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ABSTRACT. Automated signal recognition software is increasingly used to extract species detection data from acoustic recordings collected
using autonomous recording units (ARUs), but there is little practical guidance available for ecologists on the application of this technology.
Performance evaluation is an important part of employing automated acoustic recognition technology because the resulting data quality
can vary with a variety of factors. We reviewed the bioacoustic literature to summarize performance evaluation and found little consistency
in evaluation, metrics employed, or terminology used. We also found that few studies examined how score threshold, i.e., cut-off  for the
level of confidence in target species classification, affected performance, but those that did showed a strong impact of score threshold on
performance. We used the lessons learned from our literature review and best practices from the field of machine learning to evaluate the
performance of five readily-available automated signal recognition programs. We used the Common Nighthawk (Chordeiles minor) as our
model species because it has simple, consistent, and frequent vocalizations. We found that automated signal recognition was effective for
determining Common Nighthawk presence-absence and call rate, particularly at low score thresholds, but that occupancy estimates from
the data processed with recognizers were consistently lower than from data generated by human listening and became unstable at high score
thresholds. Of the five programs evaluated, our convolutional neural network (CNN) recognizer performed best, with recognizers built in
Song Scope and MonitoR also performing well. The RavenPro and Kaleidoscope recognizers were moderately effective, but produced more
false positives than the other recognizers. Finally, we synthesized six general recommendations for ecologists who employ automated signal
recognition software, including what to use as a test benchmark, how to incorporate score threshold, what metrics to use, and how to evaluate
efficiency. Future studies should consider our recommendations to build a body of literature on the effectiveness of this technology for
avian research and monitoring.

Recommandations pour l'évaluation des performances de reconnaissance acoustique et application à cinq
programmes courants de reconnaissance automatisée de signaux sonores
RÉSUMÉ. Les logiciels de reconnaissance automatisée de signaux sonores sont de plus en plus utilisés pour extraire les données de détection
des espèces d'enregistrements acoustiques récoltés au moyen d'unités d'enregistrement autonomes (ARU en anglais), mais il existe peu
d'instructions pratiques sur l'utilisation de cette technologie pour les écologistes. L'évaluation de la performance est une étape importante
dans l'utilisation d'une technologie de reconnaissance acoustique automatisée parce que la qualité des résultats peut varier en fonction de
divers facteurs. Nous avons passé en revue la littérature sur la bioacoustique afin de résumer les critères d'évaluation de la performance, et
avons trouvé que l'évaluation, les paramètres choisis et la terminologie utilisée étaient inconsistants. Nous avons aussi constaté que peu
d'études examinaient dans quelle mesure le seuil du score, c'est-à-dire la limite du niveau de confiance de la classification de l'espèce cible,
influait sur la performance; toutefois, les chercheurs qui l'ont fait ont observé que le seuil du score avait un fort effet sur la performance.
Nous avons appliqué les leçons apprises de notre revue de la littérature et les meilleures pratiques dans le domaine de l'apprentissage
automatique pour évaluer la performance de cinq programmes de reconnaissance acoustique automatisée rapidement et facilement utilisables.
Nous avons choisi l'Engoulevent d'Amérique (Chordeiles minor) comme espèce-modèle, parce que ses vocalisations sont simples, invariables
et fréquentes. Nous avons réalisé que la reconnaissance automatisée était efficace pour déterminer la présence-absence de l'engoulevent et
sa fréquence de chant, particulièrement à des seuils de score bas. Par contre, l'occurrence calculée à partir des données traitées par
reconnaissance automatisée était systématiquement plus faible que celle calculée à partir des résultats issus d'experts ayant écouté les
enregistrements, et elle devenait instable à des seuils de score élevés. Des cinq programmes évalués, notre reconnaisseur « Convolutional
neural network » (CNN) est celui qui a le mieux performé; les reconnaisseurs intégrés dans Song Scope et MonitoR ont aussi bien performé.
Les reconnaisseurs RavenPro et Kaleidoscope ont été moyennement performants et ont produit plus de faux positifs que les autres
reconnaisseurs. Enfin, nous proposons six recommandations générales destinées aux écologistes qui utilisent les logiciels de reconnaissance
acoustique automatisée, y compris quoi faire comme test de performances, comment incorporer un seuil de score, quels paramètres utiliser
et comment en évaluer l'efficacité. Les recherches à venir devraient prendre en compte notre recommandation à l'effet de concevoir un corpus
sur l'efficacité de cette technologie pour la recherche et les suivis aviaires.
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INTRODUCTION
Autonomous acoustic sampling is a popular method of data
collection for ecological research and monitoring because many
species use sound as a primary method of communication
(Catchpole and Slater 2008, Shonfield and Bayne 2017). In avian
research, autonomous recording units (ARUs) are used to collect
acoustic recordings, which can then be used for monitoring
population trends (Furnas and Callas 2015), behavioral studies
(Ehnes and Foote 2014), modeling habitat associations (Campos-
Cerqueira and Aide 2016), and detecting rare or inconspicuous
species (Homes et al. 2014, Sidie-Slettedahl et al. 2015). ARUs
provide a variety of benefits over traditional human point counts,
including the ability to collect data over repeat visits (Drake et al.
2016) and the flexibility to collect data at any time of day or year
(Goyette et al. 2011). Additionally, recordings provide a permanent
record that can reduce observer bias (Haselmayer and Quinn 2000,
Campbell and Francis 2012), be used to verify identification of
rare species (Swiston and Mennill 2009, Holmes et al. 2015), and
analyzed later for other objectives (Luther and Derryberry 2012).
ARU technology has also been widely used to study marine
mammals, bats, insects, and frogs.  

One of the challenges of using ARUs for ecological research and
monitoring is the time required to extract target species detections
from recordings (Shonfield and Bayne 2017). In response,
automated signal recognition programs have been developed (e.g.,
de Oliveira et al. 2015, Katz et al. 2016, Nicholson 2016).
Automated acoustic species recognition is the process of training
a computer to detect, recognize, and evaluate the acoustic signature
of a target species’ vocalization. The computer runs the resultant
detection algorithm (hereafter “recognizer”) on recordings and
evaluates the fit of the acoustic signal in the recording using a
moving window. Some programs employ a single step process that
runs the algorithm against every window (hereafter “moving
window recognizer”) while others use a two-step process that first
conducts signal detection with a moving window, and then runs
the algorithm only on detected signals (hereafter “signal detection
recognizer”). For each window or signal evaluated, the recognizer
assigns a score value, which can be interpreted as a measure of
confidence that a target vocalization match has been found. The
recognizer then registers a “hit” for each signal with a score above
a user-defined threshold. Choosing a high score threshold will
minimize false positives, i.e., false identifications, but also results
in false negatives, i.e., missed detections. If  the score threshold is
set low by the user, this will minimize false negatives, but create
many false positives. Choosing a score threshold is generally a
subjective process based on the priorities of the user (Katz et al.
2016). The results of automated signal recognition are often
manually validated by the user to separate true positives from false
positives. Many approaches to automated acoustic species
recognition or classification have been employed including random
forest (Aide et al. 2013, Campos-Cerqueira and Aide 2016),
Hidden Markov models (HMM; Skowronski and Harris 2006,
Potamitis et al. 2014, de Oliveira et al. 2015) and/or Gaussian
mixture models (GMM; Ganchev et al. 2015, Heinicke et al. 2015),
binary point matching (Katz et al. 2016), spectrogram cross-
correlation (Katz et al. 2016), artificial neural networks (Jennings
et al. 2008, Tachibana et al. 2014, Nicholson 2016), decision trees
(Digby et al. 2013), and band-pass filters (Charif  et al. 2010). There
are annual and one-time machine learning competitions that drive

the development of new birdsong recognizer methods (Stowell et
al. 2016, Goëau et al. 2017), with current state-of-the-art
approaches using deep machine learning models such as
convolutional neural networks to recognize multiple species from
soundscape recordings (Koops et al. 2014, Joly et al. 2016,
Salamon and Bello 2017). Some of these approaches are
commercially or freely available, while others have been custom-
built for specific research projects.  

