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4-Desmethylsterols and -stanols reduce plasma total cholesterol (TC) and LDL cholesterol by
inhibition of intestinal cholesterol absorption, while the cholesterol-lowering potential of
4,40-dimethylsterols is less well defined. The present study aimed to compare the effects of
4-desmethylsterols, -stanols, and 4,40-dimethylsterols on plasma and hepatic cholesterol, sterol
excretion and bile acid metabolism. Male golden Syrian hamsters were fed diets containing
13 g/100 g fat, 0·08 g/100 g cholesterol and 0 (control), 0·24 or 0·48 % (w/w) esterified
4-desmethylsterols (sterols) and esterified hydrogenated 4-desmethylsterols (stanols) from
common vegetable oils or esterified 4,40-dimethylsterols from rice bran oil for 5 weeks. Sterol
and stanol esters at the dose of 0·24 % were equally effective and significantly (P,0·05)
lowered TC by 15 %, while 0·24 % 4,4-dimethylsterols reduced TC by 10 %. Liver total and
esterified cholesterol concentrations were significantly (P,0·05) lowered by 40, 22, 43 and
31 % in hamsters fed 0·48 % sterols, 0·24 % stanols, 0·48 % stanols or 0·48 % dimethylsterols,
respectively. Daily faecal bile acid excretion and hepatic cholesterol 7a-hydroxylase activity
were not altered, indicating that sterols, stanols and dimethylsterols had no effect on the
intestinal re-absorption of bile acids or on hepatic bile acid synthesis. Daily excretion of
cholesterol was significantly higher in hamsters fed esterified sterols and stanols, but was only
slightly increased in those fed dimethylsterols. The results indicate that esterified sterols and
stanols were equally effective in lowering plasma TC and LDL cholesterol, while
dimethylsterol esters caused a weaker cholesterol-lowering effect. Sterols and stanols achieve
their cholesterol-lowering effect by stimulating faecal cholesterol excretion through inhibiting
intestinal cholesterol absorption, but do not affect bile acid excretion. Other mechanisms need
to be considered to explain the effect on plasma and hepatic cholesterol of dimethylsterols.

4-Desmethylsterols: 4-Desmethylstanols: 4,40-Dimethylsterols: Plasma lipids: Bile acids:
Faecal sterol excretion: Hamster

Plant sterols, also called phytosterols, are components of a
normal diet, mainly coming from plant sources, e.g.
vegetable oils, seeds, nuts and grain-based products. The
typical consumption of plant sterols with Western diets
ranges between 200 and 400 mg/d, whereas the intake of
phytostanols, the saturated form of plant sterols, is
negligible (Jones et al. 1997). The most common plant
sterols are the 4-desmethylsterols b-sitosterol, campesterol
and stigmasterol; their saturated counterparts are sitostanol
and campestanol.

The hypocholesterolaemic action of 4-desmethylsterols,
i.e. of the predominant b-sitosterol, has been recognised
since the early 1950s (Pollak & Kritchevsky, 1981; Ling &
Jones, 1995a; Jones et al. 1997). Recently, interest has
focused more on the cholesterol-lowering effect of plant
stanols (Miettinen & Vanhanen, 1994; Vanhanen et al.
1994; Gylling et al. 1995; Ling & Jones, 1995b; Miettinen
et al. 1995; Gylling & Miettinen, 1996; Ntanios & Jones,
1998; Nguyen et al. 1999). From data from animal studies,
it was believed that sitostanol was more effective in
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lowering plasma cholesterol compared to sitosterol
(Sugano et al. 1976, 1977; Ikeda et al. 1981). Recently,
three human trials comparing directly esterified plant
sterols v. plant stanols have clearly demonstrated that sterol
esters are equally as effective as stanol esters in lowering
total and LDL cholesterol in man (Weststrate & Meijer,
1998; Hallikainen et al. 2000; Jones et al. 2000).

Sterols with other structures, e.g. 4,40-dimethylsterols,
may differ in their potential to lower plasma cholesterol
concentrations. Rice bran oil contains 4,40-dimethylsterols
such as cycloartenol and 24-methylene cycloartenol as
ferulic acid esters (oryzanol). Results from animal and
some human studies suggest that these components may
contribute to the hypocholesterolaemic effect of rice bran
oil (DeDeckere & Korver, 1996; Sugano & Tsuji, 1997).
However, results from two recent human studies on the
hypocholesterolaemic effect of rice bran oil sterols are
conflicting (Weststrate & Meijer, 1998; Vissers et al.
2000).

