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Segmentation and Tracking of Migrating Cells in
Videomicroscopy With Parametric Active Contours:

A Tool for Cell-Based Drug Testing
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Abstract—This paper presents a segmentation and tracking
method for quantitative analysis of cell dynamics from in vitro
videomicroscopy data. The method is based on parametric active
contours and includes several adaptations that address important
difficulties of cellular imaging, particularly the presence of
low-contrast boundary deformations known as pseudopods, and
the occurence of multiple contacts between cells. First, we use an
edge map based on the average intensity dispersion that takes
advantage of relative background homogeneity to facilitate the
detection of both pseudopods and interfaces between adjacent
cells. Second, we introduce a repulsive interaction between con-
tours that allows correct segmentation of objects in contact and
overcomes the shortcomings of previously reported techniques to
enforce contour separation. Our tracking technique was validated
on a realistic data set by comparison with a manually defined
ground-truth and was successfully applied to study the motility of
amoebae in a biological research project.

Index Terms—Active contours, cellular imaging, pseudopods,
quantitative cellular models, repulsion, segmentation, topology
changes, tracking, video-microscopy.

I. INTRODUCTION

A. Cell Dynamics and Image Analysis

CELL dynamics is a crucial aspect of many biological pro-
cesses with direct implications for human health. Cell mo-

tion is essential, for instance, in tumor metastasis, wound repair,
and host invasion by parasites [1], [2]. Changes in cellular mor-
phology also play a critical role in the recognition by immune
cells of antigens at the “immune synapse” [3], or the phago-
cytosis of host cells by parasites. An important effort of drug
development therefore aims to alter the dynamic properties of
cells, e.g., by inhibiting the motility of a parasite.

To reliably assess the clinical potential of candidate drugs,
it is usually necessary to analyze quantitatively the motion
and morphology changes of a large number of cells under a
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variety of experimental conditions. Recent advances in light
microscopy have facilitated the observation of the dynamics
of living cells during extended periods of time. The increasing
quantity and complexity of image data from dynamic mi-
croscopy renders manual analysis (already prone to errors due
to user bias and lack of reproducibility) unreasonably time-con-
suming, if not impossible. Therefore, automatic techniques
to extract cellular motion and morphology characteristics
from image sequences are of considerable interest to exploit
microscopy data in the drug discovery process.

In this paper, we present such a technique, motivated by the
desire to study the kinetic properties of the motile microorga-
nizm Entamoeba histolytica, a unicellular parasite responsible
for invasive amoebiasis, which causes 100 000 deaths/year. Our
goal is to establish a platform to analyze quantitatively the mo-
tion and shape changes ofE. histolyticacells, which are essen-
tial factors for its virulence. This requires the ability to segment
and track biological cells in large image sequences acquired
by optical video-microscopy. Our method is designed to pro-
duce an accurate description of the outlines of each cell in every
image (segmentation step), and to keep track of the cell identi-
ties across the sequence (tracking step). The extracted data can
be used straightforwardly to compute quantitative parameters
characterising cellular motion and morphology.

B. Segmentation and Tracking of Cells

While a large body of work has addressed the segmentation
and tracking of medical images on the scale of individual organs
(e.g., [4] and [5]), relatively little effort has been devoted to cel-
lular imaging. Some of these efforts have used model-free seg-
mentation methods such as thresholding of the gradient image
[6], [7], combined with tracking algorithms that pair detected
objects from consecutive frames in a sequence. Methods of this
type have been used with success to study the motion of isolated
cells [7], [8]. However, they provide no or only poor descriptions
of the cellular shape. In fact, they usually do not even produce
closed-object contours and require important post-processing
steps to obtain those. In addition, these approaches often fail to
correctly track multiple cells in sequences exhibiting cell-cell
contacts [6].

Some of these difficulties can be avoided by using model-
based techniques such as active contours (or “snakes”) [9]. Ac-
tive contour methods automatically produce closed and smooth
object boundaries, and offer the possibility of providing a first
guess through the interactive initialization step. Provided that
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Fig. 1. Typical image ofE. histolyticacells observed under a phase contrast
microscope (fragment). Arrows point at some pseudopods. The field of view is
roughly 300� 250�m and the image size is 460� 380 pixels.

the temporal resolution is sufficient, they also allow to keep
track of object identity in an obvious manner through auto-
matic initialization based on the segmentation of the previous
image. Leymarie and Levine [10] demonstrated that an active
contour method can track the membrane of single fibroblast
cells through a sequence of images from light transmission mi-
croscopy. Giulianoet al. [11] have used a similar method to
track the motion and deformation of spatially isolated tumor
cells, and a first application of active contours to the tracking
of isolatedE. histolyticacells was presented in [12].

