Elsa E Cleland

Elsa E Cleland
University of California, San Diego | UCSD · Section of Ecology, Behavior, & Evolution

About

102
Publications
44,337
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
20,258
Citations

Publications

Publications (102)
Article
1. To evaluate how increased anthropogenic nutrient inputs alter carbon cycling in grasslands, we conducted a litter decomposition study across 20 temperate grasslands on three continents within the Nutrient Network, a globally distributed nutrient enrichment experiment 2. We determined the effects of experimental nitrogen (N), phosphorus (P), and...
Article
Increased aridity, associated with climate change, is predicted worldwide in the coming decades. Species persistence in the face of climate change is thought to be influenced by plasticity, potential for adaptation, and dependence on non-climatic factors, but their relative importance has rarely been quantified. We investigated 13 populations of Es...
Article
Full-text available
The timing of seedling emergence is strongly linked with fitness because it determines the biotic and abiotic environment experienced by plants in this vulnerable life stage. Experiments and observations consistently find that earlier‐emerging plants have a competitive advantage over those emerging later. However, substantial genetic and phenotypic...
Article
Full-text available
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Article
Aim Climate variability threatens to destabilize production in many ecosystems. Asynchronous species dynamics may buffer against such variability when a decrease in performance by some species is offset by an increase in performance of others. However, high climatic variability can eliminate species through stochastic extinctions or cause similar s...
Article
Full-text available
Grasslands are subject to considerable alteration due to human activities globally, including widespread changes in populations and composition of large mammalian herbivores and elevated supply of nutrients. Grassland soils remain important reservoirs of carbon (C) and nitrogen (N). Herbivores may affect both C and N pools and these changes likely...
Article
Mediterranean-type ecosystems are increasingly threatened by climate change and exotic annual species, jeopardizing the native communities and their global biodiversity. In these systems, soil nitrogen (N) limits net primary production, and its availability can be influenced by both of these stressors. To understand the interactive effects of droug...
Article
Full-text available
Anthropogenic activities are increasing nutrient inputs to ecosystems worldwide, with consequences for global carbon and nutrient cycles. Recent meta-analyses show that aboveground primary production is often co-limited by multiple nutrients; however, little is known about how root production responds to changes in nutrient availability. At twenty-...
Article
Full-text available
Aims Abiotic processes such as photodegradation play important roles in litter decomposition in semi-arid ecosystems. However, little is known about whether UV degradation responds similarly to factors controlling biotic decomposition rates, such as soil moisture and plant litter chemistry. Here, we evaluated the relative importance of UV degradati...
Article
Climate change and shifting species composition have influenced ecosystem-scale phenology worldwide. For instance, invasive plant species have greater vegetation phenological sensitivity to climate change than native plant species in some regions, and hence invasion could modify how ecosystem carbon gain responds to increased drought frequencies ex...
Article
Significant gaps in our understanding of how global change drivers interact to affect the resistance and functioning of microbial communities hinders our ability to model ecosystem responses and feedbacks to co-occurring global stressors. Here, we investigated the effects of extreme drought and exotic plants, two of the most significant threats to...
Article
Full-text available
Leaf traits are frequently measured in ecology to provide a ‘common currency’ for predicting how anthropogenic pressures impact ecosystem function. Here, we test whether leaf traits consistently respond to experimental treatments across 27 globally distributed grassland sites across 4 continents. We find that specific leaf area (leaf area per unit...
Article
Full-text available
Semi-arid regions with Mediterranean-type climates harbor exceptional biodiversity, but are increasingly threatened by invading exotic annual species and climatic changes, including drought. In semi-arid ecosystems, antecedent conditions often influence plant growth, but the role of antecedent conditions for drought response and recovery of native...
Article
Questions Shrub expansion into alpine ecosystems worldwide raises important questions regarding the influence of shrub encroachment on alpine species diversity. The stress gradient hypothesis (SGH) predicts interactions will be competitive when resources are plentiful and the environment is benign, but that facilitative interactions will dominate w...
Article
Full-text available
Environmental change can result in substantial shifts in community composition. The associated immigration and extinction events are likely constrained by the spatial distribution of species. Still, studies on environmental change typically quantify biotic responses at single spatial (time series within a single plot) or temporal (spatial beta dive...
Article
Predicting species responses to climate change involves understanding both the direct effects of environmental change, as well as indirect effects mediated by altered interspecific interactions. Indirect effects may be particularly important for understanding native species responses in systems invaded by highly competitive exotic species. For inst...