It is generally assumed that plant sterols lower plasma
cholesterol by inhibition of intestinal absorption of
exogenous (dietary) and endogenous (biliary) cholesterol,
although the exact mechanisms of action remain unclear.
Whether plant sterols further influence the conversion of
cholesterol into bile acids, e.g. via stimulation of
cholesterol 7a-hydroxylase activity, the key enzyme in
bile acid synthesis is uncertain. Available data are
conflicting, depending on whether sterols are infused
intravenously or administered orally (Shefer et al. 1973,
1994; Boberg et al. 1989; Ling & Jones, 1995a). In
addition, little is known about the effects of 4-desmethyl-
sterols and 4,40-dimethylsterols on biliary lipid compo-
sition and the bile acid profile. The present study examined
the effects of three different types of plant sterols, i.e.
esterified 4-desmethylsterols, esterified hydrogenated
4-desmethylsterols (stanols) and esterified 4,40-dimethyl-
sterols, on cholesterol concentrations, and more especially
on bile acid metabolism. This included bile acid
composition, synthesis and excretion in cholesterol-fed
hamsters and aimed to determine whether the structural
differences of these sterols affect their cholesterol-lowering
action. To our knowledge, this is the first time that
esterified sterols, stanols and dimethylsterols have been
directly compared. The Syrian golden hamster (Mesocri-
cetus auratus ) was chosen because of its well-established
similarities to human cholesterol and bile metabolism
(Spady et al. 1985, 1986; Imray et al. 1992).

Materials and methods

Animals

A total of 96 male Syrian golden hamsters (SASCO,
Omaha, NE, USA) weighing 71 (SD 4) g were randomly
assigned to eight diet groups (twelve per group). Hamsters
were housed in groups of four per cage in a temperature-
controlled environment under a 12 h light–dark cycle
(lights on 18.00 hours). The experimental protocol and
procedures were approved by the Animal Care and Use
Committee of the University of Kiel, Germany.

Diets and feeding procedures

Animals were fed semipurified diets for 5 weeks. The diets
contained 130 g/kg fat (30 % fat based on total energy) and
0 % (cholesterol-free control diet) or 0·8 g/kg cholesterol
(cholesterol-rich control diet and all plant sterol-
supplemented diets). The basal composition of the diet
was as follows (g/kg dry weight): casein 200, wheat starch
358, glucose 150, cellulose 100, palm oil 59·8, olive oil
32·2, butter 26, sunflower oil 13, mineral mix 46, vitamin
mix 12, choline chloride 3 and cholesterol 0·8. The
composition of the Ausman–Hayes mineral mix (F8530
BioServ, Frenchtown, NJ, USA) and the Hayes–Cathcart
vitamin mix have been detailed previously (Hayes et al.
1989). The fatty acid composition of the diets resembled a
typical Western fat intake with 13·8 % saturated fatty acids,
12·2 % monounsaturated fatty acids and 4·0 % polyunsa-
turated fatty acids with polyunsaturated : saturated fatty
acids of 0·33. In the enriched diets, two doses, 2·4 or
4·8 g/kg, of (1) esterified 4-desmethylsterols from com-
monly used edible oil (mainly soyabean oil) distillates
(Henkel Corporation, LaGrange, IL, USA), (2) esterified
hydrogenated 4-desmethylsterols from the same source or
(3) esterified 4,40-dimethylsterols isolated by preparative
chromatography after saponification from Oryzanol from
rice bran oil (Tsuno, Wakayama, Japan) were added. All
sterols had been esterified with fatty acids from rapeseed
oil to an esterification degree of .92 % (Unilever Research
Vlaardingen, The Netherlands). The 4-desmethylsterol,
4-desmethylstanol and 4,40-dimethylsterol esters as well as
the cholesterol were incorporated into the fat blend. By
melting the sterol esters and the fat to approximately 608C,
mixing and then cooling, a homogeneous mixture was
obtained.

Hamsters were given free access to food and water and
the food consumption per cage was recorded daily. Body
weights were monitored on a weekly basis.

Sample collection

During week 4, faecal samples were collected over a 3 d
period from eight randomly selected hamsters per diet to
measure faecal neutral sterols and bile acid excretion. After
5 weeks, all hamsters were housed individually in wire-
bottomed cages and deprived of food for 18 h and then
exsanguinated under anaesthesia using a gaseous mixture
of CO2 : O2 (50 : 50). Blood samples were drawn into
EDTA-wetted syringes by cardiac puncture and the liver,
small intestine and caecum were excised, blotted and
weighed. A portion of the liver was removed and frozen for
hepatic cholesterol analysis. From eight randomly selected
hamsters per diet group (hamsters fed the 0·48 % 4,40-
dimethylsterol diet were not included, owing to lack of
available rotor space), hepatic microsomes were isolated to
measure microsomal cholesterol 7a-hydroxylase activity.
Gallbladder bile was aspirated, weighed and analysed for
biliary lipids, biliary sterols and bile acid composition.

