• Home
  • Ellinor B. Heggset
Ellinor B. Heggset

Ellinor B. Heggset
RISE PFI · Nanocellulose and Carbohydrate Polymers

PhD

About

34
Publications
7,699
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,358
Citations
Additional affiliations
August 2005 - June 2012
Norwegian University of Science and Technology
Position
  • PhD Student

Publications

Publications (34)
Preprint
Full-text available
Cellulose nanofibrils, CNFs, show a great potential in many application areas. One main aspect limiting the use of the material is the slow and energy demanding dewatering of CNF suspensions. Here we investigate the dewatering with a piston press process. Three different CNF qualities, two laboratory grades (high and low charge) and one industrial...
Article
TEMPO-Oxidized cellulose nanofibrils (toCNF), in the form of highly entangled network such as membrane or cryogels, have proven to be of interest for various applications, including drug release or purification by pollutant adsorption. β-Cyclodextrins (β-CDs) have the ability to form inclusion complexes with large amount of hydrophobic molecules, a...
Book
Full-text available
The oil industry has, in the last decade, seen successful applications of nanotechnology in completion systems, completion fluids, drilling fluids, and in improvements of well constructions, equipment, and procedures. However, very few full field applications of nano particles as an additive to injection fluids for enhanced oil recovery (EOR) have...
Article
Photopolymerization is an effective method to covalently cross-link polymer chains that can be shaped into several biomedical products and devices. Additionally, polymerization reaction may induce a fluid-solid phase transformation under physiological conditions and is ideal for in vivo cross-linking of injectable polymers. The photoinitiator is a...
Article
Full-text available
Cellulose nanocrystals (CNCs) and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibrils (T-CNFs) were tested as enhanced oil recovery (EOR) agents through core floods and microfluidic experiments. Both particles were mixed with low salinity water (LSW). The core floods were grouped into three parts based on the research object...
Article
Full-text available
Many studies show how biomaterial properties like stiffness, mechanical stimulation and surface topography can influence cellular functions and direct stem cell differentiation. In this work, two different natural materials, gelatin (Gel) and cellulose nanofibrils (CNFs), were combined to design suitable 3D porous biocomposites for soft-tissue engi...
Article
The applicability of cellulose nanofibrils (CNFs) as viscosifying agent in a starch-reduced low-fat mayonnaise and in an oil-reduced full-fat mayonnaise has been considered. For low-fat mayonnaise a 50 wt% reduction in the ordinary starch content was performed, while for full-fat mayonnaise, the oil content was reduced from 79 to 70 wt%. To study i...
Article
Full-text available
Wood-based TEMPO-oxidised cellulose nanofibrils (toCNF) are promising materials for biomedical applications. Cyclodextrins have ability to form inclusion complexes with hydrophobic molecules and are considered as a method to bring new functionalities to these materials. Water sorption and mechanical properties are also key properties for biomedical...
Article
The assessment of several ink formulations for 3D printing based on two natural macromolecular compounds is presented. In the current research we have exploited the fast crosslinking potential of pectin and the remarkable shear-thinning properties of carboxylated cellulose nanofibrils, which is known to induce a desired viscoelastic behavior. Prior...
Article
Full-text available
Recent studies have discovered a substantial viscosity increase of aqueous cellulose nanocrystal (CNC) dispersions upon heat aging at temperatures above 90 °C. This distinct change in material properties at very low concentrations in water has been proposed as an active mechanism for enhanced oil recovery (EOR), as highly viscous fluid may improve...
Article
Full-text available
Pickering o/w emulsions prepared with 40 wt % rapeseed oil were stabilized with the use of low charged enzymatically treated cellulose nanofibrils (CNFs) and highly charged 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized CNFs. The emulsion-forming abilities and storage stability of the two qualities were tested in the presence of NaCl and ace...
Article
Full-text available
Inks for 3D printing based on cellulose nanofibrils (CNFs) or mixtures of CNFs and either cellulose nanocrystals (CNCs) or alginate were assessed by determining their viscoelastic properties i.e. complex viscosity and storage and loss moduli (G′ and G″). Two types of alginates were used, i.e. from Laminaria hyperborea stipe and Macrocystis pyrifera...
Article
Chemical enhanced oil recovery (EOR) represents a series of potential solutions for extracting more oil from resources with already known locations and magnitudes. Unfortunately, many of the chemical additives in use today are not environmentally friendly. In the study a “greener” alternative for increasing viscosity of the injection water is inves...
Article
3D printed polycaprolactone (PCL) has potential as a scaffold for bone tissue engineering, but the hydrophobic surface may hinder optimal cell responses. The surface properties can be improved by coating the scaffold with cellulose nanofibrils material (CNF), a multiscale hydrophilic biocompatible biomaterial derived from wood. In this study, human...
Article
