Elizabeth T Borer

Elizabeth T Borer
University of Minnesota Twin Cities | UMN · Department of Ecology, Evolution and Behaviour

PhD

About

230
Publications
82,907
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
14,260
Citations

Publications

Publications (230)
Preprint
Full-text available
Eutrophication impacts plant diversity such as species richness, functional trait diversity and composition of grassland communities globally, but whether and how these changes affect the functional stability of grasslands under increasing climate extremes is unknown. We quantify the direct and diversity-mediated effects of nutrient addition on fun...
Article
Full-text available
Ecological models predict that the effects of mammalian herbivore exclusion on plant diversity depend on resource availability and plant exposure to ungulate grazing over evolutionary time. Using an experiment replicated in 57 grasslands on six continents, with contrasting evolutionary history of grazing, we tested how resources (mean annual precip...
Article
Full-text available
Global changes will modify future nutrient availability with implications for grassland biogeochemistry. Soil organic matter (SOM) is central to grasslands for both provision of nutrients and climate mitigation through carbon (C) storage. While we know that C and nitrogen (N) in SOM can be influenced by greater nutrient availability, we lack unders...
Article
Despite substantial progress in understanding global biodiversity loss, major taxonomic and geographic knowledge gaps remain. Decision makers often rely on expert judgement to fill knowledge gaps, but are rarely able to engage with sufficiently large and diverse groups of specialists. To improve understanding of the perspectives of thousands of bio...
Article
Full-text available
Background and aims The amount of nitrogen (N) derived from symbiotic N2 fixation by legumes in grasslands might be affected by anthropogenic N and phosphorus (P) inputs, but the underlying mechanisms are not known. Methods We evaluated symbiotic N2 fixation in 17 natural and semi-natural grasslands on four continents that are subjected to the sam...
Article
Full-text available
Plant biodiversity and consumers are important mediators of energy and carbon fluxes in grasslands, but their effects on within‐season variation of plant biomass production are poorly understood. Here we measure variation in control of plant biomass by consumers and plant diversity throughout the growing season and their impact on plant biomass phe...
Article
Changes in the biosphere carbon (C) sink are of utmost importance given rising atmospheric CO2 levels. Concurrent global changes, such as increasing nitrogen (N) deposition, are affecting how much C can be stored in terrestrial ecosystems. Understanding the extent of these impacts will help in predicting the fate of the biosphere C sink. However, m...
Article
Full-text available
Nutrient enrichment can simultaneously increase and destabilise plant biomass production, with co-limitation by multiple nutrients potentially intensifying these effects. Here, we test how factorial additions of nitrogen (N), phosphorus (P) and potassium with essential nutrients (K+) affect the stability (mean/standard deviation) of aboveground bio...
Article
Human activities have more than doubled reactive nitrogen (N) deposited in ecosystems, perturbing the N cycle and considerably impacting plant, animal, and microbial communities. However, biotic responses to N deposition can vary widely depending on factors including local climate and soils, limiting our ability to predict ecosystem responses. Here...
Article
1. To evaluate how increased anthropogenic nutrient inputs alter carbon cycling in grasslands, we conducted a litter decomposition study across 20 temperate grasslands on three continents within the Nutrient Network, a globally distributed nutrient enrichment experiment 2. We determined the effects of experimental nitrogen (N), phosphorus (P), and...
Article
Full-text available
Grassland ecosystems cover around 37% of the ice-free land surface on Earth and have critical socioeconomic importance globally. As in many terrestrial ecosystems, biological dinitrogen (N2) fixation represents an essential natural source of nitrogen (N). The ability to fix atmospheric N2 is limited to diazotrophs, a diverse guild of bacteria and a...
Article
Autotrophs play an essential role in the cycling of carbon and nutrients, yet disease‐ecosystem relationships are often overlooked in these dynamics. Importantly, the availability of elemental nutrients like nitrogen and phosphorus impacts infectious disease in autotrophs, and disease can induce reciprocal effects on ecosystem nutrient dynamics. Re...
Article
Full-text available
Enhancing soil carbon (C) storage has the potential to offset human‐caused increases in atmospheric CO2. Rising CO2 has occurred concurrently with increasing supply rates of biologically limiting nutrients such as nitrogen (N) and phosphorus (P). However, it is unclear how increased supplies of N and P will alter soil C sequestration, particularly...