Plasma lipid and lipoprotein analysis

Plasma total cholesterol (TC) and triacylglycerol (TG)
concentrations were determined by enzymic assays (Sigma
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Chemicals, Deisenhofen, Germany). For lipoprotein
isolation, plasma (1·6 ml) was either taken from a single
hamster or pooled from two hamsters from the same
dietary group with similar TC concentrations. Plasma
lipoproteins were isolated by sequential ultracentrifugation
(Havel et al. 1955). A preservation solution (final
concentration in plasma: 1 mmol/l benzamidine, 0·04 %
EDTA, 0·005 % gentamycin sulfate, 0·05 % NaN3) was
added to protect lipoproteins from enzymic degradation.
Three fractions were isolated based on the following
densities (d): VLDL (d,1·006 kg/l), LDL (1·006,d,
1·055 kg/l), HDL (1·055,d,1·21 kg/l). With the exception
of VLDL, lipoprotein fractions were dialysed against
0·15 mol/l NaCl, 0·04 % EDTA and 0·05 % NaN3 at 48C for
24–36 h. TC, free cholesterol (FC), TG and phospholipid
(PL) concentrations were determined using enzymic assays
(for TC and TG, kits from Sigma Chemicals; for FC and
PL, kits from Wako Chemicals, Düsseldorf, Germany).
Protein concentration was determined by a modification of
the Lowry procedure (Markwell et al. 1978). The density
cut-off points were verified in previous experiments by
checking for cross-contamination; LDL and HDL apolipo-
proteins (apo) were separated by gradient SDS–PAGE (4–
20 %) and stained with Coomassie Brilliant Blue. No traces
of apo B100 were present in the HDL fractions, while LDL
fractions contained traces of apo A1. A previous
characterisation of apo B- and A1-containing lipoprotein
fractions of the hamster demonstrated that dense LDL-like
particles overlapped apo A1-containing HDL particles in
the density range from 1·039 to 1·074 (Goulinet &
Chapman, 1993).

Hepatic cholesterol analysis

Cholesterol concentrations were analysed following the
procedure described in detail previously (Trautwein et al.
1993b). TC was determined with an enzymic assay and FC

was analysed by HPLC. Esterified cholesterol (EC)
concentrations were calculated as the difference between
TC and FC.

Bile analysis

Biliary cholesterol (BC) and PL were determined using an
enzymic assay (Wako Chemicals). Bile acids were
analysed in an aliquot of the methanol/KCl phase after
Folch extraction as taurine- and glycine-conjugated bile
acids by HPLC (Rossi et al. 1987). Total bile acid
concentration was calculated as the sum of individual bile
acids (taurine and glycine conjugates of cholate, cheno-
deoxycholate, deoxycholate and lithocholate).

Hepatic cholesterol 7a-hydroxylase activity

Hepatic microsomes were isolated by ultracentrifugation as
previously described (Hylemon et al. 1989) and stored at
2808C. Microsomal protein was determined using a
modified Lowry procedure (Markwell et al. 1978). Hepatic
cholesterol 7a-hydroxylase activity was determined by
HPLC after enzymic conversion to 7a-hydroxy-4-cholesten-
3-one using cholesterol oxidase (Chiang, 1991).

Determination of faecal bile acids and sterols

Faecal sterols and total bile acid concentrations were
analysed in an oven-dried faecal sample using a
modification of the method of Suckling et al. (1991).
Faecal total bile acid concentration was determined using
an enzymic assay (Sigma bile acid kit; Sigma Chemicals)
with some modifications. Faecal sterols including plant
sterols, stanols and dimethylsterols and neutral sterols
(cholesterol plus breakdown products) were analysed by
GC as free (unsilylated) sterols as previously detailed
(Trautwein et al. 1997). A dried sample of each diet was

Table 1. Plasma cholesterol and triacylglycerol concentrations of hamsters fed on diets containing 0 % cholesterol and 0 % plant sterols or
0·08 % cholesterol plus 0, 0·24 or 0·48 % 4-desmethylsterols, hydrogenated 4-desmethylsterols (stanols) or 4,40-dimethylsterols for 5 weeks†

(Mean values and standard deviations of twelve hamsters per diet for TC and TG and of five to six hamsters per diet for VLDL, LDL and HDL)

Diet . . .
Cholesterol (C) (mmol/l) Triacylglycerol (TG) (mmol/l)

TC VLDL-C LDL-C HDL-C TG VLDL-TG

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

0 % cholesterol
0 % sterols* 4·77 0·37 1·03 0·26 0·40 0·03 3·31 0·27 3·42 1·02 2·91 0·74

0·08 % cholesterol
0 % sterols 6·26c 0·65 1·57 0·42 0·70b 0·20 3·99 0·28 4·99 1·90 3·86abc 0·93
0·24 % sterols 5·34ab 0·57 1·09 0·14 0·44a 0·08 3·60 0·22 4·06 1·56 2·69a 0·37
0·48 % sterols 5·70ab 0·52 1·43 0·14 0·51ab 0·14 3·68 0·25 4·82 2·21 4·16bc 0·74
0·24 % stanols 5·29a 0·43 1·21 0·34 0·46a 0·07 3·63 0·32 3·48 1·29 2·91ab 0·86
0·48 % stanols 5·32ab 0·41 1·18 0·34 0·53ab 0·09 3·85 0·25 3·74 1·24 3·25abc 0·91
0·24 % 4,40-dimethylsterols 5·62ab 0·52 1·47 0·30 0·55ab 0·05 4·00 0·17 3·48 1·18 3·65abc 0·75
0·48 % 4,40-dimethylsterols 5·95bc 0·52 1·58 0·25 0·60ab 0·06 3·81 0·27 3·72 1·12 4·34c 0·71

TC, total cholesterol.
a,b,c Values in a column with unlike superscripts were significantly different (P,0·05) as determined by one-way ANOVA and the Student–Neuman–Keuls post

hoc test.
* This group was not included in the statistical analysis.
†For details of diets see p. 228.
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analysed for cholesterol and phytosterol concentration
applying the same method as described for the faecal
samples.