Article
Full-text available
Climate change is shifting species distributions and altering plant community composition worldwide. For instance, with rising temperatures shrubs are encroaching into alpine ecosystems, resulting in important implications for ecosystem functioning. In particular, woody-plant encroachment could slow decomposition in systems traditionally dominated...
Article
Full-text available
Ecological trade-offs are fundamental to theory in community ecology; critical for understanding species coexistence in diverse plant communities, as well as the evolution of diverse life-history strategies. Invasions by exotic species can provide insights into the importance of trade-offs in community assembly, because the ecological strategies of...
Article
Niche dimensionality provides a general theoretical explanation for biodiversity-more niches, defined by more limiting factors, allow for more ways that species can coexist. Because plant species compete for the same set of limiting resources, theory predicts that addition of a limiting resource eliminates potential trade-offs, reducing the number...
Article
Full-text available
Shifts in plant species phenology (the timing of life-history events such as flowering) have been observed worldwide in concert with rising global temperatures. While most species display earlier phenology with warming, there is large variation among, and even within, species in phenological sensitivity to rising temperatures. Other indirect effect...
Article
Full-text available
Exotic species dominate many communities; however the functional significance of species’ biogeographic origin remains highly contentious. This debate is fuelled in part by the lack of globally replicated, systematic data assessing the relationship between species provenance, function and response to perturbations. We examined the abundance of nati...
Article
Full-text available
Terrestrial ecosystem productivity is widely accepted to be nutrient limited(1). Although nitrogen (N) is deemed a key determinant of aboveground net primary production (ANPP) 2,3, the prevalence of co-limitation by N and phosphorus (P) is increasingly recognized(4-8). However, the extent to which terrestrial productivity is co-limited by nutrients...
Article
Aboveground-belowground interactions exert critical controls on the composition and function of terrestrial ecosystems, yet the fundamental relationships between plant diversity and soil microbial diversity remain elusive. Theory predicts predominantly positive associations but tests within single sites have shown variable relationships, and associ...
Article
Humans are modifying the availability of nutrients such as nitrogen (N) and phosphorus (P), and it is therefore important to understand how these nutrients, independently or in combination, influence the growth and nutrient content of primary producers. Using meta-analysis of 118 field and laboratory experiments in freshwater, marine and terrestria...
Article
Exotic species are sometimes phenologically distinct from native species in the invaded community, allowing them to be active when there may be reduced competition for resources. In southern California, annual species are particularly problematic invaders, and prior work has shown that these species germinate earlier in the growing season, giving t...
Article
Evidence linking the accumulation of exotic species to the suppression of native diversity is equivocal, often relying on data from studies that have used different methods. Plot-level studies often attribute inverse relationships between native and exotic diversity to competition, but regional abiotic filters, including anthropogenic influences, c...
Article
Invasion by exotic annual species is increasingly impacting Southern California arid lands, altering ecosystem processes and plant community composition. With climate change, the Southwestern United States is expected to experience increasingly variable rainfall. Larger rainfall events could facilitate invasion by exotic species that can capitalize...
Article
Full-text available
Human alterations to nutrient cycles1, 2 and herbivore communities3, 4, 5, 6, 7 are affecting global biodiversity dramatically2. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increas...
Article
Full-text available
In recent years, research in invasion biology has focused increasing attention on understanding the role of phenology in shaping plant invasions. Multiple studies have found non-native species that tend to flower distinctly early or late in the growing season, advance more with warming or have shifted earlier with climate change compared with nativ...
Article
QuestionHave there been shifts in abundance and distribution of alpine and sub-alpine plant species along an elevational gradient in an arid North American mountain range during the last half-century? LocationElevational gradient in the White Mountains, California, USA (37 degrees 30N, 118 degrees 10W). Methods We conducted a 49-yr re-survey of pla...
Article
Full-text available
Understanding how biotic mechanisms confer stability in variable environments is a fundamental quest in ecology, and one that is becoming increasingly urgent with global change. Several mechanisms, notably a portfolio effect associated with species richness, compensatory dynamics generated by negative species covariance and selection for stable dom...
Article
Phenological events – defined points in the life cycle of a plant or animal – have been regarded as highly plastic traits, reflecting flexible responses to various environmental cues.The ability of a species to track, via shifts in phenological events, the abiotic environment through time might dictate its vulnerability to future climate change. Un...
Article
Full-text available
Rapid germination or flexible germination cues may be key traits that facilitate the invasion of exotic plant species in new environments. We investigated whether robustness or plasticity in response to environmental cues were more commonly exhibited by exotic than native species during germination, evidenced by (1) exhibiting consistently greater...
