
Elisabeth Mercier- Bachelor of Applied Science
- Master's Student at University of Ottawa
Elisabeth Mercier
- Bachelor of Applied Science
- Master's Student at University of Ottawa
About
44
Publications
4,354
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
977
Citations
Introduction
Skills and Expertise
Current institution
Publications
Publications (44)
The emergence of COVID-19 in Canada has led to over 4.9 million cases and 59,000 deaths by May 2024. Traditional clinical surveillance metrics (hospital admissions and clinical laboratory-positive cases) were complemented with wastewater and environmental monitoring (WEM) to monitor SARS-CoV-2 incidence. However, challenges in public health integra...
PLAIN LANGUAGE SUMMARY
What is already known about the topic?
Respiratory syncytial virus (RSV) is an important cause of respiratory illness in children, and, in the worst cases, can require hospital care. To maximize the effectiveness of drugs designed to prevent RSV by temporarily boosting the child’s immune system (e.g. palivizumab and nirsevima...
The recent global resurgence of measles in 2023–2024, despite vaccine preventability, underscores a critical public health issue, largely due to reduced vaccination coverage during the SARS-CoV-2 pandemic. In response, Ottawa Public Health intensified vaccination efforts in 2023 and 2024. Additionally, a research initiative began in April 2024 to m...
Background
Clinical genomic surveillance is the gold standard for monitoring SARS-CoV-2 variants globally, but as the pandemic wanes, reduced testing increases the risk of missing the emergence of variants of concern or failing to accurately follow their trajectory in populations. Wastewater-based genomic surveillance (WWS) that estimates variant f...
Background
Wastewater-based surveillance (WBS) of respiratory syncytial virus (RSV) detected seasonal activity up to one month earlier than clinical surveillance (CS) during the 2022 RSV season in two Ontario cities, Canada. The associated cost-consequence analysis comparing the use of WBS vs CS to guide the start of provincial immunoprophylaxis pr...
Clinical genomic surveillance is regarded as the gold standard for monitoring SARS-CoV-2 variants globally. However, as the pandemic wanes, reduced testing poses a risk to effectively tracking the trajectory of these variants within populations. Wastewater-based genomic surveillance that estimates variant frequency based on its defining set of alle...
Three new probe-based quantitative PCR assays were designed based on Chae et al . (2017), Pérez-Osorio et al. (2012), and Sales et al . (2012) to quantitate Mycobacterium tuberculosis complex (MTBC) species, M. tuberculosis (MTB), and M. bovis (MB) in wastewater targeting genomic regions rv0577, RD9, and the deletion of RD4, respectively. The assay...
This study presents a comprehensive analysis of the decay patterns of endogenous SARS-CoV-2 and Pepper mild mottle virus (PMMoV) within wastewaters spiked with stool from infected patients expressing COVID-19 symptoms, and hence explores the decay of endogenous SARS-CoV-2 and PMMoV targets in wastewaters from source to collection of the sample. Sto...
During the COVID-19 pandemic, the monitoring of SARS-CoV-2 RNA in wastewater was used to track the evolution and emergence of variant lineages and gauge infection levels in the community, informing appropriate public health responses without relying solely on clinical testing. As more sublineages were discovered, it increased the difficulty in iden...
During the COVID-19 pandemic, the monitoring of SARS-COV-2 RNA in wastewater was used to track the evolution and emergence of variant lineages and gauge infection levels in the community, informing appropriate public health responses without relying solely on clinical testing. As more sublineages were discovered, it increased the difficulty in iden...
During the COVID-19 pandemic, the Province of Ontario, Canada, launched a wastewater surveillance program to monitor SARS-CoV-2, inspired by the early work and successful forecasts of COVID-19 waves in the city of Ottawa, Ontario. This manuscript presents a dataset from January 1, 2021, to March 31, 2023, with RT-qPCR results for SARS-CoV-2 genes a...
Wastewater-based surveillance of human disease offers timely insights to public health, helping to mitigate infectious disease outbreaks and decrease downstream morbidity and mortality. These systems rely on nucleic acid amplification tests for monitoring disease trends, while antibody-based seroprevalence surveys gauge community immunity. However,...
Wastewater surveillance of coronavirus disease 2019 (COVID-19) commonly applies reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to quantify severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA concentrations in wastewater over time. In most applications worldwide, maximal sensitivity and specificity of RT-qPCR has...
Respiratory syncytial virus (RSV) is the leading viral cause of childhood bronchiolitis and pneumonia causing over 3 million hospitalizations and 100,000 deaths in children under 5 years of age annually. Wastewater-based surveillance (WBS) has proven an effective early warning system for high-consequence pathogens, including SARS-CoV-2, polio, mpox...
Wastewater surveillance (WWS) of SARS-CoV-2 has become a crucial tool for monitoring COVID-19 cases and outbreaks. Previous studies have indicated that SARS-CoV-2 RNA measurement from testing solid-rich primary sludge yields better sensitivity compared to testing wastewater influent. Furthermore, measurement of pepper mild mottle virus (PMMoV) sign...
Introduction
Detection of community respiratory syncytial virus (RSV) infections informs the timing of immunoprophylaxis programs and hospital preparedness for surging pediatric volumes. In many jurisdictions, this relies upon RSV clinical test positivity and hospitalization (RSVH) trends, which are lagging indicators. Wastewater-based surveillance...