Biopolymers such as gelatin (Gel) and cellulose nanofibrils (CNF) have many of the essential requirements for being used as scaffolding materials in tissue regeneration; biocompatibility, surface chemistry, ability to generate homogeneous hydrogels and 3D structures with suitable pore size and interconnection, which allows cell colonization and pro...
Article
Full-text available
The application of nanotechnology to the petroleum industry has sparked recent interest in increasing oil recovery, while reducing environmental impact. Nanocellulose is an emerging nanoparticle that is derived from trees or waste stream from wood and fiber industries. Thus, it is taken from a renewable and sustainable source, and could therefore s...
Article
Full-text available
Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that catalyze the oxidative cleavage of polysaccharides such as cellulose and chitin, a feature that makes them key tools in industrial biomass conversion processes. The catalytic domains of a considerable fraction of LPMOs and other carbohydrate-active enzymes (CAZymes) are t...
Preprint
Full-text available
The application of nanotechnology to the petroleum industry has sparked recent interest to increase oil recovery while reducing environmental impact. Nanocellulose is an emerging nanoparticle that is derived from trees and may provide an environmentally friendly alternative to current enhanced oil recovery (EOR) technologies. However, before nanoce...
Article
Full-text available
Alginate and cellulose nanofibrils (CNF) are attractive materials for tissue engineering and regenerative medicine. CNF gels are generally weaker and more brittle than alginate gels, while alginate gels are elastic and have high rupture strength. Alginate properties depend on their guluronan and mannuronan content and their sequence pattern and mol...
Article
The current study aims to demonstrate the influence of the surface chemistry of wood-derived cellulose nanofibril (CNF) hydrogels on fibroblasts for tissue engineering applications. TEMPO-mediated oxidation or carboxymethylation pretreatments were employed to produce hydrogels with different surface chemistry. This study demonstrates, firstly, the...
Article
Cellulose nanofibrils (CNF) have potential as rheology modifiers of water based fluids, e.g. drilling fluids for use in oil wells or as additives in injection water for enhanced oil recovery (EOR). The temperature in oil wells can be high (>100 ◦C), and the retention time long; days for drilling fluids and months for EOR fluids. Hence, it is import...
Article
Pretreatment, fractionation and hydrolysis remains costly and challenging process steps in biochemical conversion of softwoods. Here, ionic liquid pretreatment using 1-ethyl-3-methylimidazolium acetate (EMIM-OAc) at high temperature (100 °C, 6 h) and alkali based (NaOH/urea) pretreatment at sub-zero temperature (−18 °C, 24 h) were compared and comb...
Article
Full-text available
In this study, the main objective was to examine the interactions between nanocellulose dispersions and Berea sandstone through retention studies using a vertically-oriented particle mobility coreflooding (PMC) procedure. The type of nanocellulose evaluated was cellulose nanocrystals (CNC). The results showed that CNC in low salinity water (LSW) wa...
Article
Chitooligosaccharides (CHOS) are oligomers composed of glucosamine and N-acetylglucosamine with several interesting bioactivities that can be produced from enzymatic cleavage of chitosans. By controlling the degree of acetylation of the substrate chitosan, the enzyme, and the extent of enzyme degradation, CHOS preparations with limited variation in...
Article
Chitotriosidase (HCHT) is one of two family 18 chitinases produced by humans, the other being acidic mammalian chitinase (AMCase). The enzyme is thought to be part of the human defense mechanism against fungal parasites, but its precise role and the details of its enzymatic properties have not yet been fully unraveled. We have studied the propertie...
Article
We have studied the degradation of well-characterized soluble heteropolymeric chitosans by a novel family 46 chitosanase, ScCsn46A from Streptomyces coelicolor A3(2), to obtain insight into the enzyme's mode of action and to determine its potential for production of different chitooligosaccharides. The degradation of both a fully deacetylated chito...
Article
Full-text available
Chitooligosaccharides (CHOS) are homo- or heterooligomers of N-acetylglucosamine and D-glucosamine. CHOS can be produced using chitin or chitosan as a starting material, using enzymatic conversions, chemical methods or combinations thereof. Production of well-defined CHOS-mixtures, or even pure CHOS, is of great interest since these oligosaccharide...
Article
The thermodynamics of Al3+, Cr3+, and Pb2+ binding to the abundant biopolymer chitin have been determined using isothermal titration calorimetry (ITC) and compared to what is observed for binding to activated carbon. The use of ITC enables the detection of two distinct binding sites on chitin for all three metal ions. For the relative strong bindin...
Article
Full-text available
We have studied the degradation of soluble heteropolymeric chitosans with a bacterial family 19 chitinase, ChiG from Streptomyces coelicolor A3(2), to obtain insight into the mode of action of ChiG, to determine subsite preferences for acetylated and deacetylated sugar units, and to evaluate the potential of ChiG for production of chito-oligosaccha...
Article
We describe the cloning, overexpression, purification, characterization and crystal structure of chitinase G, a single-domain family 19 chitinase from the Gram-positive bacterium Streptomyces coelicolor A3(2). Although chitinase G was not capable of releasing 4-methylumbelliferyl from artificial chitooligosaccharide substrates, it was capable of de...