The number of tools available for automated signal recognition
are rapidly increasing, yet there remains a need for a set of general
recommendations for recognizer development and performance
evaluation in ecology (Blumstein et al. 2011). Many authors have
compared individual automated signal recognition programs to
human processing to substantiate their use in ecological
monitoring and research; however, authors have used a variety of
metrics for evaluation, making it difficult to compare across
studies. In other acoustic signal processing disciplines such as
music analysis, speech classification, and machine learning, there
are established best practices that ecologists can draw on to
develop standardized evaluation methods (Salzberg 1997,
Sokolova and Lapalme 2009, Raffel et al. 2014, Mesaros et al.
2016). Recognizer evaluation is particularly important because
the quality of the species detection data produced can depend on
a variety of factors including score threshold (Brauer et al. 2016),
signal complexity of target species, quality of training data,
spectrogram conversion, e.g., FFT size (Crump and Houlahan
2017), and recognition approach (Stowell et al. 2016). Ultimately,
the appropriateness of automated acoustic species recognition
will depend on the objective of the research or monitoring.  

In response to this need for guidance, our goal was to provide
general recommendations for recognizer performance comparison
and evaluation. First, we review the literature for bioacoustic
recognizer evaluation studies to confirm the need for such
recommendations and identify the most commonly used metrics.
Next, we conduct a recognizer evaluation based on the different
approaches used in the literature to compare five Common
Nighthawk (Chordeiles minor) recognizers: MonitoR (Katz et al.
2016), convolutional neural networks (CNN; Abadi et al. 2015),
Song Scope (Wildlife Acoustics 2011), Kaleidoscope (Wildlife
Acoustics 2016), and RavenPro (Charif  et al. 2010). Finally, we
use our literature review, results from our evaluation, and best
practices from other disciplines to synthesize general evaluation
recommendations for ecologists who want to use automated
acoustic recognition for data processing.

LITERATURE REVIEW OF EVALUATION TOOLS

Methods
We searched for ecological journal articles, technical reports, and
conference proceedings that have evaluated the performance of
automated signal recognition software to scan audio recordings
for species detections. We searched the literature using Web of
Science and combinations of the keywords “acoustic,” “classif*,”
“recogn*,” “autom*,” and “song.” We found and reviewed 68
papers that used computers to automatically scan audio
recordings and identify detections of target species, including
birds, frogs, and mammals (Appendix 1). We performed an initial
review of these papers to determine recognizer type (single or
multiple species), and evaluation data type (clip or recording;
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Table 1. Recognizer performance metrics used in single-species recognizer studies that assessed recognizer performance on real-field
recordings. TP = true positive; FP = false positive; TN = true negative; FN = false negative; β = weighting factor used to balance the
weighted average of precision and recall.
 
Metric Equation Synonyms Papers used

Accuracy (TP-FP)/(TP+FN) 3
F-score (β²+1)TP/((β²+1)TP+β²FN+FP) 1
False negative rate FN/(TP+FP+TN+FN) “missed” 3
False positive rate FP/(TP+FP+TN+FN) 4
Negative predictive value TN/(TN+FP) 1
Precision TP/(TP+FP) “positive predictive value”; “accuracy” 7
Recall TP/(TP+FN) “correct”; “sensitivity”; “scanning

comprehensiveness”
9

ROC curve 3
Total error (FP+FN)/(TP+FP+TN+FN) 1
True negative rate TN/(TP+FP+TN+FN) “specificity” 2
True positive rate TP/(TP+FP+TN+FN) 3

Table 1). We excluded multispecies recognizers from further
review because multiclass evaluation generally employs a different
set of metrics than single species evaluation (Sokolova and
Lapalme 2009). We also excluded papers that did not use a test
dataset of unedited field recordings (see Potamitis et al. 2014) to
evaluate their recognizer. The final subset included 12 single-
species recognizer papers with a real-world evaluation (Appendix
1, Table 1).

Results
Benchmark
Eleven papers used human data processing as the benchmark for
recognizer evaluation, and one was unclear about the benchmark
used. Of the 11 that specified the benchmark, 8 used detections
that had been annotated during human listening, 2 used events
that had been annotated during visual spectrogram scanning, and
1 used events that had been annotated during listening and visual
spectrogram scanning, i.e., two benchmarks. One paper also
included a decibel level threshold as part of their benchmark
(Katz et al. 2016).

Score threshold
Score threshold is a user-selected parameter that is the minimum
score of any given hit reported by the recognizer. Of the 12 papers
reviewed, 7 described the score threshold selected. Of those seven,
four papers reported selecting a single score threshold after tests
such as Youden’s J statistic (Youden 1950, Swiston and Mennill
2009, Ganchev et al. 2015, Ulloa et al. 2016, Crump and Houlahan
2017), two reported choosing low thresholds that allowed for
analysis of metrics across score values (Digby et al. 2013, Katz et
al. 2016), and one reported a comparison of three score thresholds
(Brauer et al. 2016). Two of those seven papers also reported
receiver operating characteristic (ROC) metrics (Katz et al. 2016,
Ulloa et al. 2016), which incorporate scores from 0 to 1 implicitly.
Of the other five papers that did not report score threshold, four
mentioned score but did not report threshold used (Waddle et al.
2009, Bardeli et al. 2010, Potamitis et al. 2014, Jahn et al. 2017)
and one did not mention score at all (Duan et al. 2013).  

All papers that examined the performance of the recognizer across
score values reported that the performance improved with
increasing score. Digby et al. (2013) found that recall (true

negative rate) varied from nearly 100% at high scores to 0% at low
scores. Similarly, Katz et al. (2016) showed that recall and
specificity (the proportion of true negatives) ranged from 0 to 1
depending on the chosen score threshold. Brauer et al. (2016)
compared three different score thresholds, “low” (minimized false
negatives), “medium” (balanced false negatives and positives),
and “high” (minimized false positives), and found that the total
error of the recognizer ranged from 30% for the low threshold to
18% for the high threshold.

Metrics
In total, 11 different metrics were used across the 12 papers
reviewed (Table 1). The most frequently used metrics were recall
and precision. Among the metrics used, we found a lack of
standardization and clarity in the 12 papers reviewed. There was
variation in the terminology used for the metrics, with synonyms
for 4 of the 12 metrics, and up to 4 synonyms per metric. In
particular, the term “accuracy” was used to describe precision and
accuracy; however, the formula for accuracy used in the papers
we reviewed differs from the formula defined in the classifier
evaluation literature (Sokolova et al. 2006, Sokolova and Lapalme
2009). Furthermore, “accuracy” was undefined in one of the
papers reviewed (Duan et al. 2013), so we assigned it the same
mathematical formula as the other two papers that did define
accuracy. Two of the papers reviewed (Bardeli et al. 2010, Brauer
et al. 2016) did not cite or define the metrics used, including “total
error,” which is not a widely used classifier metric, so we back-
calculated the mathematical formula or assigned the metric to the
common name used in the paper. The remaining nine papers either
provided the mathematical formula for the metrics used,
explained the metric in plain language, or provided a citation for
the metric formula.

