
oConditional Random Fields, 
oDecision Trees, 
oMaximum Entropy models, or 
oSupport Vector Machines.  

Natural Language 
Processing/free-text 
processing 

•Enable secondary use of EHRs for 
phenotyping, clinical, translational 
research and implementation of 
personalized medicine. 
•Leverage unstructured data locked in 
EHRs 
•Support clinical management for better 
outcomes. 

•Poor data quality, errors and biases. 
•Privacy issues. 
•Predominance of rule-based over machine 
learning-based NLP. 
•Difficult interpretability of machine-learning 
methods. 
•Algorithmic bias. 
•Lack of interoperabie standards. 
•Poor generalizability. 
•Developing NLP talent is difficult due to the 
limited availability and exposure of NLP 
experts to EHR data.  

•Develop deep-learning based NLP for EHR data mining. 
•Share NLP algorithms publicly on platforms such as 
GitHub to avoid duplication and improve development. 
•Further development of ontologies such as the Open 
Biological and Biomedical Foundry. 

NLP/ Speech 
Recognition (SR) 
technology 

•Improved usability of EHR systems. 
•Improved productivity. 
•Better quality of clinical documentation 
(copy/paste behaviour is reduced). 
•Reduced workload for clinicians  

•Low report accuracy and more errors in SR 
based documentation. 
•Significant upfront costs derived from SR 
introduction. 

•Use of deep learning. 
•Potential for EHR-integrated, SR virtual assistants pow-
ered by AI. Consumer voice tools technology (i.e., Siri, 
Alexa) could be applied to EHR systems. 

Deep learning •Disease detection/classification. 
•Prediction of clinical events. 
•Phenotyping. 
•Data augmentation. 
•EHR data privacy/de-identification. 

•Temporality and irregularity of EHR data. 
•Multimodal EHR learning is challenging due 
to the heterogeneity of the data. 
•Identifying effective ways to label EHR 
records is a major obstacle. 
•Lack of interpretability and transparency. 

•Gated architecture for extracting temporal data. 
•Dynamic time warping, and a subspace decomposition of 
the Long short-term memory model (LSTM) to solve 
challenges associated with time irregularity. 
•Multitask learning approaches. 
•Transfer learning to new datasets for the same tasks. 
•Attention-mechanism-based learning, knowledge 
injection and knowledge distillation.  
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the decrease in face-to-face interactions and knowledge sharing, which 
become critical in emergencies or with complex patients. Ideally, EHR 
systems should ensure implicit and real-time provider-to-provider 
communication. 

3.7. Visualization techniques for EHR data 

One review investigated the use of innovative visualization tech-
niques for complex, longitudinal big data in EHR systems [32]. The most 
common visualization techniques reported in the literature were Life-
Lines and KNAVE-II/VISITORS. Although other disciplines, such as en-
gineering, and genetics, have already developed advanced visualization 
tools for displaying complex big data, healthcare is lagging in adopting 
these techniques. 

3.8. Blockchain technology 

Eight reviews covered blockchain-based EHR systems. Blockchain is 
a decentralized solution for data storage designed for multiple users. A 
peer-to-peer network of nodes processes transactions, and a copy of the 
entire ledger is shared across all participants, who hold the whole 
database. All reviews assessed publications, addressing blockchain ar-
chitectures, storage schemes, ontologies, privacy/security, performance, 
cost, data sharing, access control, audit, integrity, distributed 
computing, digital health standards, and data aggregation [17,18,23,27, 
29,35–37]. The majority of publications were still conceptual and used 
simulation software for their study evaluation. 

Ethereum platform, hyperledger fabric, Proof of Work (PoW), exo-
num, and Practical Byzantine Fault Tolerance (pBFT) were the most 
commonly used platforms [18,27,37]. However, researchers highlighted 
the need for developing a new platform designed explicitly for EHR 
requirements [18] and standardization of EHR semantics, ontologies, 
standards, and technical approaches [23,27,29]. 