C. This Work

The images under consideration in our paper (see example in
Fig. 1), present two main difficulties that significantly limit the
applicability of the previous methods: the presence and impor-
tance of pseudopods, and the propensity of cells to divide and
adhere to each other.

Pseudopods are transient protrusions of the cellular mem-
brane used for locomotion and phagocytosis, and are therefore
important to detect correctly in motility and morphology
studies. Because they are generally partly or entirely localized
outside of the focal plane, these features appear at much lower
contrast than most of the cell membrane, and tend to be treated
by snakes as occlusions, i.e., ignored, as already deplored by
[10]. In wild-type amoebae, pseudopods tend to grow and the
whole cell subsequently moves in the direction of the pseu-
dopod. As a result, failure to detect a pseudopod in one frame
will lead to an initial contour increasingly distant from the
deformed cell membrane in the following frames. Thus, even
if the contrast of the boundary deformation later increases, the
snake may be too far from the actual cell boundary to produce
a correct segmentation. The snake then tends to collapse under
the influence of its internal tension, ultimately leading to a
complete breakdown of segmentation and tracking (see [13]).
In Section III, we will describe a scheme designed to enhance
the detection of pseudopods by active contours.

Contacts between cells are another important difficulty of our
data and cellular imaging in general. Since the dynamic be-
havior of motile cells is strongly influenced by the interactions
with other cells [14], these interactions cannot be avoided inin
vitro experiments designed to reflectin vivo conditions. How-
ever, object contacts pose a significant challenge to active con-
tour methods, as a snake associated to one object may easily
be attracted to parts of a neighboring object, again leading to
a breakdown of segmentation and tracking. In Section IV, we
will discuss this problem in detail and describe a new method to
handle cell contacts.

In Section II, we recall the original snake model [9], as well
as a useful and popular extension, the “GVF” model [15], and
discuss their applicability to our data. In Section V, we com-
pare the results obtained by our method with a manually defined
ground-truth and briefly present an application of our method to
the study of amoebic motility. We conclude (Section VI) with a
short summary and outlook on future work.

II. PARAMETRIC ACTIVE CONTOUR MODELS

A. Original Model

The parametric active contour (or “snake”) model first intro-
duced by [9] consists in minimizing the energy functional
of a curve parameterized by ,
with

(1)

Here, and are scalar coefficients, subscripts denote partial
derivatives, and is an edge map of the image. An appropriate
choice for in images where object boundaries are dark, such
as Fig. 1, is , where is the image intensity, is
a Gaussian kernel anddenotes convolution. The minimization
of the terms inside brackets, called the internal energy, which
depend only on the geometry of the curve, tends to enforce a
certain smoothness and acts as a regularising constraint helping
to overcome image noise. The minimization of the last term,
called the external energy, tends to push the curve toward ob-
ject edges (where is large). In practice, the minimization of

is performed iteratively by considering the curve as a func-
tion of an abstract time. Starting from an initial guess

, the curve is deformed according to the evolu-
tion equation

(2)

until it reaches an equilibrium. Following a standard termi-
nology, we will refer to the terms on the right hand side of (2)
as forces. At equilibrium, (2) reduces to the Euler–Lagrange
equation associated to a local minimization of.

Because the minimization is local, the equilibrium position
of the curve usually depends on the initialization . In the
original model, the external image-driven force [last term of
(2)] is significant only in the immediate vicinity of the object
boundaries. Elsewhere, the snake’s evolution is driven dom-
inantly by the internal forces [first two terms of (2)], which
lead to shrinking and smoothing of the contour. As a result, the



1214 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 21, NO. 10, OCTOBER 2002

original model requires an initial guess close to the actual ob-
ject boundaries, or at least located outside of the object, so that
the shrinking forces move the contours close to the boundaries
where the external force becomes important.