RECOGNIZER COMPARISON USING COMMON
NIGHTHAWK

Methods
We used a standardized training dataset to allow for a comparison
of four commercially or freely available recognizer programs. We
also included one custom recognizer program to compare the
other programs to the current state-of-the-art. To make this
comparison useful to ecologists with minimal bioacoustic
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experience, we used an “out-of-the-box” approach by relying on
the advice given by the program developer for recognizer
construction and allowed ourselves 8–12 hours of learning time
for each program. The exception was the custom CNN recognizer,
which required us to write a Python script to carry out model
training and evaluation.

Species
We used the Common Nighthawk as a model species to test single-
species automated acoustic recognition software because this
species has simple and consistent calls that have minimal acoustic
masking from other species because nighthawks vocalize
primarily at dusk and before dawn (Fig. 1). Further, the Common
Nighthawk vocalizes frequently, making it an ideal candidate with
which to evaluate recognizer error rates in detectability and calling
rate. The development of a high quality Common Nighthawk
recognizer is also a conservation priority because this species is
listed as Threatened under Canada’s Species at Risk Act, and
there are limited data for the species because of its crepuscular
nature (Environment Canada 2016).

Fig. 1. Specotrogram of Common Nighthawk (Chordeiles
minor) vocalizations. Spectrogram constructed with a 2048 FFT
window size and Blackman-Harris window type.

Training dataset
We built Common Nighthawk recognizers for five automated
signal recognition programs using vocalizations from a
standardized training dataset. The standardized training dataset
consisted of 400 minutes of audio data processed by human
listeners: 200 minutes of audio data with Common Nighthawk
detections and 200 minutes of audio data with no Common
Nighthawks. The data were collected from 11 locations in south
central British Columbia, Canada during the breeding season
from 12 June to 14 July 2014 and 2015 at dawn or dusk. The
absence data were collected from the same locations, but during
times of year and day when Common Nighthawks are not active.
Although Common Nighthawks produce relatively simple and
consistent calls, there is variation between individuals (Armstrong
1965), so we hand-selected recordings to incorporate variation in
call frequency, duration, and strength. All recordings were made
using SM2+ or SM3 recorders (Wildlife Acoustics Inc.) with a
bit depth of 16 bits, and a 16 kHz (2014) or 48 kHz (2015) sampling
rate.

Song Scope recognizer
Song Scope is a signal detection recognizer that uses Hidden
Markov models (HMMs) to maximize the probability of the
arrangement of individual syllables, based on the spectral feature
vectors of those syllables. We built the Song Scope recognizer
iteratively, following advice available in the software manual

(Wildlife Acoustics 2011). First, we extracted 100 “high-quality”
calls evenly distributed across 11 locations (9–10 calls from each
location). We defined “high-quality” calls as calls that were
produced near the microphone, i.e., had little attenuation, and
were not masked by any other acoustic signals, e.g., other birds
or weather. We included approximately 0.1 seconds of silence
preceding and following the vocalization. We then converted the
clips to Song Scope annotations and loaded them into the Song
Scope software as a single class. Common Nighthawk calls have
frequencies below 8 kHz, so we set the sample rate at 20 kHz to
exceed the Nyquist frequency (double the highest frequency of
interest in the signal) with some headroom. We set the frequency
minimum, range, max syllable, max syllable gap, max song, and
dynamic range at values that maximized the detection of the 100
training annotations in the logarithmic scale with signal detection
view (Appendix 2 Table A2.1). All other settings were left at
default values. We reviewed each of the 100 training annotations
to determine how much of each annotation was detected by Song
Scope and removed any annotations where the full call was not
completely detected. We replaced annotations with new
annotations from the same location and reviewed those for
detection completeness without adjusting the settings. We
repeated this process until all 100 calls were completely detected
in the logarithmic scale with signal detection view, and then
generated the recognizer with the Song Scope software. The
resultant recognizer had a cross training value of 77.32 +/- 5.87%
(mean +/-SD) and a total training value of 77.22 ± 4.87% (Wildlife
Acoustics 2011).

Kaleidoscope recognizer
Similar to Song Scope, Kaleidoscope is a signal detection
recognizer that builds a classification algorithm by running
individual call syllables through HMMs that maximize the
probability of detecting the entire call structure. Kaleidoscope
differs from Song Scope in that it uses K-means clustering of
Fisher scores from a 12-state HMM to cluster all the signals
detected into different classes, as opposed to only identifying the
signals that match the algorithm above a user-set score threshold.
We built the Kaleidoscope recognizer using the cluster analysis
function following the tutorial video available from the software
manufacturer for “Converting Song Scope Recognizers to
Kaleidoscope Cluster-based Classifiers” (Wildlife Acoustics
2016). We exported the annotation information from the 100 Song
Scope annotations into a text file as presence training data.
Because Kaleidoscope performs cluster analysis, it requires at
least two classes to build a recognizer, so we created an absence
training class by scanning our 200-minute absence dataset with
Song Scope and exporting the highest scored 100 detections into
the same text file. As per the training video, we then used the
Kaleidoscope software to rescan the training dataset with the
training clips to create a Kaleidoscope recognizer. We set
maximum cluster distance to the maximum allowable value to
simulate a minimum score threshold (Appendix 2 Table A2.2).
We adjusted the clustering parameters to create a two-cluster
recognizer with a presence class and an absence class (Appendix
2 Table A2.2). We then processed the test dataset with the
Kaleidoscope recognizer using similar signal detection
parameters to the Song Scope recognizer (Appendix 2 Table
A2.2). We validated only those detections that were classified as
presence by the Kaleidoscope recognizer and used only hits from
channel 1 to prevent duplicate hits.
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MonitoR recognizer
We used the binary-point matching function in MonitoR instead
of the cross-correlation approach because our initial tests
suggested it was more effective for Common Nighthawk calls. The
binary-point matching function in MonitoR is a template-based
approach, where the program converts each cell of the
spectrogram of a clip to a 1 or 0 using an amplitude cut-off. As
a moving window recognizer, MonitoR then processes audio data
by comparing this single-call template to each moving window of
the data and scores how many cells the window has in common
with the template. Multiple calls can be used to train MonitoR
recognizers, but the program creates a template for each training
call and scans the data once with each template, as opposed to
other programs that aggregate the training calls and scan the data
only once. We built the MonitoR recognizer following the training
vignette (Hafner and Katz 2017). We used the MakeBinTemplate
function to inspect each of the 100 training clips from the Song
Scope training dataset, and adjusted the time limit, frequency
limits, and amplitude cut-off  manually for each template to ensure
each call was completely detected (Appendix 2 Table A2.3).

CNN recognizer
Convolutional neural networks (CNNs) are a class of machine
learning models that have been successfully applied in a range of
domains including speech recognition and visual object
recognition (LeCun et al. 2015). CNNs are a type of artificial
neural network (ANN) that use moving window convolutional
layers to extract features from their inputs, which makes CNNs
particularly suited to acoustic detection as they can be applied
directly to variable length raw audio, spectrogram inputs, or other
representations of sound. ANNs have previously been used for
automated acoustic signal recognition, but require that call
parameters are first extracted from each acoustic signal before
being passed to the ANNs for classification (e.g., Jennings et al.
2008), whereas CNNs can scan and classify the spectrograms
directly. In general, the filters in convolutional layers are used to
detect acoustic features while sliding over the spectrogram, or
other visual input. To train a CNN as a moving window
recognizer, we used a simple architecture that had multiple
convolutional layers, but output a single convolutional feature
map (detection function) in the final layer (Appendix 2 Table
A2.4). During model training we presented short clips to the
network, typically with a single Common Nighthawk call either
present or absent. We used the maximum value of the detection
function to classify presence/absence, which forced the model to
learn a discriminative detection function. We used the
TensorFlow framework and the Python API to define and train
our CNN model (Abadi et al. 2015). As input to our model, we
used log-power mel-scaled spectrograms calculated using librosa
(McFee et al. 2017). We used rectified linear units (ReLUs) as the
activation function in all layers of the network except the last,
which used a sigmoid function. We trained the network for 100
epochs with a cross-entropy cost function, using minibatch
stochastic gradient descent with batch size 64 and Adam
optimization (Kingma and Ba 2014) with learning rate of 0.001.
During model evaluation on continuous recordings, the full time-
series output of the detection function was used as the recognizer
score. A simple threshold-based peak-picking method was then
used to extract a list of discrete detections. The CNN model
required fixed length inputs during training, so we created a

dataset by manually extracting 100 clips of 2-s duration from
across the presence dataset and the same number from the absence
dataset.