Preprint
Background and aims: The amount of nitrogen (N) derived from symbiotic N 2 fixation by legumes in grasslands might be affected by anthropogenic N and phosphorus (P) inputs, but the underlying mechanisms are not known. Methods: We evaluated symbiotic N 2 fixation in 17 grasslands on four continents that are subjected to the same full-factorial N and...
Article
Nutrients and herbivores are well-known drivers of grassland diversity and stability in local communities. However, whether they interact to impact the stability of aboveground biomass and whether these effects depend on spatial scales remain unknown. It is also unclear whether nutrients and herbivores impact stability via different facets of plant...
Article
Full-text available
Host nutrient supply can mediate host–pathogen and pathogen–pathogen interactions. In terrestrial systems, plant nutrient supply is mediated by soil microbes, suggesting a potential role of soil microbes in plant diseases beyond soil-borne pathogens and induced plant defenses. Long-term nitrogen (N) enrichment can shift pathogenic and nonpathogenic...
Preprint
Full-text available
Global change drivers such as anthropogenic nutrient inputs simultaneously alter biodiversity, species composition, and ecosystem functions such as above ground biomass. These changes are interconnected by complex feedbacks among extinction, invasion, and shifting relative abundance. Here, we use a novel temporal application of the Price equation t...
Article
Full-text available
Fertilisation experiments have demonstrated that nutrient availability is a key determinant of biomass production and carbon sequestration in grasslands. However, the influence of nutrients in explaining spatial variation in grassland biomass production has rarely been assessed. Using a global dataset comprising 72 sites on six continents, we inves...
Article
Full-text available
Abstract Biotic and abiotic factors interact with dominant plants—the locally most frequent or with the largest coverage—and nondominant plants differently, partially because dominant plants modify the environment where nondominant plants grow. For instance, if dominant plants compete strongly, they will deplete most resources, forcing nondominant...
Article
Full-text available
Next Generation Sequencing (NGS) is a powerful tool that has been rapidly adopted by many ecologists studying microbial communities. Despite the exciting demonstration of NGS technology as a tool for ecological research, cryptic pitfalls inherent to its use can obscure correct interpretation of NGS data. Here, we provide an accessible overview of a...
Article
Full-text available
The effects of altered nutrient supplies and herbivore density on species diversity vary with spatial scale, because coexistence mechanisms are scale dependent. This scale dependence may alter the shape of the species–area relationship (SAR), which can be described by changes in species richness (S) as a power function of the sample area (A): S = c...
Article
Plant damage by invertebrate herbivores and pathogens influences the dynamics of grassland ecosystems, but anthropogenic changes in nitrogen and phosphorus availability can modify these relationships. Using a globally‐distributed experiment, we describe leaf damage on 153 plant taxa from twenty‐seven grasslands worldwide, under ambient conditions a...
Article
Full-text available
Endophytes often have dramatic effects on their host plants. Characterizing the relationships among members of these communities has focused on identifying the effects of single microbes on their host, but has generally overlooked interactions among the myriad microbes in natural communities as well as potential higher-order interactions. Network a...
Article
Full-text available
Biodiversity-both above-and belowground-influences multiple functions in terrestrial ecosystems. Yet, it is unclear whether differences in above-and belowground species composition (β-diversity) are associated with differences in multiple ecosystem functions (e.g., spatial turnover in ecosystem function). Here, we partitioned the contributions of a...
Article
Significance Predicting the effects of anthropogenic nutrient enrichment on plant communities is critical for managing implications for biodiversity and ecosystem services. Plant functional types that fix atmospheric nitrogen (e.g., legumes) may be at particular risk of nutrient-driven global decline, yet global-scale evidence is lacking. Using an...
Article
Abandoned agricultural lands often accumulate soil carbon (C) following depletion of soil C by cultivation. The potential for this recovery to provide significant C storage benefits depends on the rate of soil C accumulation, which, in turn, may depend on nutrient supply rates. We tracked soil C for almost four decades following intensive agricultu...
Article
Spatial rarity is often used to predict extinction risk, but rarity can also occur temporally. Perhaps more relevant in the context of global change is whether a species is core to a community (persistent) or transient (intermittently present), with transient species often susceptible to human activities that reduce niche space. Using 5‐12 years of...
Preprint
Full-text available
Dominant and non-dominant plants could be subject to different biotic and abiotic influences, partially because dominant plants modify the environment where non-dominant plants grow, causing an interaction asymmetry. Among other possibilities, if dominant plants compete strongly, they should deplete most resources forcing non-dominant plants into a...