In processing temporal sequences, the initialization of the ac-
tive contours can easily be done manually on the first frame of
the sequence, but should be automatic for the rest of the se-
quence. Because cells move relatively little between consecu-
tive frames, a good initial guess of the contour location is pro-
vided by the final contour of the previous frame, thus allowing
a straightforward automatic initialization that trivially links ob-
ject positions across frames. With such a scheme, however, the
initial contour is generally not located outside of the object, nor
is it always sufficiently close to its boundaries, so that the orig-
inal snake model usually fails [13]. In addition, as mentioned
in the introduction, even when most of a cell’s boundary is cor-
rectly segmented, the original snake model is usually unable to
correctly locate the small low contrast membrane deformations
due to pseudopods. We therefore adopted the gradient vector
flow (GVF) model of [15] designed both to reduce the sensi-
tivity of the snake to initial conditions, and to increase segmen-
tation performance on boundary concavities.

B. GVF Model

In the GVF model [15], the external force in (2) is re-
placed by a new vector field, which is defined as the steady-
state solution of the following reaction-diffusion equations:

(3)

Near object boundaries, where is large and the reaction
term (last term in (3)) dominates, the GVF model leaves the
external force field approximately unchanged from its original
value: . Elsewhere in the image, the diffusion process
[first term on the right-hand side of (3)] dominates, thus, noise
is reduced and the resulting fieldis “interpolated” from
between the object boundaries. Because the information from
strong object boundaries is propagated throughout the image by
the diffusion process, the GVF model enjoys a much larger “cap-
ture range” than the original snake model and is considerably
less sensitive to initialization. This is also the case in our data,
where thanks to the GVF, contours can converge toward the ob-
jects even with a much cruder initialization.

However, although the GVF model was proven to be superior
in detecting concave boundaries [15], it does not solve the dif-
ficulties posed by less pronounced boundary deformations such
as the pseudopods. In fact, the GVF even exacerbates these diffi-
culties; as we pointed out recently [13], the diffusion process of
(3) leads to a competition of boundaries, in the course of which
the influence of image features with large edge map gradient

, i.e., the stronger boundaries, progressively overwhelms
the influence of weaker boundaries. This can lead to incorrect
segmentations by the GVF even in cases where the initial con-
tour is positioned at the object boundary itself and the original
model [9] succeeds (see [13, Figs. 6 and 7]). This undesired ef-
fect of boundary competition can be reduced by halting the dif-
fusion process (3) before it reaches a steady–state. Although this
modification moderates the domination of strong edges, it alone

(a)

(b)

Fig. 2. Two types of pseudopods (arrows). (a) “Continuous membrane” type.
(b) “Graft” type.

cannot render weak edges more attractive than in the original
model [9] itself. To achieve detection of pseudopods within the
framework of GVF snakes, the edge map must be enhanced at
weak boundary portions. Section III describes a dedicated tech-
nique to do this.

III. ENHANCING DETECTION OFLOW CONTRASTBOUNDARIES

The difficulty in detecting pseudopods stems from the fact
that they cannot be distinguished on the basis of their grey-level
or gradient values alone from features visible inside the cells
such as vesicles (see Figs. 1 and 2). To address this problem, we
previously [13] used a hysteresis thresholding of the Canny [16]
edge map, followed by binarization. The hysteresis thresholding
helps to discriminate pseudopods against intracellular features
based on their connectivity with the high-contrast part of the
cellular membrane, and the binarization then gives pseudopods
the same strength in the edge map as the high-contrast por-
tions. This considerably improves the detection of pseudopods
appearing as low contrast portions of an otherwise high-con-
trast membrane [Fig. 2(a)]. However, the method fails in the
frequent cases where the pseudopod extends predominantly out
of the focal plane. In this case, the pseudopod appears as a
“graft” on the high contrast membrane rather than a continu-
ation of it [Fig. 2(b)]. This type of feature is unlikely to be
correctly segmented by our previous approach [13], or by any
purely edge-based approach, since the high contrast boundary
will qualify as an edge at least to the same degree, if not more,
than the low contrast pseudopod.