One review classified blockchain architectures implemented in 
healthcare according to the type of Certificate Authority (CA) used [37]. 
CAs provide identity on the network, signing requests for all entities and 
components. The three types of architectures identified were: individ-
ually managed, trusted-CA managed, or multi-CA managed. Individually 
managed CAs (patient or provider) lead to more complicated data 
integrity and security. Poor scalability, low general performance, and 
high associated costs were identified as critical challenges for block-
chain implementation in healthcare [37]. 

Internet of Things (IoT) devices cause security vulnerabilities [37]. 
The decentralized feature of blockchain allows for better data sharing 
and medical data management while ensuring data integrity. Blockchain 
authenticates and authorizes users, preventing system threats to specific 
security attacks but cannot alone guarantee data privacy and security. 
Blockchain-based systems rely on cryptographic methods to maintain 
security [36]. The development of quantum computing might challenge 
those cryptographic techniques as quantum-resistant cryptography has 
not been developed yet. One review discussed whether health providers 
should wait and invest in a post-quantum blockchain [27]. 

Blockchain can also solve issues related to interoperability and 
medical data exchange amongst different healthcare providers, specif-
ically in combination with open standard Fast Healthcare Interopera-
bility Resources (FHIR), a standard for exchanging EHRs [36,37]. Other 
solutions include a blockchain-based app called Healthcare Data 
Gateway (HGD), which could potentially improve data sharing while 
guaranteeing patients’ privacy [36]. OmniPHR blockchain-based ar-
chitecture also integrates personal health records (PHR), improving data 
exchange between patients and healthcare providers [36]. 

Blockchain for data sharing in oncology was reviewed, however, 
there have been no implementations in real-world settings due to ob-
stacles related to regulatory frameworks, required consortium mem-
bership, poor interoperability, and data safety and privacy [6]. 

Finally, blockchain scalability challenges relate to the large amount 

of health data stored in EHRs [36]. In practice, EHR big data means large 
block sizes, many transactions, and an increased number of nodes rep-
resenting each entity connected to the network (i.e., patients). Protocols 
must be tailored to satisfy the latency and throughput requirements to 
achieve an efficient performance [35–37]. Protecting the security and 
privacy of data is still associated with an unsatisfactory performance [6, 
27]. 

A balance must be struck between data protection and patients’ and 
providers’ abilities to access and interact regularly with data [37]. One 
proposal is that only essential data for specific nodes are stored in-chain 
[36]. Implementers should also carefully assess scalability to prevent 
related issues [27]. Other solutions for storage optimization and for 
redesigning blockchain are summarized in Table 3. 

3.9. Tools for information extraction from EHR 

EHRs are comprised of data in a structured format (i.e., laboratory 
test results) and unstructured free-text narratives (i.e., notes or images), 
which constitute 80 % of currently available health data [5,19]. Besides, 
increasing amounts of unstructured data are becoming available 
through online patient portals, as communication between clinicians 
and patients is largely done in free text [19]. Due to the challenges 
related to its processing and extraction, unstructured data available in 
EHRs is seriously underutilized despite the high value for clinical and 
translational research, to define phenotype, characterize or classify 
disease, or even enable virtual clinical cohorts [19,40]. Ten of the 
selected studies reviewed tools for Information Extraction (IE) from EHR 
systems. Two of them specifically addressed approaches for identifying 
patient phenotype cohorts from EHRs [28,34]. Five [19–21,25,31] 
focused on NLP. Two reviews assessed speech recognition, also a part of 
NLP [15,22]. Finally, Xiao et al. [33] reviewed deep learning (DL) 
models using EHR data [41]. 

IE is an interdisciplinary field of medicine and computer science, part 
of NLP. NLP is a subset of Artificial Intelligence (AI), which deals with 
how computers identify and translate written or spoken human lan-
guage into machine-readable formats. 