Article
Full-text available
Climate gradients shape spatial variation in the richness and composition of plant communities. Given future predicted changes in climate means and variability, and likely regional variation in the magnitudes of these changes, it is important to determine how temporal variation in climate influences temporal variation in plant community structure....
Article
Synthesis The tissue chemistry of plants can influence ecosystem processes including growth, herbivory, and decomposition. Our comparison of nitrogen and phosphorus in over 1700 autotroph taxa demonstrates that latitudinal trends in tissue chemistry are consistent across non-vascular and vascular species in freshwater, terrestrial, and marine ecosy...
Article
Full-text available
Premise of the study: The study of how phenology may contribute to the assembly of plant communities has a long history in ecology. Climate change has brought renewed interest in this area, with many studies examining how phenology may contribute to the success of exotic species. In particular, there is increasing evidence that exotic species occu...
Article
Preventing invasion by exotic species is one of the key goals of restoration, and community assembly theory provides testable predictions about native community attributes that will best resist invasion. For instance, resource availability and biotic interactions may represent “filters” that limit the success of potential invaders. Communities are...
Article
Full-text available
There is a growing realization among scientists and policy makers that an increased understanding of today’s environmental issues requires international collaboration and data synthesis. Meta-analyses have served this role in ecology for more than a decade, but the different experimental methodologies researchers use can limit the strength of the m...
Article
Full-text available
Based on regional-scale studies, aboveground production and litter decomposition are thought to positively covary, because they are driven by shared biotic and climatic factors. Until now we have been unable to test whether production and decomposition are generally coupled across climatically dissimilar regions, because we lacked replicated data c...
Article
Full-text available
Disparate ecological datasets are often organized into databases post hoc and then analyzed and interpreted in ways that may diverge from the purposes of the original data collections. Few studies, however, have attempted to quantify how biases inherent in these data (for example, species richness, replication, climate) affect their suitability for...
Article
Full-text available
Earlier spring phenology observed in many plant species in recent decades provides compelling evidence that species are already responding to the rising global temperatures associated with anthropogenic climate change. There is great variability among species, however, in their phenological sensitivity to temperature. Species that do not phenologic...
Article
Full-text available
Warming experiments are increasingly relied on to estimate plant responses to global climate change. For experiments to provide meaningful predictions of future responses, they should reflect the empirical record of responses to temperature variability and recent warming, including advances in the timing of flowering and leafing. We compared phenol...
Article
Full-text available
Nutrient addition to grasslands consistently causes species richness declines and productivity increases. Competition, particularly for light, is often assumed to produce this result. Using a long-term dataset from North American herbaceous plant communities, we tested whether height and clonal growth form together predict responses to fertilizatio...
Article
1. The timing of seasonal activity (i.e. phenology) may play an important role in plant invasions. In ecosystems characterized by seasonal rainfall, early-active exotic species may pre-empt resources and attain competitive dominance via a seasonal ‘priority advantage’. Exotic annual grasses in California are often active earlier than native species...
Article
Forecasting how species and ecosystems will respond to climate change has been a major aim of ecology in recent years. Much of this research has focused on phenology – the timing of life-history events. Phenology has well-demonstrated links to climate, from genetic to landscape scales; yet our ability to explain and predict variation in phenology a...
Article
Full-text available
Experimental warming studies in natural communities have become an increasingly common method to estimate plant responses to global climate change. Many of these efforts focus on plant species' phenology-a sensitive indicator of species responses to climate-and show advances in spring timing with increasing temperatures. To be useful, however, resu...
Article
1. Community assembly theories predict that the success of invading species into a new community should be predictable by functional traits. Environmental filters could constrain the number of successful ecological strategies in a habitat, resulting in similar suites of traits between native and successfully invading species (convergence). Converse...
Article
Full-text available
For more than 30 years, the relationship between net primary productivity and species richness has generated intense debate in ecology about the processes regulating local diversity. The original view, which is still widely accepted, holds that the relationship is hump-shaped, with richness first rising and then declining with increasing productivi...
Article
Synergistic interactions between multiple limiting resources are common, highlighting the importance of co-limitation as a constraint on primary production. Our concept of resource limitation has shifted over the past two decades from an earlier paradigm of single-resource limitation towards concepts of co-limitation by multiple resources, which ar...