RavenPro recognizer
RavenPro uses band-pass filters, a band-limited energy detector,
and an amplitude detector, to perform signal detection and
identify calls of the appropriate duration within the frequency
range of the target species. We followed the RavenPro 1.4 manual
to configure our RavenPro recognizer (Charif  et al. 2010). We
extracted 100 high-quality calls (defined as above) and measured
target signal parameters, i.e., frequency, duration, and separation,
for each Common Nighthawk vocalization. We used the default
setting for most noise estimation parameters, with adjustments
made to those that increased the true positive rate (Appendix 2
Table A2.5).

Test dataset
To test the generalizability of our recognizers, we used a test
dataset from a different geographic region than the training
dataset. Our test dataset comprised 117 recordings of 5-min
duration (2.28 GB) from 45 study sites in northwestern Ontario,
Canada. The recordings were made on 13 June and 25 June 2012
at 21:00 and 22:00 when Common Nighthawks are acoustically
active, and there were between 1 and 4 recordings for each of the
45 study sites. The individual recordings within the test dataset
were selected randomly from a larger pool of samples, though the
resulting dataset represented a gradient of low to high Common
Nighthawk call density. All recordings were collected as 16-bit 16
kHz WAV files using SM2+ Songmeters (Wildlife Acoustics Inc.).

Automated processing
The test dataset was processed with each recognizer. We chose
low score thresholds for each of the recognizers so that we could
evaluate performance across a gradient of score thresholds
(Appendix 2). We set the score threshold at 0 for the signal
detection recognizers (Song Scope, Kaleidoscope, RavenPro) to
allow for full analysis of the score threshold gradient. We then
ran the moving window recognizers (MonitoR and CNN) with a
similarly low threshold and selected the highest scored 6750 hits,
which was the maximum number of hits detected by any of the
signal detection recognizers (Song Scope). Without this hit
threshold, both moving window recognizers would have produced
as many hits as moving windows, i.e., hundreds of thousands (Fig.
2) because they have no signal detection process. We ran each
recognizer with the same MacBook Pro (late 2013) with a 2.3 GHz
Intel Core i7 and 16 GB 1600 MHz DDR3 of RAM. We timed
the processing duration of the test dataset while no other software
was running.

Benchmark development
We compared our recognizers to human listening and used the
maximum number of true detections by any method as our
benchmark because the recognizers detected the presence of
Common Nighthawks in several recordings that human listeners
had missed. Using a human listening benchmark would have
decreased the presence-absence recall of those recognizers
because the comparison would have been to a benchmark that
included false negatives. To develop the human listening dataset,
two human observers viewed and simultaneously listened to each
5-min recording in its entirety using sound visualization software
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Fig. 2. Distribution of true positive and false positive recognizer hits relative to score for Common
Nighthawk (Chordeiles minor) recognizers in five different programs. The top row programs are
signal detection recognizers and the bottom row programs are moving window recognizers.
Recognizer scores are the raw scores reported by the programs and are unstandardized.
Kaleidoscope score is the inverse of the distance metric.

and time-stamped each Common Nighthawk vocalization using a
Microsoft Access data entry form.

Statistical analysis
We referred to existing best practices in the machine learning
literature and other acoustic signal detection disciplines to develop
our evaluation approach (Davis and Goadrich 2006, Sokolova and
Lapalme 2009, Raffel et al. 2014). We evaluated the overall
performance of each of the five Common Nighthawk recognizers
relative to the benchmark. We also evaluated the applied
performance of each of the recognizers including presence-absence
recall, occupancy modeling, and call rate correlation. All analyses
were conducted in R version 3.3.1 (R Core Team 2016) with the base
package, the PRROC package (Grau et al. 2015), and the ROCR
package (Sing et al. 2005).  

Prior to analysis, we standardized the score of each hit for each
recognizer on a scale from 0 (lowest score) to 1 (highest score) to
enable comparison between recognizers. We standardized the score
of each hit by dividing it by the maximum score for that recognizer
minus the minimum score for that recognizer. Kaleidoscope does
not directly report a score, but instead uses a clustering approach
to report distance between detections, so we used the inverse of the
distance to cluster center as a surrogate for score. We included score
threshold in our evaluation by applying a score threshold in 0.01
increments to the dataset for each recognizer before calculating each
metric.  

To evaluate overall performance of the recognizers, we calculated
precision, recall, F-score, and area under the curve (AUC) because
these metrics are suitable for one-class classifiers (recognizers
trained only with examples of the target species, e.g., Song Scope,
MonitoR, RavenPro) and binary classifiers (recognizers trained
with examples of both the target species and nontarget species, e.g.,
CNN, Kaleidoscope; Sokolova et al. 2006). Precision is the
proportion of recognizer hits that are true detections of the target

species (Table 1). Recall is the proportion of target species
vocalizations detected as hits by a recognizer (Table 1). F-score
incorporates precision and recall, and allows the user to weight
the relative importance of precision versus recall by setting the β 
value (Table 1). For AUC, we plotted precision-recall as well as
ROC curves for each of the recognizers because some authors
suggest precision-recall is more appropriate for recognizer
performance evaluation (Davis and Goadrich 2006). We did not
apply a score threshold for this evaluation because AUC
incorporates score implicitly. We did not include human listening
in AUC calculation because human listening detections do not
have score values.  

We then evaluated the applied performance of the recognizers
and human listening in a presence-absence study because
presence-absence data are used for a variety of applications in
ecological research and monitoring. To simulate a presence-
absence study and to balance sampling effort across study sites,
we subsampled our test recording dataset to the first recording
for each of the 45 study sites. We then determined whether the
recognizer or listener accurately determined the presence or
absence of a Common Nighthawk for each score threshold
increment of 0.01, and then modeled this presence-absence recall
with a binomial logistic regression for each processing approach.
For each approach, we constructed null, first-order, second-order,
and third-order polynomial models with score threshold as the
covariate. We compared the four models for each approach using
Akaike Information Criteria (AIC; Burnham and Anderson
2002) and selected the model with the lowest AIC score.  

We also evaluated the performance of the recognizers and human
listening for occupancy modeling. Occupancy modeling is a
widely used application of presence/absence data that uses
repeated visits to account for imperfect detection of the target
species (MacKenzie et al. 2002). ARU data are particularly well-
suited for occupancy modeling because they collect multiple time-

http://www.ace-eco.org/vol12/iss2/art14/


Avian Conservation and Ecology 12(2): 14
http://www.ace-eco.org/vol12/iss2/art14/

Fig. 3. Precision, recall, and F-score of Common Nighthawk (Chordeiles minor) call detection for
automated acoustic recognition programs at varying score thresholds. Precision, recall, and F-score
of human listening is provided for comparison. Precision is the proportion of recognizer hits that
are true detections of the target species. Recall is the proportion of target species vocalizations
detected by the recognizer. F-score combines precision and recall into a single evaluation metric.

series recordings that can be used as repeat-visit data (Shonfield
and Bayne 2017). We modeled Common Nighthawk detection
and occupancy for each of the recognizers and human listening
using a single season occupancy model framework (MacKenzie
et al. 2002) with each 5-min recording used as a separate
“sampling occasion.” Prior to modeling, we removed seven study
sites from the dataset for which there was only one recording
because occupancy models require at least two recordings, i.e.,
visits, to estimate the detectability parameter. The resultant
dataset comprised 38 sites. We then ran a null occupancy model
with the validated recognizer data for each 0.01 score threshold
for each recognizer to examine how detectability and occupancy
changed with score threshold.  