Network

Cited By

Projects

Projects (4)
Project
Cyclodextrin functionnalized nanocellulose for medical applications
Project
Hybrid materials are composites of two or more constituents with dimensions at nanoscale or molecular level. The combined materials can have extraordinary properties. In nature, bone and wood are examples of hybrid materials. All plants contain the nanoscaled structure cellulose that gives them strength and stiffness. We use various methods to extract nanocelluloses from plants and get a range of different nanocelluloses with varying properties. In this project, we explore the possibilities of utilizing nanocelluloses in manmade hybrid materials.
Project
In order to meet the growing energy needs in today’s society, petroleum recovery from existing reservoirs must increase. Overall, only about 40% of the petroleum present in known reservoirs is economically recovered with established technologies (primary-recovery methods using natural reservoir forces, and secondary-recovery methods by water/gas flooding). In order to increase recovery, so-called tertiary-recovery methods are required, also referred to as enhanced oil recovery or EOR. The objective of the GreenEOR project is to contribute to enhanced oil recovery in a sustainable manner, by developing a novel series of green fluids for chemical EOR applications based on nanocellulose, alone or in combination with other EOR components. Nanocellulose is a group of nanoscaled particles produced from wood, and is thus a sustainable and green resource. Nanocellulose has a promising potential as a green flooding additive due to several properties such as e.g. excellent viscosifying and shear thinning properties, hydrophilic nature, excellent possibilities for chemical modification and also robustness compared to dissolved polymers. The potential of nanocellulose as an EOR additive will be explored in the GreenEOR project. The development will depend on close cooperation between different research areas comprising nanocellulose, surface interaction, rheology and core flooding. The project is led by PFI and the R&D partners in the project are PFI, NTNU – Department of Petroleum Engineering and Applied Geophysics and NTNU – Ugelstad Laboratory. The project is funded by the Research Council of Norway through the Petromaks 2 programme. For further information: http://www.pfi.no/New-Biomaterials/Projects/GreenEOR/