Article
Determining combinations of functional traits that allow a species to colonize new habitats has been central in the development of invasion ecology. Species able to establish in new communities harbor abilities or traits that allow them to use resources or tolerate stress in ways that native species cannot. Tradeoffs among species functional traits...
Article
Community ecologists have long recognized the importance of phenology (the timing of periodic life-history events) in structuring communities. Phenological differences between exotic and native species may contribute to the success of invaders, yet a general theory for how phenology may shape invasions has not been developed. Shifts toward longer g...
Article
Many ecosystems worldwide are dominated by introduced plant species, leading to loss of biodiversity and ecosystem function. A common but rarely tested assumption is that these plants are more abundant in introduced vs. native communities, because ecological or evolutionary-based shifts in populations underlie invasion success. Here, data for 26 he...
Article
The biogeochemical cycles of carbon (C), nitrogen (N), and phosphorus (P) are fundamental to life on Earth. Because organisms require these elements in strict proportions, the cycles of C, N, and P are coupled at molecular to global scales through their effects on the biochemical reactions controlling primary production, respiration, and decomposit...
Article
Full-text available
Competition from exotic annual grasses (EAGs) threatens native plant communities in California. Coastal sage scrub communities have substantially diminished in area over the last century, in some instances by greater than 90%, while EAGs continue to proliferate. Several mechanisms may explain the success of EAGs, including the suppression of native...
Article
Aim Increasingly, ecologists are using evolutionary relationships to infer the mechanisms of community assembly. However, modern communities are being invaded by non-indigenous species. Since natives have been associated with one another through evolutionary time, the forces promoting character and niche divergence should be high. On the other hand...
Article
Full-text available
• Patterns of precipitation are likely to change significantly in the coming century, with important but poorly understood consequences for plant communities. Experimental and correlative studies may provide insight into expected changes, but little research has addressed the degree of concordance between these approaches. • We synthesized results...
Article
Full-text available
Anthropogenic nitrogen (N) enrichment of many ecosystems throughout the globe has important ramifications for plant communities. Observational and experimental studies frequently find species richness declines with N enrichment, in concert with increasing primary production. Nitrogen enrichment also reorders species composition, including species t...
Article
Understanding why certain exotic species become invasive in particular habitats has been an area of ecological research for over fifty years with numerous theories developed over this time. At the same time plant phenology has received increasing attention in recent decades because it is a major indicator of climate change, promoting the developmen...
Article
Full-text available
Global trends in vegetation structure and function across major biomes spanning broad latitudinal and climatic gradients have been well characterized in the literature. However, controls on these vegetation characteristics within a specific biome are not well understood. Grasslands, for example, persist in diverse biogeographic regions throughout t...
Article
Phylogenetic information is increasingly being used to understand the assembly of biological communities and ecological processes. However, commonly used metrics of phylogenetic diversity (PD) do not incorporate information on the relative abundances of individuals within a community. In this study, we develop three indices of PD that explicitly co...
Article
Plant-herbivore interactions mediate the trophic structure of ecosystems. We use a comprehensive data set extracted from the literature to test the relative explanatory power of two contrasting bodies of ecological theory, the metabolic theory of ecology (MTE) and ecological stoichiometry (ES), for per-capita and population-level rates of herbivory...
Article
Full-text available
The relationship between ecosystem processes and species richness is an active area of research and speculation. Both theoretical and experimental studies have been conducted in numerous ecosystems. One finding of these studies is that the shape of the relationship between productivity and species richness varies considerably among ecosystems and a...
Article
Summarizing complex temporal dynamics in communities is difficult to achieve in a way that yields an intuitive picture of change. Rank clocks and rank abundance statistics provide a graphical and analytical framework for displaying and quantifying community dynamics. We used rank clocks, in which the rank order abundance for each species is plotted...
Article
Observations of shifting plant phenology in recent decades have demonstrated that species and ecosystems are already responding to global environmental change. Earlier flowering and an extended period of active plant growth across much of the northern hemisphere have been interpreted as responses to warming. However, several kinds of environmental...
Article
One of the greatest challenges for ecological restoration is to create or reassemble plant communities that are resistant to invasion by exotic species. We examine how concepts pertaining to the assembly of plant communities can be used to strengthen resistance to invasion in restored communities. Community ecology theory predicts that an invasive...
Article
Full-text available
Experimental studies demonstrating that nitrogen (N) enrichment reduces plant diversity within individual plots have led to the conclusion that anthropogenic N enrichment is a threat to global biodiversity. These conclusions overlook the influence of spatial scale, however, as N enrichment may alter beta diversity (i.e., how similar plots are in th...