In this paper, in contrast, we propose a modification of the
edge map intended to facilitate the detection of weak object
boundaries on the basis of their proximity to pixels of the back-
ground. This approach is made possible by the relative homo-
geneity of the substrate inin vitro microscopy. After testing a
number of texture parameters, we found that the local average
deviation is particularly suited to distinguish background
pixels from object and boundary pixels
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(a) (b)

(c)

Fig. 3. (a) Original edge mapf = �G � I of the image in Fig. 1. (b) Binary
object maskI obtained by a seed flood on the average deviationI of
Fig. 1. Note that cells in contact are not separated. (c) New edge mapf . Note
that bright contours along cell boundaries, including pseudopods, clearly stand
out, while the boundaries between cells in contact are still visible.

where is the intensity at pixel ( ), and is the mean
intensity

over square windows of size , with, e.g., . A
simple thresholding of the average deviation image easily elim-
inates the background, but may also eliminate regions inside
the cell. We, therefore, prefer to perform a seed flood, starting
from the image borders, on the average deviation imageof
pixels with grey levels below a certain threshold (we used

). If all pixels of the object boundary have intensi-
ties above , as often is the case, then nonflooded regions form
closed objects that correspond either to a single cell or to an ag-
glomeration of cells. Binarization of the flooded image yields a
mask [Fig. 3(b)] consisting of regions, whose boundaries
are then readily obtained as a binary image. The nonzero
pixels of are a good indication of cell-background interfaces
(compare Figs. 3(b) and 1), and are, therefore, of great value for
the localization of pseudopods.

Unfortunately, for cells in contact, any boundary visible be-
tween the cells on the original image is lost in [as evident
from Fig. 3(b)] and consequently also in . Furthermore, the
seed flood of may occasionally “leak” through particularly
fuzzy membranes, yielding parasitic boundaries inside the ob-
jects at locations where no such boundaries exist in the original
image (not shown). For these two reasons, we chose to rein-
troduce some amount of information from the grey-level image

by linearly combining and masked by

(a)

(b)

Fig. 4. Segmentation of the “graft type” pseudopod of Fig. 2(b). (a) Using the
original edge mapf . (b) Using the edge mapf of Section III.

Here, designates the new edge map, and are normal-
ized to the range [0, 1], and is a scalar parameter weighting
the importance of the object/background boundaries relative to
the original edge map (we used ). The new edge map
exhibits the desired properties of having high intensity pixels at
the boundaries of cells on the background, while having smaller,
but still significant, intensities at boundaries between cells in
contact [see Fig. 3(c)]. This makes a better choice than the
original edge map [Fig. 3(a)] for the detection of pseudopods
and an equally good choice for the detection of intercellular
boundaries.

Our new edge map is now used in the snake and GVF model
previously described (simply replaceby in Section II).
Thanks to this change, an accurate segmentation of cell shapes
including pseudopods is now possible [see Fig. 4(b)], thus al-
lowing detailed studies of the morphological changes of these
highly deformable cells.

IV. HANDLING CELL INTERACTIONS WITH

REPULSIVE CONTOURS

A. Parametric Versus Level-Set Contours

As we noted in the introduction, cells are likely to interact
closely with each other and undergo divisions. These situations
cannot be handled with traditional parametric active contours.
When two cells approach each other, their associated snakes are
likely to be attracted to parts of the other cell, while also re-
maining attached to their legitimate object (see [13, Fig. 13]).
Similarly, when a cell divides and the daughter cells separate,
the snake remains attached to both objects. The inability of para-
metric contours to handle cell interactions is due to the indepen-
dent application of a single-object model to the different objects
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(a) (b)

(c) (d)

Fig. 5. Two amoeba have come in close contact (a-c). A level-set technique
would identify the cell compound in (c) as a single object, even if two objects
were detected in (a) and (b). (d) Parametric methods however maintain two
distinct contours (result obtained with the method described in this paper).

in the image, i.e., to the absence of coupling between contours.
The failure to handle cell divisions stems from the topological
rigidity of parametric models.

In recent years, a segmentation approach based on level-set
methods [17] has become increasingly popular (e.g., [18] and
[19]), partly because it is able to overcome both of these short-
comings. In these methods, contours are defined implicitly as
the zero level set of an evolving surface and thus do not re-
quire any explicit parametrization and do not suffer from any
constraints on the topology. They also produce closed contours,
while allowing the number of these contours to adapt to the
number of objects in the image.