Article
Full-text available
A growing body of literature links resources of hosts to their risk of infectious disease. Yet most hosts encounter multiple pathogens, and projections of disease risk based on resource availability could be fundamentally wrong if they do not account for interactions among pathogens within hosts. Here, we measured infection risk of grass hosts (Ave...
Article
Full-text available
Ecosystems across the globe receive elevated inputs of nutrients, but the consequences of this for soil fungal guilds that mediate key ecosystem functions remain unclear. We find that nitrogen and phosphorus addition to 25 grasslands distributed across four continents promotes the relative abundance of fungal pathogens, suppresses mutualists, but d...
Preprint
Full-text available
Nutrient supply rates to hosts can mediate host–pathogen interactions. In terrestrial systems, nutrient supply to plants is mediated by soil microbes, suggesting a potential indirect effect of soil microbes on plant–pathogen interactions. Soil microbes also may affect plant pathogens by inducing plant defenses. We tested the role of soil microbes,...
Article
Full-text available
Human‐induced changes in biogeochemical cycles alter the availability of carbon (C), nitrogen (N) and phosphorus (P) in the environment, leading to changes in the elemental stoichiometry of primary producers. These changes in elemental ratios may, in turn, alter the degree of stoichiometric mismatch between primary producer hosts and their pathogen...
Preprint
Full-text available
Nutrients and herbivores have independent effects on the temporal stability of aboveground biomass in grasslands; however, their joint effects may not be additive and may also depend on spatial scales. In an experiment adding nutrients and excluding herbivores in 34 globally distributed grasslands, we found that nutrients and herbivores mainly had...
Article
Anthropogenic nitrogen (N) inputs are causing large changes in ecosystems worldwide. Many previous studies have examined the impact of N on terrestrial ecosystems; however, most have added N at rates that are much higher than predicted future deposition rates. Here, we present the results from a gradient of experimental N addition (0‐10 g N m‐2) in...
Preprint
Full-text available
Interannual variability in grassland primary production is strongly driven by precipitation, nutrient availability and herbivory, but there is no general consensus on the mechanisms linking these variables. If grassland biomass is limited by the single most limiting resource at a given time, then we expect that nutrient addition will not affect bio...
Article
Full-text available
Plant diversity and plant-consumer/pathogen interactions likely interact to influence ecosystem carbon fluxes but experimental evidence is scarce. We examined how experimental removal of foliar fungi, soil fungi and arthropods from experimental prairies planted with 1, 4 or 16 plant species affected instantaneous rates of carbon uptake (GPP), ecosy...
Article
Human activities have increased nitrogen (N) and phosphorus (P) inputs in terrestrial ecosystems and altered carbon (C) availability, shifting the stoichiometry of microbial substrates in soils, such as the C:N:P ratios of the dissolved organic matter pool. These stoichiometric deviations between microbial biomass and its substrate may control micr...
Article
Full-text available
• Pathogen spread rates are determined, in part, by the performance of pathogens under altered environmental conditions and their ability to persist while switching among hosts and vectors. • To determine the effects of new conditions (host, vector, and nutrient) on pathogen spread rate, we introduced a vector‐borne viral plant pathogen, Barley Yel...
Article
Full-text available
Human behavior (movement, social contacts) plays a central role in the spread of pathogens like SARS-CoV-2. The rapid spread of SARS-CoV-2 was driven by global human movement, and initial lockdown measures aimed to localize movement and contact in order to slow spread. Thus, movement and contact patterns need to be explicitly considered when making...
Article
Full-text available
A Correction to this paper has been published: https://doi.org/10.1038/s41467-021-20997-9.
Article
Full-text available
A Correction to this paper has been published: https://doi.org/10.1038/s41467-021-20985-z.
Article
Full-text available
An overlooked effect of ecosystem eutrophication is the potential to alter disease dynamics in primary producers, inducing disease-mediated feedbacks that alter net primary productivity and elemental recycling. Models in disease ecology rarely track organisms past death, yet death from infection can alter important ecosystem processes including ele...
Article
Full-text available
Human disturbances alter the functioning and biodiversity of many ecosystems. These ecosystems may return to their pre‐disturbance state after disturbance ceases; however, humans have altered the environment in ways that may change the rate or direction of this recovery. For example, human activities have increased supplies of biologically limiting...
Article
Full-text available
Human activities are transforming grassland biomass via changing climate, elemental nutrients, and herbivory. Theory predicts that food-limited herbivores will consume any additional biomass stimulated by nutrient inputs (‘consumer-controlled’). Alternatively, nutrient supply is predicted to increase biomass where herbivores alter community composi...