Statistical analysis

All results are expressed as mean and standard deviation.
Statistical differences were calculated using ANOVA
followed by the Student–Neuman–Keuls post hoc test.
The group receiving the cholesterol-free control diet was
not included in the statistical analysis. Differences between
diet groups were considered significant at P,0·05. All
statistical analyses were performed using the Super
ANOVA statistical software package (Abacus Concepts,
Berkely, CA, USA).

Results

Food intake, body weight gain and organ weights

Food intake, final body weights, body weight gain and
relative weights of the small intestine and the caecum were
similar between groups (data not shown). Absolute liver
weights were also similar between groups, but relative liver
weights of hamsters fed the diets supplemented with
0·24 % sterols, 0·24 % stanols and 0·48 % stanols were
significantly lower (4·3 (SD 0·3), 4·3 (SD 0·2), 4·3 (SD 0·2)
g/100 g body weight, respectively) than those of the
cholesterol-fed control animals (4·7 (SD 0·5) g/100 g body
weight).

Plasma lipids and lipoproteins

After 5 weeks plasma TC concentrations were significantly
lower (215 %) in hamsters fed 0·24 % plant sterols, 0·24 %
and 0·48 % plant stanols compared to those fed the
cholesterol-containing control diet (Table 1). TC was 9 %

lower in hamsters fed 0·48 % plant sterols compared to
controls, but this was not statistically significant. The
cholesterol-lowering effect was not dose-dependent. The
lower dose (0·24 %) of 4,40-dimethylsterols significantly
lowered TC compared with controls (210 %), while
doubling the dose to 0·48 % did not lower TC significantly.
Plasma TG concentrations were up to 30 % lower in
hamsters fed the sterol-, stanol- and dimethylsterol-
supplemented diets, but owing to a large intra-individual
variation the effect did not reach the level of statistical
significance (P¼0·095) (Table 1).

Plasma VLDL and HDL cholesterol concentrations did
not differ among the groups, while LDL cholesterol
concentrations were significantly lower in hamsters fed
0·24 % plant sterols and 0·24 % stanols (Table 1). When
expressed as a percentage of TC, no differences in the
relative distribution of VLDL, LDL and HDL cholesterol
was found. Most cholesterol was present as HDL
cholesterol (64–70 %). Compared to cholesterol-fed
controls, VLDL TG concentrations tended to be lower
in hamsters fed 0·24 % sterols or 0·24 % stanols (Table
1). No relevant changes were observed in the
composition of VLDL, LDL and HDL (data not shown).

Hepatic cholesterol

TC and EC concentrations were significantly lower in
livers of hamsters fed 0·48 % plant sterols, 0·24 % and
0·48 % stanols and 0·48 % 4,40-dimethylsterols compared
with cholesterol-fed control hamsters, while 0·24 % sterols
and 0·24 % 4,40-dimethylsterols decreased liver TC
accumulation non-significantly (Table 2). The effect
produced by 0·48 % plant sterols and 0·48 % stanols was
comparable. Hepatic FC concentrations did not differ
between groups.

Table 2. Hepatic cholesterol concentrations (mmol/g liver) of hamsters fed on diets containing 0 % cholesterol and 0 % plant
sterols or 0·08 % cholesterol plus 0, 0·24 or 0·48 % 4-desmethylsterols, hydrogenated 4-desmethylsterols (stanols) or

4,40-dimethylsterols for 5 weeks†

(Mean values and standard deviations of twelve hamsters per diet)

Diet . . .

Total cholesterol
(TC)

Free
cholesterol % TC

Esterified
cholesterol % TC

Mean SD Mean SD Mean SD Mean SD Mean SD

0 % cholesterol
0 % sterols* 14·84 3·67 7·12 0·77 51d 14 7·71 3·80 49 13

0·08 % cholesterol
0 % sterols 67·01d 9·62 8·08 1·04 12a 1 58·93d 8·96 88d 1
0·24 % sterols 60·90cd 11·77 8·21 1·41 14ab 2 52·69cd 11·07 86cd 2
0·48 % sterols 40·19a 9·24 8·09 1·31 21d 5 32·10a 9·20 79a 5
0·24 % stanols 52·45bc 12·51 8·23 0·94 16bc 3 44·22bc 12·38 84bc 3
0·48 % stanols 38·32a 6·20 8·18 1·10 22d 3 30·15a 5·62 78a 3
0·24 % 4,40-dimethylsterols 58·53cd 5·06 8·58 1·38 15ab 3 49·94c 5·40 85cd 3
0·48 % 4,40-dimethylsterols 46·27ab 8·58 8·45 1·02 19cd 3 37·82ab 8·27 81ab 3

a,b,c,d Values in a column with unlike superscripts were significantly different (P,0·05) as determined by one-way ANOVA and the Student–Neuman–
Keuls post hoc test.