We also evaluated the performance of each recognizer and human
listening for measuring call rate. Call rate ARU data have been
used for behavioral studies (Ehnes and Foote 2014), and can be
used as a proxy for abundance of some species if  baseline patterns
in call rates or song frequency are well known, which can in turn
be used for monitoring population trends (Jeliazkov et al. 2016).
We calculated the Spearman correlation coefficient between the
benchmark and the call rate for each score threshold increment
using the individual recording as the sampling unit.  

Finally, we compared the efficiency of each of the five automated
acoustic recognition programs and human listening as the time
required to learn the software, build the recognizer, scan the test
audio dataset, and validate the recognizer results as true or false
positives. We limited learning time to 8–12 hours to develop a
functional aptitude for each of the programs using our “out-of-
the-box” approach. We quantified the time spent to build each
recognizer, including a standardized four hours of training
dataset compilation time because we used a single compiled
training dataset for all five recognizers. We quantified the time
required to scan by timing the computer processing of our test
dataset. We quantified the time to validate by timing the validation
of each of the recognizer hits and taking the mean validation time
per hit. To compare the efficiency of the five recognition programs
to human listening, we calculated processing time in hours per
hour of audio data for a 10 hour audio dataset and a 1000 hour

audio dataset. We calculated processing time as the time required
to learn and build the recognizer plus time to validate the
recognizer results. We did not include scanning time in our
efficiency calculation because this part of the process does not
require human supervision. For time to validate, we calculated
the time it would take to validate the recognizer when run with a
score threshold for the peak of the precision-recall curve, i.e., the
maximum value of precision + recall. Finally, we calculated the
audio dataset size at which the efficiency of recognizer processing
becomes faster than human listening, assuming 1 hour of listening
per 1 hour of audio data and 1 hour of initial learning.

Results
A total of 5556 Common Nighthawk calls were detected across
the 117 five-minute recordings (mean = 152 per recording, SD =
196), which was used as the benchmark for recognizer evaluation.
Common Nighthawks were detected in 85 of the 117 recordings,
and at 38 of 45 sites from northwestern Ontario, Canada.

Precision, recall, and F-score
As expected, recall and F-score decreased and precision increased
with increasing score threshold for all recognizers (Fig. 3). Score
threshold had a minimal impact on precision and recall of the
RavenPro recognizer, with impacts seen only at score thresholds
above 0.7. Precision for the CNN, MonitoR, and Song Scope
recognizers neared 1.0 at high score thresholds, with few false
positives reported by the two moving window recognizers (CNN
and MonitoR) except at low thresholds. The Kaleidoscope and
RavenPro recognizers both had a precision of approximately 0.7
across most score thresholds. The CNN had the highest recall
across all score thresholds, with the MonitoR recognizer also
reaching a high recall of 0.75 at low score thresholds. The Song
Scope recognizer recall decreased steadily from 0.42 at the lowest
threshold, while the Kaleidoscope recognizer recall of 0.34
dropped off  rapidly above a score threshold of 0.3. The RavenPro
recognizer had relatively low recall of approximately 0.2 across
all score thresholds. The F-scores of the five recognizers were
similar to the recall values, with the exception of a lower F-score
for the Song Scope recognizer below a score of 0.2. Human

http://www.ace-eco.org/vol12/iss2/art14/


Avian Conservation and Ecology 12(2): 14
http://www.ace-eco.org/vol12/iss2/art14/

listening precision was 1.0 because we assumed that every human
listener detection was a true positive; however, human listening
recall was 0.97 because human listeners missed 146 of the 5556
Common Nighthawk calls detected in the test dataset.

Area under the curve
The CNN recognizer had the highest precision-recall curve AUC
(0.94), followed by MonitoR (0.88), Song Scope (0.87), RavenPro
(0.82), and Kaleidoscope (0.77; Fig. 4). The ranking of the top
two recognizers from the ROC curve AUC was different than the
precision-recall curve AUC; the SongScope recognizer had an
AUC of 0.90, while the CNN had an AUC of 0.88. The ranking
of the other recognizers was the same between the two AUC
measures; however, the ROC AUC of the Kaleidoscope
recognizer (0.53) was much lower than the precision-recall AUC
(0.77).

Fig. 4. Precision-recall curve (left) and receiver operating
characteristic (ROC; right) curve of Common Nighthawk
(Chordeiles minor) call detection for automated acoustic
recognition programs. AUC is area under the curve for each
program.

Presence-absence
At low score thresholds, the CNN, Song Scope, and MonitoR
recognizers determined Common Nighthawk presence-absence
with similar recall as a human listener (95.4%; Fig. 5). At high
score thresholds, only the CNN and RavenPro recognizers
detected Common Nighthawk presence-absence with greater than
50% recall. As with precision and recall, score threshold had little
impact on the presence-absence recall of the RavenPro recognizer.
The CNN recognizer had the highest presence-absence recall of
the five programs across the score threshold gradient. The CNN
(wi = 0.95), Kaleidoscope (wi = 0.92), and Song Scope (wi = 0.97)
recognizers were modeled as third-order polynomials, and the
MonitoR recognizer (wi = 0.69) was modeled as a second-order
polynomial (Appendix 3 Table A3.1). The null model with the
lowest AIC score for the RavenPro recognizer was the null model
(wi = 0.43), suggesting that score threshold had no effect on
presence-absence recall.

Occupancy
Naive occupancy of the 110 visits, i.e., recordings, included in
occupancy modeling was 0.89 (34 of 38 sites). The occupancy
estimate from human listening was 0.87 (SE = 0.06; Fig. 6). In

Fig. 5. Recall of five automated acoustic recognition
programs for detecting Common Nighthawk (Chordeiles
minor) presence per recording at varying score
thresholds. Recall of human listening is provided for
comparison. Shaded areas indicate 95% confidence
intervals.

Fig. 6. Common Nighthawk (Chordeiles minor) occupancy and
detection in null occupancy models for automated acoustic
recognition programs at varying score thresholds. Occupancy
and detection of human listening is provided for comparison.
Shaded areas indicate 95% confidence intervals.
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Table 2. Time in hours spent to learn each of the automated acoustic recognition programs, build a recognizer, scan audio recordings
with the recognizer, and validate the recognizer output. Total times and dataset size were calculated using the number of hits produced
by each recognizer when the score threshold is set to maximize accuracy.
 
Recognizer Learn time Build time Scan time per hr

audio
Validate time per

hr audio
Total time per hr

audio
(10 hr dataset)

Total time per hr
audio

(1000 hr dataset)

Dataset size (hr)
where recognizer

is faster than
human listening

Human listening 1 0 0 1 1.1 1.00 NA
CNN 24 8 0.003 0.11 3.31 0.14 36
Kaleidoscope 8 4 0.001 0.16 1.76 0.17 19
MonitoR 8 8 0.32 0.52 2.20 0.22 25
RavenPro 8 2 0.03 0.13 1.50 0.12 16
Song Scope 12 8 0.03 0.11 2.48 0.11 26

general, the occupancy estimates from recognizer data were lower
than the estimate from human listening, although the occupancy
estimate from the CNN recognizer (0.80) was not significantly so.
The occupancy estimates from the Kaleidoscope, MonitoR, and
Song Scope recognizers decreased with increasing score threshold
as detection also decreased, and at high score thresholds, the
estimates became unstable, varying between 0 and 1. The
occupancy estimates from the CNN and the RavenPro recognizers
were more stable across score thresholds, although the RavenPro
estimate was much lower (0.60).