Article
Full-text available
Arthropod herbivores cause substantial economic costs that drive an increasing need to develop environmentally sustainable approaches to herbivore control. Increasing plant diversity is expected to limit herbivory by altering plant-herbivore and predator-herbivore interactions, but the simultaneous influence of these interactions on herbivore impac...
Article
Microorganisms mediate nutrient cycling in soils, and thus it is assumed that they largely control responses of terrestrial ecosystems to anthropogenic nutrient inputs. Therefore, it is important to understand how increased nitrogen (N) and phosphorus (P) availabilities, first, affect soil prokaryotic and fungal community composition and second, if...
Article
Full-text available
Eutrophication is a widespread environmental change that usually reduces the stabilizing effect of plant diversity on productivity in local communities. Whether this effect is scale dependent remains to be elucidated. Here, we determine the relationship between plant diversity and temporal stability of productivity for 243 plant communities from 42...
Article
Human activities are enriching many of Earth’s ecosystems with biologically limiting mineral nutrients such as nitrogen (N) and phosphorus (P). In grasslands, this enrichment generally reduces plant diversity and increases productivity. The widely demonstrated positive effect of diversity on productivity suggests a potential negative feedback, wher...
Article
Full-text available
Synthesis has become ubiquitous in ecology. Despite its widespread application to a broad range of research topics, it remains unclear how synthesis has affected the discipline. Using a case study of publications (n = 2304) from the National Center for Ecological Analysis and Synthesis compared with papers with similar keywords from the Web of Scie...
Article
Foliar fungal endophytes are ubiquitous plant symbionts that can affect plant growth and reproduction via their roles in pathogen and stress tolerance, as well as plant hormonal signaling. Despite their importance, we have a limited understanding of how foliar fungal endophytes respond to varying environmental conditions such as nutrient inputs. Th...
Article
1. The spread of many diseases depends on the demography and dispersal of arthro-pod vectors. Classic epidemiological theory typically ignores vector dynamics and instead makes the simplifying assumption of frequency-dependent transmission. Yet, vector ecology may be critical for understanding the spread of disease over space and time and how disea...
Article
Full-text available
Soil nitrogen (N) availability is critical for grassland functioning. However, human activities have increased the supply of biologically‐limiting nutrients, and changed the density and identity of mammalian herbivores. These anthropogenic changes may alter net soil N mineralization (soil net Nmin), i.e., the net balance between N mineralization an...
Article
Nutrition has been hypothesized as an important constraint on brain evolution. However, it is unclear whether the availability of specific nutrients or the difficulty of locating high quality diets limits brain evolution, especially over long periods of time. We show that dietary nutrient content predicted brain size across 42 species of butterflie...
Article
Interactions among co‐infecting pathogens are common across host taxa and can affect infectious disease dynamics. Host nutrition can mediate these among‐pathogen interactions, altering the establishment and growth of pathogens within hosts. It is unclear, however, how nutrition‐mediated among‐pathogen interactions affect transmission and the spread...
Preprint
Abstract Plant diversity and plant-consumer interactions likely interact to influence ecosystem carbon fluxes but experimental evidence is scarce. We examined how experimental removal of foliar fungi, soil fungi and arthropods from experimental prairies planted with 1, 4 or 16 plant species affected instantaneous rates of carbon uptake (GPP), ecosy...
Article
Full-text available
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Article
Microbial processing of aggregate‐unprotected organic matter inputs is key for soil fertility, long‐term ecosystem carbon and nutrient sequestration and sustainable agriculture. We investigated the effects of adding multiple nutrients (nitrogen, phosphorus and potassium plus nine essential macro‐ and micro‐nutrients) on decomposition and biochemica...
Article
Despite the ubiquity of pathogens in ecological systems, their roles in influencing ecosystem services are often overlooked. Pathogens that infect primary producers (i.e., plants, algae, cyanobacteria) can have particularly strong effects because autotrophs are responsible for a wide range of provisioning, regulating, and cultural services. We revi...
Preprint
Full-text available
Human behavior (movement, social contacts) plays a central role in the spread of pathogens like SARS-CoV-2. The rapid spread of SARS-CoV-2 was driven by global human movement, and recent lockdown measures aim to localize movement and contact in order to slow spread. Thus, movement and contact patterns need to be explicitly considered when making re...
Article
Aim Climate variability threatens to destabilize production in many ecosystems. Asynchronous species dynamics may buffer against such variability when a decrease in performance by some species is offset by an increase in performance of others. However, high climatic variability can eliminate species through stochastic extinctions or cause similar s...