Recent MPOX viral resurgences have mobilized public health agencies around the world. Recognizing the significant risk of MPOX outbreaks, large-scale human testing, and immunization campaigns have been initiated by local, national, and global public health authorities. Recently, traditional clinical surveillance campaigns for MPOX have been complem...
Wastewater surveillance of coronavirus disease 2019 (COVID-19) commonly applies reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to quantify severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA concentrations in wastewater over time. In most applications worldwide, maximal sensitivity and specificity of RT-qPCR has...
Wastewater surveillance (WWS) has received interest from researchers, scientists, and public health units for its application in monitoring active COVID-19 cases and detecting outbreaks. While WWS of SARS-CoV-2 has been widely applied worldwide, a knowledge gap exists concerning the effects of enhanced primary clarification, the application of coag...
Recurrent influenza epidemics and pandemic potential are significant risks to global health. Public health authorities use clinical surveillance to locate and monitor influenza and influenza-like cases and outbreaks to mitigate hospitalizations and deaths. Currently, global integration of clinical surveillance is the only reliable method for report...
Clinical testing has been the cornerstone of public health monitoring and infection control efforts in communities throughout the COVID-19 pandemic. With the anticipated reduction of clinical testing as the disease moves into an endemic state, SARS-CoV-2 wastewater surveillance (WWS) will have greater value as an important diagnostic tool. An in-de...
Wastewater surveillance (WWS) of SARS-CoV-2 was proven to be a reliable and complementary tool for population-wide monitoring of COVID-19 disease incidence but was not as rigorously explored as an indicator for disease burden throughout the pandemic. Prior to global mass immunization campaigns and during the spread of the wildtype COVID-19 and the...
Wastewater surveillance (WWS) of SARS-CoV-2 was proven to be a reliable and complementary tool for population-wide monitoring of COVID-19 disease incidence but was not as rigorously explored as an indicator for disease burden throughout the pandemic. Prior to global mass immunization campaigns and during the spread of the wildtype COVID-19 and the...
Recurrent epidemics of influenza infection and its pandemic potential present a significant risk to global population health. To mitigate hospitalizations and death, local public health relies on clinical surveillance to locate and monitor influenza-like illnesses and/or influenza cases and outbreaks. At an international level, the global integrati...
Clinical testing has been the cornerstone of public health monitoring and infection control efforts in communities throughout the COVID-19 pandemic. With the extant and anticipated reduction of clinical testing as the disease moves into an endemic state, SARS-CoV-2 wastewater surveillance (WWS) is likely to have greater value as an important diagno...
This study investigates and compares the ammonia removal kinetics, attachment, biofilm development and anammox bacteria enrichment on various surface modified carriers throughout the 163 days of start-up of an MBBR system: virgin, dextran-functionalized carriers, silica-functionalized and pre-seeded denitrifying carriers. Silica-functionalized carr...
The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has claimed millions of lives to date. Antigenic drift has resulted in viral variants with putatively greater transmissibility, virulence, or both. Early and near real-time detection of these variants of concern (VOC) and the...
Wastewater-based epidemiology/wastewater surveillance has been a topic of significant interest over the last year due to its application in SARS-CoV-2 surveillance to track prevalence of COVID-19 in communities. Although SARS-CoV-2 surveillance has been applied in more than 50 countries to date, the application of this surveillance has been largely...
The COVID-19 pandemic has stimulated wastewater-based surveillance, allowing public health to track the epidemic by monitoring the concentration of the genetic fingerprints of SARS-CoV-2 shed in wastewater by infected individuals.
Wastewater-based surveillance for COVID-19 is still in its infancy. In particular, the quantitative link between clinic...
Wastewater-based epidemiology is a topic of significant interest over the last year due to the application of SARS-CoV-2 surveillance to track incidence rates of COVID-19 in communities. Although SARS-CoV-2 surveillance has been applied in more than 50 countries to date, the application of this surveillance has been largely focused on relatively af...
The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has claimed millions of lives globally to date. Rapid accumulation of co-occurring mutations has led to the emergence of viral variants which appear to be more transmissible, virulent, or both. Variants of concern (VOC) now in...
Curtailing the Spring 2020 COVID-19 surge required sweeping and stringent interventions by governments across the world. Wastewater-based COVID-19 epidemiology programs have been initiated in many countries to provide public health agencies with a complementary disease tracking metric and non-discriminating surveillance tool. However, their efficac...
In the absence of an effective vaccine to prevent COVID-19 it is important to be able to track community infections to inform public health interventions aimed at reducing the spread and therefore reduce pressures on health-care, improve health outcomes and reduce economic uncertainty. Wastewater surveillance has rapidly emerged as a potential tool...
Curtailing the Spring 2020 COVID-19 surge required sweeping and stringent interventions by governments across the world. Wastewater-based COVID-19 epidemiology programs have been initiated in many countries to provide public health agencies with a complementary disease tracking metric and facile surveillance tool. However, their efficacy in prospec...
The COVID-19 pandemic has given rise to diverse approaches to track infections. The causative agent, SARS-CoV-2 is a fecally-shed RNA virus, and many groups have assayed wastewater for viral RNA fragments by quantitative reverse transcription polymerase chain reaction (qRT-PCR) as a proxy of COVID-19 prevalence in the community. Most groups report...
In the absence of an effective vaccine to prevent COVID-19 it is important to be able to track community infections to inform public health interventions aimed at reducing the spread and therefore reduce pressures on health-care units, improve health outcomes and reduce economic uncertainty. Wastewater surveillance has rapidly emerged as a potentia...