Call rate
At low score thresholds, the CNN and MonitoR call rate
correlation was similar to human listening (0.96 and 0.91,
respectively); however, call rate correlation of the MonitoR
recognizer decreased rapidly and linearly to near 0 with increasing
score threshold, while the CNN recognizer call rate correlation
decreased slowly before dropping steeply at a score threshold of
0.9 (Fig. 7). The Song Scope recognizer call rate correlation was
between 0.7 and 0.8 at moderate score thresholds. Call rate
correlation for the RavenPro recognizer varied minimally across
score thresholds (max = 0.56, min = 0.48). The Kaleidoscope call
rate correlation was 0.7 and decreased steadily but irregularly
after a score threshold of approximately 0.3.

Efficiency
All five of the automated signal recognition programs became
faster than human listening for datasets larger than 36 hours of
audio (Table 2). The CNN recognizer had the largest initial time
investment, and thus had the highest processing time per hr of
audio data for a small dataset (10 hours audio). For a large audio
dataset (1000 hours audio) the differences between the recognizers
were due primarily to differences in the number of hits at
maximum precision-recall between recognizers. The Song Scope
recognizer was the most efficient, while the Kaleidoscope
recognizer was the slowest. Although not included in the
processing time calculations, scanning time should also be
included in efficiency considerations. The CNN and
Kaleidoscope recognizers were the fastest to scan our test dataset,
while the MonitoR recognizer was two orders of magnitude
slower because this program scanned the audio dataset separately
through each of the 100 templates.

Fig. 7. Spearman correlation of Common Nighthawk
(Chordeiles minor) call rate between automated acoustic
recognition programs across varying score thresholds.
Correlation of call rate from human listening is provided for
comparison.

EVALUATION RECOMMENDATIONS
Based on our analysis, we suggest that ecologists who use
automated acoustic recognition for processing acoustic
recordings follow six general recommendations. These
suggestions are drawn largely from best practices in machine
learning and other acoustic signal processing disciplines (Salzberg
1997, Sokolova et al. 2006, Sokolova and Lapalme 2009, Raffel
et al. 2014), as well as our literature review of evaluation methods
in ecology and lessons learned during our Common Nighthawk
recognizer evaluation. We also suggest that ecologists familiarize
themselves with general machine learning practices because there
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is great potential for interdisciplinary research, but a known lack
of communication between the two disciplines (Thessen 2016).

Recommendation 1: Benchmark
Recognizer evaluation should employ a test dataset that differs
from the training dataset to avoid “overly optimistic” results
(Salzberg 1997). Within the test dataset, it is important to establish
a benchmark of known target species detections to evaluate
recognizer performance. We recommend human listening as a
comparison benchmark; however, we remind readers that human
listening is also subject to error (Bart and Schoultz 1984,
McClintock et al. 2010, Brauer et al. 2016). If  any false negatives
in human detections are discovered during the process of
reviewing recognizer detections, we recommend instead using the
maximum number of target species detections detected by any
method, i.e., human processing or a recognizer, as the benchmark.
In our performance evaluation, there were 146 Common
Nighthawk calls (2.63% of total) detected by a recognizer that
were missed by human listeners. Brauer et al. (2016) also reported
a 2% error rate in human identification of anuran calls, while
Rydell et al. (2017) found error rates ranging from 9–22% for bat
species identified by human listeners. If  the target species
vocalizations are susceptible to false positive identification by
human observers, we recommend using a dependent double
observer method when developing the benchmark to reduce the
probability of misidentification (Forcey et al. 2006). Acoustic
signals at farther distances (Skowronski and Brock Fenton 2009),
lower sound pressure (Jahn et al. 2017), or with low signal-to-
noise ratios, i.e., high levels of background noise, will be difficult
to detect for both humans and recognizers, and therefore should
not be excluded when preparing a benchmark (Skowronski and
Harris 2006). Human listening can also be subject to observer
bias (Sauer et al. 1994). Jennings et al. (2008) found that human
observers with less than a single year of experience performed
worse at classification than recognizers. Human annotation error
can also be reduced by using the consensus from multiple
observers as the benchmark dataset (e.g., Drake et al. 2016).

Recommendation 2: Score threshold
We strongly recommend that the influence of score be included
in recognizer evaluation because our review showed it has a
fundamental impact on recognizer performance, no matter what
metric was used. Following Katz et al. (2016), we further
recommend the use of score threshold instead of the reported raw
scores of each detection in recognizer evaluation so that ecologists
can use their evaluation results to select an optimal score threshold
for data processing. We found in both our own recognizer
evaluation and in our review of the literature that performance
varied widely with score threshold. Furthermore, not all papers
that used recognizers reported how they selected their score
threshold despite the importance of this decision. Factors such
as project objective, recording quality, call complexity, and signal
clarity influence the choice of score threshold and the subsequent
performance metrics. In our evaluation, the exception was the
RavenPro recognizer, whose performance was largely unaffected
by score threshold, perhaps because RavenPro is a band limited
energy detector that identifies signals based only on a frequency
range specification. It is possible that score threshold may be
particularly important for programs with more complex
classification approaches. Inclusion of a gradient of score

thresholds in evaluation will facilitate selection of an appropriate
score threshold for further analysis, which can be chosen based
on the objectives of the project (Katz et al. 2016). We also found
that some papers did not report score threshold, and we argue
that it is crucial that score thresholds are explicitly reported within
papers that use automated signal recognition.

Recommendation 3: Metrics
We suggest ecologists use metrics that are considered best practice
in other signal processing disciplines (Sokolova and Lapalme
2009). Specifically, we suggest that four metrics always be reported
for single species recognizer evaluation: (1) precision, (2) recall,
(3) F-score, and (4) area under the curve (AUC). These metrics
are regularly reported during classifier evaluation in other
disciplines and will also allow ecologists to compare evaluation
results with state-of-the-art studies in machine learning and
elsewhere. Ecologists can also calculate these statistics across
multiple datasets or partitioned datasets so that variance in
metrics can be evaluated (Salzberg 1997) and statistical tests to
compare recognizer performance can be applied (Dietterich 1998,
Demšar 2006).

Precision and Recall
Precision is the proportion of recognizer hits that are true
detections of the target species and is calculated as 
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where tp is the number of true positives (detections of target
species) and fp is the number of false positives (recognizer hits
that were mislabelled as the target species).  

Recall is the proportion of target species vocalizations detected
as hits by a recognizer and is calculated as 
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where fn is the number of false negatives (detections of the target
species in the benchmark dataset that the recognizer missed).
Precision and recall were the most commonly used metrics in our
literature review and in the classification literature (Raghavan et
al. 1989, Provost et al. 1998, Davis et al. 2006). Precision and recall
are appropriate for signal recognition evaluation because unlike
some metrics, they do not require quantification of true negatives,
i.e., other species, which are not reported in single-class
recognizers such as Song Scope and MonitoR. In contrast,
accuracy focuses on true and false negatives and assumes that
false negative and positive errors are equally likely and
consequential, which is often a poor assumption in signal
recognition (Provost et al. 1998). Precision and recall are also
particularly appropriate when the target species is rare because a
recognizer can have a high accuracy by simply predicting the
target species is always absent, and the accuracy of a recognizer
can be inflated by adding more negative examples to the dataset.
Using precision and recall allows for direct comparison of
recognizer performance with other published studies. Across the
studies we reviewed, the mean recall was 0.60 and the mean
precision was 0.71 (Swiston and Mennill 2009, Bardeli et al. 2010,
Digby et al. 2013, Duan et al. 2013, Potamitis et al. 2014, Ganchev
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et al. 2015, Jahn et al. 2017). With the exception of the
Kaleidoscope recognizer and the Song Scope recognizer at low
score thresholds, the precision of our Common Nighthawk
recognizers was above 0.71. The recall of our MonitoR and CNN
recognizers reached 0.60 at low score thresholds, but the other
recognizers did not.