* This group was not included in the statistical analysis.
†For details of diets see p. 228.
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Biliary lipids and bile acid profile

The total lipid concentrations in bile did not differ among
groups (data not shown). Neither the concentrations
(mmol/l), nor the molar percentages (mol/100 mol total
lipids) of biliary bile acids and PL were altered in hamsters
fed on diets enriched with different types of plant sterol
esters compared with controls (Table 3). However, the
molar percentage of BC was lower in hamsters fed 0·24
and 0·48 % stanols (219 and 210 %, respectively) than in
those fed the cholesterol-rich control diet, although this
was statistically significant only for the lower dose (Table
3). No differences in the concentrations of individual bile
acids in gallbladder bile were found in hamsters fed the
different diets (data not shown). In addition, no major
alterations were observed in the relative molar percentages
of individual bile acids (Table 4). However, the molar
percentage of total cholate (sum of tauro- and glycocholic
acid) was significantly higher in bile from hamsters fed on
diets supplemented with the two doses (0·24 and 0·48 %) of
plant sterols, stanols and 4,40-dimethylsterols. In contrast,
the molar percentage of total chenodeoxycholate (sum of
tauro- and glycochenodeoxycholic acid) was lower, but the
decrease was statistically significant only in hamsters fed
0·48 % sterols or stanols (Table 4). As a result of these
changes in the bile acid profile, cholate : chenodeoxycho-
late was significantly higher in hamsters fed 0·48 % plant
sterols, 0·24 and 0·48 % stanols and 0·24 % 4,40-
dimethylsterols (Table 4). The glycine:taurine conjunction
ratio as well as the ratio of primary:secondary bile acids
did not differ among groups (Table 4).

Activities of cholesterol 7a-hydroxylase

No difference in the activity of microsomal cholesterol 7a-
hydroxylase was observed between hamsters fed the

cholesterol-free and cholesterol-containing control diets
(22·1 (SD 10·0) and 18·2 (SD 7·4) pmol/h and mg protein,
respectively). Further cholesterol 7a-hydroxylase activity
was not significantly different in animals fed the two doses
(0·24 and 0·48 %) of plant sterol and stanol esters or 0·24 %
4,40-dimethylsterol esters (17·5 (SD 5·1), 19·4 (SD 6·9), 18·6
(SD 6·1), 23·2 (SD 6·8), 22·8 (SD 9·8) pmol/h and mg
protein, respectively).

Faecal output and faecal bile acid excretion

The daily faecal output (g dry faeces) was non-significantly
higher (15–40 %) in hamsters fed plant sterols or stanols
compared to cholesterol-fed control animals. Hamsters fed
0·48 % 4,40-dimethylsterols had a significantly higher
faecal output than the cholesterol-fed controls (Table 5).
The faecal concentration of bile acids (mmol/g) was
13–28 % lower in hamsters fed diets with different types of
plant sterol esters compared to cholesterol-fed controls, but
this was statistically significant only in hamsters fed 0·24 %
sterols, 0·48 % stanols as well as 0·24 and 0·48 %
4,40-dimethylsterols (Table 5). Daily bile acid excretion,
however, did not differ among the groups (Table 5).

Faecal sterol excretion

The daily faecal excretion of neutral sterols (cholesterol,
coprostanol, cholestanol and coprostanone) was signifi-
cantly higher in hamsters fed the sterol- and stanol-
supplemented diets, but not in those fed 4,40-dimethylsterols
compared to cholesterol-fed controls (Fig. 1). This was
mainly the result of the significantly higher faecal
cholesterol concentration while coprostanol concentrations
were unchanged (data not shown). Cholesterol and

Table 3. Biliary lipid concentration (bile acids, phospholipids and biliary free cholesterol) of hamsters fed diets containing 0 % cholesterol and
0 % plant sterols or 0·08 % cholesterol plus 0, 0·24 or 0·48 % 4-desmethylsterols, hydrogenated 4-desmethylsterols (stanols) or 4,40-dimethyl-

dimethylsterols for 5 weeks†

(Mean values and standard deviations of twelve hamsters per diet)

Diet . . .
Bile acids Phospholipids Cholesterol

mmol/l mol %3‡ mmol/l mol % mmol/l mol %‡

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

0 % cholesterol
0 % sterols* 185 28 88·4 1·7 20·8 3·8 9·9 1·4 3·4 0·7 1·6 0·3

0·08 % cholesterol
0 % sterols 179 42 88·2 1·4 19·7 5·4 9·7 1·2 4·3bc 1·2 2·1bc 0·3
0·24 % sterols 180 28 87·4 1·6 21·1 4·0 10·3 1·4 4·8bc 1·1 2·3c 0·3
0·48 % sterols 180 35 87·9 2·5 19·7 4·2 9·9 2·3 4·6bc 0·9 2·2c 0·3
0·24 % stanols 168 46 88·4 1·6 18·8 5·6 9·9 1·5 3·2a 1·1 1·7a 0·4
0·48 % stanols 187 34 88·7 1·1 19·7 3·6 9·4 0·9 3·9ab 1·0 1·9ab 0·4
0·24 % 4,40-dimethylsterols 165 32 87·5 1·8 19·2 4·3 10·2 1·6 4·3bc 0·9 2·3c 0·3
0·48 % 4,40-dimethylsterols 189 20 87·2 1·9 22·7 4·3 10·4 1·7 5·2c 0·9 2·4c 0·3

a,b,c Values in a column with unlike superscripts were significantly different (P,0·05) as determined by one-way ANOVA and the Student–Neuman–Keuls post
hoc test.