Methods for Information Extraction (IE) can be divided into rule- 
based and machine learning approaches [31]. Rule-based methods 
consist of handcrafted expressions that define a pattern of properties 
that need to be fulfilled. Rules are developed by manual knowledge 
engineering, by leveraging knowledge bases (i.e., UMLS, PheWAS), or 
through a combination of both. Manual knowledge engineering is ac-
curate but requires collaboration with clinical experts and is 
time-consuming. Rule-based approaches, like those developed by large 
vendors (i.e., IBM, Microsoft), dominate IE because they are easier to use 
and yield good results on limited datasets [20,25,28,31]. 

However, ML approaches perform better and are deemed more 
appropriate and less time-consuming when handling big data [20,28, 
31]. The ML methods most commonly employed were Support Vector 
Machine (SVM) followed by Conditional random field (CRF) and are 
mostly used for data prediction [31]. 

Overall, the most popular IE tools were Apache cTAKES, MetaMap, 
Medical Language Extraction, Encoding system (MedLEE), TextHunter, 
and Multi-threaded Clinical Vocabulary Server, and the v3NLP Frame-
work [19,25,31]. Major disease areas for IE use were cancer, followed by 
cardiovascular disease [20,31]. 

One major challenge of IE systems is their poor portability, primarily 
due to the multidimensionality of medical language, the lack of stan-
dardization, and the heterogenicity across EHR systems [20,31]. IE tasks 
are usually defined without standard information models or value sets 
[31]. Moreover, poor data quality, biases, and errors hamper the ability 
of NLP to recognize and process data [19–21]. Interoperable ontologies 
such as SNOMED-CT, or the Open Biological and Biomedical Foundry 
adopted Symptom Ontology (OBO) support the application of NLP and 
need to be widely adopted [20,31]. Open-source EHR-related NLP sys-
tems and making expert-developed NLP algorithms publicly available on 
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platforms such as GitHub could avoid duplication and speed up NLP 
development [20]. 

3.10. Speech recognition 

Speech is much faster than writing for data entry. A person speaks an 
average of 110–150 words per minute (WPM) compared to 40 WPM 
typing speed [22]. Furthermore, studies show that humans are more 
comfortable with handheld devices, which are portable and easier to 
handle [15]. Speech recognition (SR) technology could potentially 
improve workflow inefficiencies and assist clinical documentation 
through dictation. As an example, Vocera has been used to initiate 
phone calls, review messages, and authenticate logins through voice 
commands [15,22]. However, five studies reported a decrease in docu-
mentation time, nine an increase, and four found no impact [15]. Pro-
ductivity typically improved, while report accuracy was lower after SR 
adoption, with more errors in SR-based documentation [15,22]. One 
study reported that 23 % of SR reports contained errors, compared to 
only 4 % created with conventional dictation or speech transcription 
[22]. Background noise, accents, and interruptions challenged the ac-
curacy and utility of SR. On the other hand, SR technology reduced 
copy/paste behavior from 92.73 % to 49.71 %, leading to higher quality 
reports. With recent developments in AI, enormous potential exists for 
EHR-integrated SR virtual assistants for data retrieval, command 
execution, and chart navigation. Long short-term memory (LSTM), an 
artificial recurrent neural architecture used in deep learning, will bring 
significant improvements in this area [33]. 

3.11. Phenotyping 

In the last years, there has been a rise in cohort identification studies 
that use EHR data, and information extraction for phenotyping has 
accounted for a large portion of the reviewed studies [31]. Two reviews 
assessed automated phenotyping techniques [28,34]. Xu et al. identified 
twenty-four EHR-driven phenotype algorithm authoring tools. These 
tools provide an interface to clinical researchers to define the algorithm 
criteria for determining patient cohorts without them needing to use a 
programming language [34]. Many of these tools did not support com-
plex logic specifications nor external analytic software, and only 44 % of 
them could process unstructured data [28,34]. Rule-based systems were 
also dominant in phenotyping studies [28]. Overall, the reviews found 
that phenotyping techniques were still inadequate for the task. A sig-
nificant challenge was the lack of portability between institutions. 
Standardization terminology systems such as RxNorm, SNOMED-CT, 
and LOINC, are not comprehensive for complex phenotype algorithms 
[28]. A standard mechanism for phenotype algorithm representation 
still needs to be developed [28,34]. 