F-score
F-score combines precision and recall into a single metric and is
calculated as 
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where β is a user-defined metric that allows for prioritization of
precision over recall, or vice-versa. Precision and recall are evenly
balanced when β = 1, precision is favored when β > 1, and recall
is favored when β < 1 (Sokolova et al. 2006). We recommend that
if  ecologists choose to use a value for β other than 1, that they
also report F-score with β = 1 to allow for comparison across
studies. Situations where ecologists might consider using β < 1
include detection of rare species or situations with legal
implications.

Area under the curve (AUC)
Following other acoustic signal processing disciplines, we
recommend reporting the AUC of a precision-recall curve as a
univariate method for comparing recognizers. Receiver operating
characteristic (ROC) curve AUC is more commonly used in the
classifier evaluation literature; however, precision-recall curves
are more appropriate for cases with class imbalance such as
recognizer evaluation (Davis and Goadrich 2006). In other words,
a large quantity of false positives, as is the case for many
recognizers at low score thresholds, is more accurately reflected
in the AUC of a precision-recall curve than an ROC curve, and
our comparison of the two approaches supports this. We therefore
recommend a precision-recall AUC; however, ecologists may also
want to calculate an ROC AUC for comparison with other
published studies.

Recommendation 4: Application evaluation
Although overall recognizer evaluation is important, the
influence of the metrics chosen can depend on the intended
application for the data (Stowell et al. 2016). We therefore also
recommend evaluation be done for the intended application of
the resultant species detection data. Recognizer evaluation for
occupancy modeling purposes is particularly important, and as
our results suggest this approach becomes unreliable for
recognizer data with low recall because species detection
probability is too low for reliable occupancy estimates
(MacKenzie et al. 2002). We also found that the shape of the curve
across the score threshold gradient for all three response variables
we examined (presence-absence recall, occupancy estimate, and
call rate correlation) was similar to the shape of the recall curve.
Future work should investigate whether the relationship between
the shape of the score-recall curve is an adequate proxy for all
response variables, or whether it varies depending on the
detectability, call rate, and occupancy of the target species.

Recommendation 5: Regional
generalizability
Geographic variation in acoustic signal is demonstrated in many
bird species (Slabbekoorn and Smith 2002) and other animals that
produce sound (Pröhl et al. 2006, Campbell et al. 2010, Sun et al.
2013), which is important to consider during recognizer
evaluation (Gillespie et al. 2013, Russo and Voigt 2016). For
simplicity, we evaluated the regional generalizability of our
Common Nighthawk recognizer with a test dataset from a
different region than the training data; however, in best practice,
ecologists should test recognizers across multiple geographic
regions. Evaluating with multiple test datasets will help ecologists
determine whether a single recognizer is effective or whether
regionally specific recognizers are required for their target species.
For example, marine mammal classifiers have been shown to be
14.4% less accurate when tested with data from a different region
than the training data (Erbs et al. 2017). For ecologists that plan
to use recognizers for a single region, training and test data should
be sourced from the region of interest.

Recommendation 6: Efficiency evaluation
For many ecologists, the purpose of employing an automated
signal recognition approach is to increase the efficiency of audio
data processing; therefore, we recommend collecting data on time
spent to build and run a recognizer and validate the output. The
time per hour of audio data can then be compared to other data
processing approaches, including human listening. For our
recognizers, we found that human listening became less efficient
with datasets larger than 36 hours of audio; however, we note that
using a visual scanning approach, i.e., viewing the spectrogram,
instead of listening may have improved the efficiency of our
human processing approach. If  the automated recognizer used
performs poorly, however, the manual postprocessing time
required may outweigh the advantages of automation because of
the time required to validate the results (Stowell et al. 2016). Digby
et al. (2013) found that automated recognition (2 minutes per hour
of recording) could be at least as or more efficient than manual
scanning (2–5 minutes per hour of recording). Joshi et al. (2017)
found that manual scanning was more time-efficient than
automated signal recognition for four species of forest birds, but
noted that the efficiency of a recognizer will depend on the species’
vocalization characteristics, call rate, and the quality of
recognizer. Indeed, human listening may be more efficient than
single-species recognizers if  multiple species data are needed from
audio recordings; however, there are also many multispecies
recognizer approaches currently under development (Stowell et
al. 2016, Goëau et al. 2017). Ultimately, relative efficiency will
depend on a variety of factors including score threshold, with
more time required to validate recognizer output if  a low score
threshold is chosen to prioritize recall over precision.

DISCUSSION
Autonomous recording units (ARUs) are important tools for
ecological monitoring and research because they are portable,
collect data over extended periods, can be used in remote
locations, are not restricted to a particular season, and the data
they collect can be archived as a permanent record (Shonfield and
Bayne 2017). The use of automated signal recognition for
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processing ARU data is growing because it can reduce the time
required to process the large amounts of data; however, best
practices are needed (Blumstein et al. 2011). In particular,
recognizer performance evaluation is a critical step for projects
that employ automated signal recognition. All recognizers
misclassify detections to some extent, which can have implications
for study results and may lead to poor management decisions if
the results are not validated (Russo and Voigt 2016, Rydell et al.
2017). In our review of the bioacoustics literature, we found little
similarity in recognizer performance evaluation between studies.
Some studies reported minimal performance evaluation results,
which renders the ecological results of these studies difficult to
interpret. In papers that did report performance evaluation, we
found an inconsistency in the evaluation terminology used and a
lack of reference to the classification literature (Salzberg 1997,
Davis and Goadrich 2006, Sokolova and Lapalme 2009). Given
the increasing use of recognizers by ecologists, these deficiencies
suggest a need for guidance on performance evaluation. We used
best practices from other acoustic signal processing disciplines
and our own evaluation of automated signal recognition software
to provide recommendations for recognizer evaluation.  

Using the Common Nighthawk as a model species, we found that
a convolutional neural network (CNN) recognizer outperformed
the other recognizers across all evaluations. The Song Scope and
MonitoR recognizers had similar precision and recall rates to the
CNN recognizer at some score thresholds. Currently, the
construction of CNN recognizers requires programming
expertise, but an increasing number of authors have reported
success with this method for automated signal recognition (Koops
et al. 2014, Salamon and Bello 2017, Salamon et al. 2017). Using
our “out-of-the-box” approach, we found MonitoR and Song
Scope had similar learning curves, assuming the operator is
already familiar with the R programming language. At the time
of writing, however, Song Scope was no longer under
development or supported by the manufacturer. As the simplest
automated signal recognition program, RavenPro was the easiest
to learn, but the simplicity of its band-width delimitation
classification approach limited its performance. Duan et al. (2013)
also compared Raven Pro and Song Scope, and similarly reported
a more intuitive user interface. Duan et al. (2013) also found that
RavenPro had higher recall but lower precision than Song Scope.
The Kaleidoscope recognizer also had low precision and recall
relative to the other recognizers, with precision varying erratically
across score threshold, likely because we used distance to cluster
center as a surrogate for score. Rydell et al. (2017) similarly found
that Kaleidoscope performed worse than other recognizers for
bat call classification. We caution that our performance and
efficiency evaluation of these five programs was based on a single
model species with a simple, diagnostic call and little ambient
masking noise and that ecologists should compare these programs
for other species before choosing which program to use for audio
data processing.  