* This group was not included in the statistical analysis.
†For details of diets see p. 228.
‡mol %, mol/100 mol total biliary lipids.
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coprostanol were the two major sterols excreted in the
faeces.

Plant sterol, stanol and 4,40-dimethylsterol concen-
trations measured in the faecal sample reflected the sterol
pattern of the supplemented diets. As expected, daily faecal
sterol, stanol and 4,40-dimethylsterol excretion was
significantly higher in hamsters fed the enriched diets
than in controls (Fig. 2). Daily excretion of sterols, stanols
or 4,40-dimethylsterols was significantly higher in hamsters
fed the 0·48 v. 0·24 % dose, although there was a large
intra-animal variation (Fig. 1).

Discussion

The present study examined for the first time the effects of
three different types of plant sterols (at two doses of 0·24 v.
0·48 %), i.e. esterified 4-desmethylsterols (sterols), hydro-
genated 4-desmethylsterols (stanols) and 4,40-dimethylster-
ols on plasma cholesterol concentrations. In addition,
aspects of bile acid metabolism, in particular bile acid
pattern, synthesis and excretion, were assessed and data on
bile acid profile in gallbladder bile are presented.

In the present study with hamsters fed on cholesterol-
enriched diets (0·08 % dietary cholesterol) esters of
4-desmethylsterols and -stanols significantly (P,0·05)
lowered TC and LDL cholesterol. Both had equal
cholesterol-lowering effects resulting in a 15 % reduction
in TC with a dose of 0·24 %. 4,40-Dimethylsterol esters at a
dose of 0·24 % significantly (P,0·05) lowered TC by 10 %,
but were altogether less effective in lowering TC compared
to desmethylsterol esters. This finding is similar to
previous findings in human trials (Weststrate & Meijer,
1998; Sierksma et al. 1999; Vissers et al. 2000).

With regard to hepatic cholesterol accumulation,
esterified dimethylsterols significantly (P,0·05) lowered
TC and EC concentrations in the liver. However, the effect
was again less than seen with desmethylsterols or -stanols.
The weaker effect of 4,40-dimethylsterols could possibly
relate to their chemical structure. 4-Desmethylsterols such
as b-sitosterol and campesterol are similar to cholesterol,
differing only in a side-chain substitution, while 4,40-
dimethylsterols such as cycloartenol also have two
additional methyl groups at the site adjacent to the
hydroxyl group. Despite the reductions seen in plasma and
liver cholesterol, faecal cholesterol excretion was only
moderately enhanced in hamsters fed the dimethylsterol-
enriched diets. Similar to the present findings, Ikeda et al.
(1985) found in rats that hepatic cholesterol accumulation
was mitigated by cycloartenol, while no effect on TC was
seen. Further, cycloartenol was also less effective than b-
sitosterol in enhancing faecal sterol excretion, similar to
the observations in the present hamster study. Interestingly,
cycloartenol was absorbed at a 4-fold higher rate than b-
sitosterol (Ikeda et al. 1985). Since 4,40-dimethylsterols
had only minor effects on faecal cholesterol excretion, it is
unlikely that the primary mechanism for the cholesterol-
lowering actions of these sterols is a diminished intestinal
cholesterol absorption via interference with micellar
solubilisation of cholesterol, as suggested by others
(Nagao et al. 2001). Therefore, as suggested by Ikeda
et al. (1985), post-absorptive, secondary effects such as anT
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Fig. 1. Daily excretion of neutral sterols (cholesterol plus coprosta-
nol, cholestanol and coprostanone) of hamsters fed diets containing
0 % cholesterol and 0 % plant sterols or 0·08 % cholesterol plus 0,
0·24 or 0·48 % 4-desmethylsterols, hydrogenated 4-desmethyl-
sterols (stanols) or 4,40-dimethylsterols. Values are means with
their standard deviations represented by vertical bars (n 8). Values
with unlike superscript letters were significantly different (P.0·05)
as determined by the Student–Neuman–Keuls post hoc test after
ANOVA. The group containing no cholesterol (control group) was
not included in the statistical analysis.

Fig. 2. Daily excretion of phytosterols, -stanols or dimethylsterols of
hamsters fed diets containing 0 % cholesterol and 0 % plant sterols
or 0·08 % cholesterol plus 0, 0·24 or 0·48 % 4-desmethylsterols,
hydrogenated 4-desmethylsterols (stanols) or 4,40-dimethylsterols.
Values are means with their standard deviations represented by
vertical bars (n 8). Values with unlike superscript letters were signifi-
cantly different (P.0·05) as determined by the Student–Neuman–
Keuls post hoc test after ANOVA. The group containing no choles-
terol (control group) was not included in the statistical analysis.