3.12. Deep learning 

One review summarized all DL studies using EHR data for disease 
detection/classification, prediction of clinical events, phenotyping, data 
augmentation, and EHR data privacy/de-identification [33]. DL is a 
subset of machine learning that applies artificial neural networks to 
learn a procedure. DL approaches require less manual engineering and 
minimal pre-processing. Commonly used DL architectures include 
feedforward neural networks, recurrent neural, restricted Boltzmann 
machines, generative adversarial networks, convolutional neural net-
works, word2vec, and denoising autoencoders. Outstanding challenges 
relate to the temporality and heterogenicity of EHR data and labelling 
EHR records. Long short-term memory models (LSTM) or gated recur-
rent units are the preferred choices for extracting long-term temporal 
data. Moreover, there are important issues concerning the transparency 
and interpretability of DL models. Users still need to understand the 
mechanisms by which models operate. 

4. Discussion 

In this study, we have provided an overview of the technological 
advancements developed in the last decade to support EHR systems’ 
optimization. Most selected papers (18 out of 23) were related to EHRs 
data-extraction tools and blockchain technology. Many methods for 
extracting EHR data have been assessed and published during the last 
decade. However, deep learning has become the preferred approach 
because it yields better performance in processing and modelling vast 
amounts of data while requiring less manual engineering [33]. 

Beyond the obvious advantages of digitizing health data, the adop-
tion of EHRs has contributed to physician burnout [42,43]. Most phy-
sicians have reported feeling pressure related to filling out EHRs 
documents and spending excessive time on EHRs at home [43]. NLP 
tools, including speech recognition virtual assistants, have the potential 
to save clinicians valuable time [15,22]. 

Blockchain technology could resolve many interoperability issues, 
empowering patients with greater control of their data and privacy. 
However, blockchains are designed for consortia, not for a single orga-
nization. Agreements, trust, and consensus between network partici-
pants are needed. Furthermore, blockchain security vulnerabilities and 
performance issues still need to be addressed [35–37]. 

By restricting our review to EHR-related terms, we may have 
excluded meaningful studies on digital advancements that may also 
impact EHR systems. Furthermore, some papers might have been missed 
due to the lack of access to databases containing more technical research 
such as ACM and IEEE Explore. In addition, since we focused on pub-
lished literature, we excluded many unpublished technological ad-
vancements and real-world implementations. For example, Estonia 
became the first country to use blockchain to secure its nationwide EHR 
system [44,45]. The World Health Organization (WHO) and the Esto-
nian government are currently developing a blockchain-based 
COVID-19 vaccination certificate platform to be used globally [46,47]. 

Most of these tools are in very early stages and will benefit from 
maturity. Widely accepted health data standards are essential to ensure 
seamless data sharing, better coordination, and improved interopera-
bility. The outstanding issues identified in this review (see Table 3) must 
be addressed before witnessing the full impact of these technological 
advancements on EHRs and knowing to which extend these tools will 
meet our expectations. 
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“What was already known on the topic”  

• Recent developments in technology have impacted the digitalization 
of health data, facilitating the adoption of electronic health record 
(EHR) systems. 

• A growing volume of healthcare data managed and stored elec-
tronically remains underutilized for clinical and translational 
research.  

• As more EHR data becomes accessible, several digital tools are 
gaining momentum in both the industry and the public sector. 

“What this study added to our knowledge.”  

• It provides a comprehensive overview of core technologies that may 
potentially impact and leverage electronic health record systems, 
with associated opportunities, challenges, and solutions. 
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• There is a growing trend in natural language processing, data mining 
extraction applications, and promising use cases for blockchain 
technology in healthcare; however, challenges such as immaturity, 
data privacy, poor scalability, and poor interoperability still need to 
be addressed. 
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