Overall, automated signal recognition was effective for
determining Common Nighthawk presence-absence and call rate,
particularly at lower score thresholds, but the occupancy estimates
from the data processed with recognizers were consistently lower
than derived from human listening, with the exception of the
CNN recognizer. Other authors have successfully derived
occupancy estimates from recognizer data that are comparable to
naive occupancy (Kalan et al. 2015, Campos-Cerqueira and Aide

2016). Although ARUs can be as effective as human surveyors at
detecting occurrences (Holmes et al. 2014, Kalan et al. 2015), the
greater number of false negatives from an automated analysis
(Brauer et al. 2016) reduces the apparent occupancy estimate for
an organism at a location (MacKenzie et al. 2002). It has been
suggested that the difference in recall between automated signal
recognition and human listening is caused by a smaller detection
radius of the recognizer relative to the human listener (Jahn et al.
2017; Knight and Bayne, unpublished data), which could be due
to both the signal detection and classification components of the
recognizer and would explain our reduced occupancy estimates.
This may not be an error per se but may instead reflect the fact
that more standardization is needed when using ARUs to
determine the effective area being sampled (Yip et al. 2017). We
also found that occupancy estimates became unstable at high
score thresholds with low recall, and therefore caution against the
use of occupancy models produced from recognizer data with low
recall recognizers because low recall contributes to low
detectability, which biases occupancy estimates (MacKenzie et a.
2002). Future research should investigate the sensitivity of
occupancy modeling to this new data type.  

Although automated signal recognition is effective for Common
Nighthawks, there is little consensus to date on the overall
effectiveness of the existing technology for avian ecological
research and monitoring. Future application of our
recommendations would be most useful for taxa with more
complex acoustic signals, different calling rates, and in
environments with varying levels of ambient noise. Thorough
performance evaluation in recognizer studies following our
general recommendations will contribute to building a body of
literature for future meta-analysis on the overall effectiveness of
automated signal recognition for wildlife monitoring and
research.

Responses to this article can be read online at: 
http://www.ace-eco.org/issues/responses.php/1114
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Table A1.1. Acoustic classification or recognition articles for a review of automated signal recognition assessment 
methods. Articles in bold were selected for detailed review because they used single species recognizers and assessed 
recognizer performance with a field recording test dataset. 
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Table A2.1. Parameter settings used for a Common Nighthawk (Chordeiles minor) 
acoustic recognizer built in Song Scope software. 
Parameter Setting 
FFT size 256 
FFT overlap ½ 
Frequency minimum 30 
Frequency range 80 
Amplitude gain (dB) 0 
Background filter (s) 1 
Max syllable (ms) 723 
Max syllable gap (ms) 0 
Max song (ms) 723 
Dynamic range (dB) 26 
Algorithm 2.0 
Maximum complexity 32 
Maximum resolution 8 
Score threshold 0 
Quality threshold 20 

 
Table A2.2. Parameter settings used for a Common Nighthawk (Chordeiles minor) 
acoustic recognizer built in Kaleidoscope software. 
Parameter Setting 
FFT size 256 
Max distance from cluster centre to include outputs in cluster.csv 2.0 
Max states 12 
Max distance to cluster centre for building clusters 1.0 
Max clusters 2 
Frequency minimum (kHz) 1.0 
Frequency maximum (kHz) 7.0 
Min song (ms) 100 
Max song (ms) 700 
Max syllable gap (ms) 0 

 
Table A2.3. Parameter settings used for a Common Nighthawk (Chordeiles minor) 
acoustic recognizer built with the binary point template function in the MonitoR package 
in R software. Frequency minimum, frequency maximum, and amplitude cutoff were 
adjusted by hand within the indicated ranges for each of the 100 templates made. 
Parameter Setting 
FFT size 512 
FFT transformation Hanning window 
FFT overlap None 
Frequency minimum (kHz) 2.1 to 2.8 
Frequency maximum (kHz) 5.0 to 5.8 
Amplitude cutoff (db) -53 to -17 
Buffer 0 
Score threshold 0.1 
Min gap between hits (s)  0.1 



Table A2.4. Parameter settings used for a Common Nighthawk (Chordeiles minor) 
acoustic recognizer built using a convolutional neural network (CNN) in Tensorflow 
software. 
Parameter Setting 
Spectrogram Input mel-scaled (96 mel filters) 
FFT size 512 
FFT overlap 75% 
Sample rate (kHz) 16 
Layer 1 7x7 conv stride 2. 8 ReLU units 
Layer 2 3x3 max-pooling stride 2 
Layer 3 24x9 conv. 32 ReLU units 
Layer 4 1x1 conv. 1 sigmoid unit 
Layer 5 Global max-pooling 
Loss 
Optimizer 
Batch size 
Learning rate 
Score threshold 

Cross-entropy 
Adam 
64 
0.001 
0.001 

Min gap between hits (s) 0.1 
 
Table A2.5. Parameter settings used for a Common Nighthawk (Chordeiles minor) 
acoustic recognizer built in RavenPro software. 
Parameter Setting 
FFT Size 512 
Minimum frequency (kHz) 1.8 
Maximum frequency (kHz) 6 
Minimum duration (s) 0.2 
Maximum duration (s) 0.6 
Minimum separation (s) 0.096 
Minimum occupancy (%) 15 
SNR threshold (dB) 10 
Block size (s) 0.8 
Hop size (s) 0.4 
Percentile 20 

 



Table A3.1 AIC ranking of polynomial models for Common Nighthawk (Chordeiles 
minor) presence-absence recall from acoustic data processed with automated acoustic 
recognition programs. Bold indicates the model selected. 
Recognizer Model df logLik AIC DAIC AICw 
CNN Presence = null 1 -2048.3 4098.6 200.3 0.00 
CNN Presence = score 2 -1951.0 3905.9 7.6 0.02 
CNN Presence = score + 

I(score^2) 
3 -1949.5 3905.0 6.7 0.03 

CNN Presence = score + 
I(score^2) + I(score^3) 

4 -1945.2 3898.3 0.00 0.95 

Kaleidoscope Presence = null 1 -3087.4 6176.8 502.3 0.00 
Kaleidoscope Presence = score 2 -2838.1 5680.2 5.7 0.05 
Kaleidoscope Presence = score + 

I(score^2) 
3 -2837.7 5681.3 6.8 0.03 

Kaleidoscope Presence = score + 
I(score^2) + I(score^3) 

4 -2833.2 5674.5 0.0 0.92 

MonitoR Presence = null 1 -3103.4 6208.9 634.3 0.00 
MonitoR Presence = score 2 -2795.2 5594.3 19.7 0.00 
MonitoR Presence = score + 

I(score^2) 
3 -2784.3 5574.6 0.0 0.69 

MonitoR Presence = score + 
I(score^2) + I(score^3) 

4 -2784.1 5576.2 1.6 0.31 

RavenPro Presence = null 1 -3047.7 6097.3 0.0 0.43 
RavenPro Presence = score 2 -3046.8 6097.6 0.3 0.37 
RavenPro Presence = score + 

I(score^2) 
3 -3046.8 6099.6 2.3 0.14 

RavenPro Presence = score + 
I(score^2) + I(score^3) 

4 -3046.7 6101.4 4.0 0.06 

Song Scope Presence = null 1 -2615.7 5233.3 610.6 0.00 
Song Scope Presence = score 2 -2320.8 4645.7 23.0 0.00 
Song Scope Presence = score + 

I(score^2) 
3 -2311.9 4629.9 7.16 0.03 

Song Scope Presence = score + 
I(score^2) + I(score^3) 

4 --2307.4 4622.7 0.0 0.97 
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