Table 5. Faecal excretion, faecal bile and concentration and daily faecal bile acid
excretion in hamsters fed on diets containing 0 % cholesterol and 0 % plant sterols or
0·08 % cholesterol plus 0, 0·24 or 0·48 % 4-desmethylsterols, hydrogenated
4-desmethylsterols (stanols) or 4,40-dimethylsterols for 5 weeks.† Faecal samples were
collected over a 3 d period during week 4. Hamsters were randomly selected and housed

individually in wire-bottomed cages during faecal collection

(Mean values and standard deviations of eight hamsters per diet)

Faecal
excretion (g/d

(dry wt))

Bile acid
concentration
(mmol/g dry

faeces)

Daily bile acid
excretion
(mmol/d)

Diet . . . Mean SD Mean SD Mean SD

0 % cholesterol
0 % sterols* 0·76 0·19 2·65 0·40 2·06 0·69

0·08 % cholesterol
0 % sterols 0·75a 0·15 3·42b 0·71 2·51 0·57
0·24 % sterols 0·87ab 0·13 2·46a 0·43 2·12 0·32
0·48 % sterols 0·96ab 0·14 2·96ab 0·33 2·83 0·46
0·24 % stanols 0·86ab 0·18 2·87ab 0·25 2·48 0·55
0·48 % stanols 0·95ab 0·14 2·68a 0·34 2·55 0·40
0·24 % 4,40-dimethylsterols 0·90ab 0·11 2·62a 0·48 2·37 0·50
0·48 % 4,40-dimethylsterols 1·06b 0·24 2·73a 0·62 2·87 0·98

a,b,c Values in a column with unlike superscripts were significantly different (P,0·05) as determined by
one-way ANOVA and the Student–Neuman–Keuls post hoc test.

* This group was not included in the statistical analysis.
†For details of diets see p. 228.
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inhibitory effect on cholesterol biosynthesis or a hormone-
like effect might explain the cholesterol-lowering action of
cycloartenol and other 4,40-dimethylsterols. Recently,
Nagao et al. (2001) found a reduction in serum and liver
cholesterol and a significant increase in faecal cholesterol
excretion in rats fed on rice bran oil or unsaponifiable
compounds prepared from rice bran oil. In addition, no
significant effects on the mRNA abundances for various
cholesterol metabolism-related proteins (3-hydroxy-3-
methylglutaryl CoA reductase, LDL receptor or cholesterol
7a-hydroxylase) were observed, and it was concluded that
interrupting the intestinal absorption of cholesterol was the
main mechanism for the cholesterol-lowering action of rice
bran oil sterols (Nagao et al. 2001). However, rice bran oil
and the unsaponifiable compounds of rice bran oil used in
that study contained mainly desmethylsterols (mostly in the
form of b-sitosterol) and only minor amounts of
dimethylsterols. Therefore, the observed effects seem
more attributable to desmethylsterols rather than
dimethylsterols.

The differences between 0·24 and 0·48 % plant sterol
and stanol ester diets on plasma cholesterol concen-
trations were not significant (P.0·05). The differences
were significant (P,0·05) for hepatic cholesterol, for
which a dose-dependent reduction was seen. The lack of
a striking dose–response effect is not likely to be linked
to the animal model, the cholesterol level of the diet or
the duration of the study. The hamster is a suitable
animal model to study effects on cholesterol metabolism
and a 5-week feeding period is sufficient to reach a new
metabolic steady stage condition (Kris-Etherton &
Dietschy, 1997). Moreover, 0·08 % dietary cholesterol is
equivalent to the endogenous cholesterol synthesis rate
and resulted in hypercholesterolaemia, in contrast to the
cholesterol-free diet. However, we cannot completely rule
out the suggestion that the statistical power to detect a
significant lowering of LDL cholesterol was too low, and
therefore no clear dose–response effect was detectable.
Another conceivable explanation could be that the
hamster may be less sensitive and may respond less
well than certain other species, including man. So far,
only a few human studies have directly evaluated a
dose–response relationship between sterol and stanol
intake and cholesterol-lowering efficacy. They did not
demonstrate a strong dose dependency (Miettinen &
Vanhanen, 1994; Hendriks et al. 1999; Nguyen et al.
1999; Hallikainen et al. 2000). In these studies, a
doubling of sterol or stanol intake did not result in a
corresponding doubling of TC and LDL cholesterol
reduction. Moreover, a previous hamster study also did
not find significant differences in plasma cholesterol
lowering by 0·01, 0·2 and 1 % sitostanol (Ntanios &
Jones, 1998). Taken together, this indicates that the
relationship between doses of plant sterol or stanol ester
intake and plasma cholesterol reduction may not be
linear, at least at these levels of intake. A plausible
explanation for the lack of a clear dose response is the
compensatory increase in cholesterol synthesis with
higher doses of sterol and stanol esters (Jones et al.
2000), which appears to reduce the lowering of LDL
cholesterol. Although dose dependency may be shallow,

these data clearly demonstrate that sterol and stanol esters
are effective in cholesterol lowering at these doses.

Faecal cholesterol excretion was significantly enhanced
in hamsters fed on the diets enriched with sterol and stanol
esters. This was possibly caused by diminished intestinal
cholesterol absorption, which is thought to be the major
mechanism for the cholesterol-lowering action of sterols
and stanols, as reported by others (Ikeda et al. 1988;
Miettinen & Vanhanen, 1994; Vanhanen et al. 1994;
Weststrate et al. 1999). Previous findings suggest that
intestinal cholesterol absorption is reduced, and sub-
sequently cholesterol excretion is more effectively
increased, by stanols compared to sterols (Sugano et al.
1977; Ikeda & Sugano, 1978; Heinemann et al. 1993).
Recent human studies, however, did not find a difference in
inhibition of cholesterol absorption (Jones et al. 2000;
Normen et al. 2000). In this hamster study, the esterified
sterols and stanols had a comparable effect on increasing
daily faecal cholesterol excretion, suggesting that possibly
cholesterol absorption was diminished to the same extent
by sterols and stanols.

It has been suggested that sterols may also regulate
cholesterol metabolism through directly affecting key
enzymes that regulate cholesterol metabolism and
excretion (Shefer et al. 1973; Ikeda & Sugano, 1983;
Ling & Jones, 1995a). Therefore, a particular focus of the
present hamster study was to address effects on bile acid
metabolism, i.e. bile acid excretion, hepatic synthesis,
biliary lipid and bile acid composition. Reported effects on
bile acid synthesis are conflicting. In rats, infusion of
b-sitosterol inhibited (Boberg et al. 1989; Shefer et al.
1994), while dietary administration increased the activity
of cholesterol 7a-hydroxylase (Shefer et al. 1973). In the
present hamster study, cholesterol 7a-hydroxylase activity
did not differ among the dietary groups, suggesting no
influence of sterols, stanols and dimethylsterols on bile
acid synthesis in the liver. Moreover, faecal bile acid
excretion was also not affected by these treatments.
Previous animal and human studies have reported
discrepant effects of dietary sterols or stanols on faecal
excretion of bile acids, but most studies revealed only
minor or no changes (Jones et al. 1997; Weststrate et al.
1999). Therefore, these findings indicate that sterols do not
impair the enterohepatic circulation of bile acids. In
addition, a previous human study demonstrated that plant
sterol esters did not alter the faecal concentration of
secondary bile acids (Weststrate et al. 1999). This is in line
with our findings that the ratio of primary:secondary bile
acids in gallbladder bile was not altered by sterols or
stanols.

The effects on biliary lipids and the bile acid profile of
gallbladder bile was also investigated in the present
hamster study. Feeding hamsters with dietary cholesterol
usually results in a reduction in the molar ratio of biliary
lipids and in changes in the bile acid profile due to a
marked increase in chenodeoxycholate (Trautwein et al.
1993b, 1997). This is associated with the high prevalence
of cholesterol gallstones in the cholesterol-fed hamster
model. The effect has been linked to an inhibition of the
activity of 12a-hydroxylase, a key enzyme in the synthesis
of cholic acid (Kuroki et al. 1983). Apparently, feeding
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sterols and stanols tended to reverse at least partly this
cholesterol-induced effect, since cholate : chenodeoxycho-
late was improved. Similar findings, e.g. an increase in the
molar percentage of cholate and a decrease in chenodeoxy-
cholate, have been reported in mice fed b-sitosterol
(Uchida et al. 1984). The observed changes in biliary
cholate : chenodeoxycholate were small, but statistically
significant (20 – 30 % increase); however, their full
physiological significance is not fully interpretable and
remains to be further elucidated.

The molar percentages of biliary lipids, i.e. cholesterol,
PL and bile acids, were mostly unchanged, except for a
significant decrease in the molar percentage of BC found in
gallbladder bile of hamsters fed the stanol-supplemented
diets. Although not a primary aspect of this study, the
improved cholate : chenodeoxycholate together with the
lower molar percentage of BC seen in this hamster model
could indicate a gallstone preventive effect. However,
effects of plant sterols and stanols on BC saturation in man
are inconsistent (Begemann et al. 1978; Tangedahl et al.
1979). Nevertheless, in a recent human study, bile acid
composition and the molar percentage of BC were
unchanged after consumption of plant stanol esters,
indicating that potential gallstone formation is unlikely or
might even be prevented by plant sterols or stanols
(Miettinen et al. 2000).

In conclusion, esters of desmethylsterols were as
effective as esters of desmethylstanols in lowering
plasma TC and LDL cholesterol in cholesterol-fed
hamsters without affecting HDL cholesterol, while 4,40-
dimethylsterols from rice bran oil were less effective.
Enhanced faecal cholesterol excretion caused by an
inhibition of intestinal cholesterol absorption appeared to
be the main mechanism for the cholesterol-lowering action
of desmethylsterols and -stanols, while enhanced faecal
bile acid excretion and stimulation of bile acid synthesis
did not appear to be involved. For 4,40-dimethylsterols,
other not yet fully evident mechanisms need to be
considered to explain their modest cholesterol-lowering
effect.
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