The level-set approach would thus seem to be a more appro-
priate framework for cell segmentation than traditional para-
metric methods. However, the topological flexibility of level
sets has a significant drawback in cellular imaging. In many
cases, previously distant cells [as in Fig. 5(a)] later enter into
close interactions that blur the boundary between them, which
becomes less pronounced than the cell-background boundary
[Fig. 5(c)]. In these cases, a level-set method will merge the two
contours into a single object. Cell fusions, however, are biolog-
ically impossible in our (and in most) biological contexts. It is
therefore desirable to constrain the topology changes in such a
way as to prevent fusion of contours. It is not clear how this
could be done within the level-set framework. In contrast, it
is possible within the parametric approach to separate objects
in contact by prohibiting contour fusions, while allowing auto-
matic object divisions. This was demonstrated most recently by
the technique of [20], which we discuss in the following.

B. Topological Operators

The technique of ’topological operators’ proposed by [20]
extends the framework of parametric active contours by 1)
allowing contours to split if their deformation leads to a
“bottleneck” geometry (see [20, Fig. 24]), and 2) keeping
contours separated by removing overlapping snake areas (see
[20, Fig. 14]). Both tasks use an efficient grid-based algorithm
to detect contour intersections and can be performed whenever
required during the contour deformation process described in
Section II-A.

Fig. 6. Automatic splitting of the contour associated to a dividing amoeba,
using topological operators [20].

(a)

(b)

Fig. 7. Keeping snakes separate when objects in contact move away from each
other. The three frames are processed as a sequence, from left to right. (a) Using
topological operators [20]; note the incomplete separation of the lower snake
from the upper object. (b) Using intersnake repulsion (Section IV-C).

The ability to split contours allows to automatically handle
the topological change of a dividing cell and independently track
the two daughter cells, as illustrated in Fig. 6.

The ability to restore contour separations by removing over-
laps is useful for objects in contact [20], [13], as this procedure
reduces the likelihood that contours converge toward the bound-
aries of other object (see [13, Fig. 14]).

Unfortunately, though, this method does not guarantee that
the separation of contours occurs at the desired location, namely
the actual interface between objects. When two objects initially
in contact move away from each other, at least one of the snakes
is likely to remain attached to the other object, even though the
two snakes do not strictly overlap [see Fig. 7(a)]. This unde-
sired behavior stems from the fact that the motion of snakes is
independent of the other snakes as long as they do not overlap;
on the other hand, when the snakes do overlap, their boundaries
are modified based solely on the relative contour geometry, thus
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(a) (b) (c)

(d) (e) (f)

Fig. 8. Modified edge map and its intermediaries. (a) Synthetic image of Fig. 7
(third and last frame) and the initial contours obtained from the segmentation of
the middle frame in Fig. 7(b). (b) Original edge mapf = �I . (c) Object mask
I associated to the top snake of (a) (the neighbor of the bottom snake). (d)
Modulation imageI for the bottom snake. (e) Modified edge mapf for the
bottom snake. (f) Modified edge mapf for the top snake.

ignoring all information from the image. In order to simulta-
neously prevent contours from crossing each other and move
neighboring contours toward actual boundaries on the image, it,
therefore, seems desirable to integrate in the same process the
requirement of object separation and the image-driven deforma-
tion scheme.

C. Repulsive Contours

While contours previously evolved independently of each
other, under the sole influence of their own geometry and of
the image, we now wish to integrate a repulsive interaction
between contours into the evolution process. This can be
achieved effectively by a modification of the edge map for each
contour, as we describe next.

In our approach, contours are allowed to move simultane-
ously (i.e., all snakes are processed at each iteration of the dis-
cretization of (2) in Section II-A). For each snake[for ex-
ample, the bottom snake in Fig. 8(a)], we define the “neighbor
snakes” as all other snakes present in a local window centered on
the initial contour [in this example, the only neighbor snake
is the top snake in Fig. 8(a)]. The local window needs only be
chosen large enough to make sure that it contains the new posi-
tion of the object. We then construct a binary object mask
from the regions enclosed by the neighbor snakes [see Fig. 8(c)].
Next, we compute the algebraic distance mapassociated to

, with positive values outside the snakes, and negative values
inside (not shown). We now apply to the function

plotted in Fig. 9, which results in what we call the “modulation
image” [see Fig. 8(d)]. The modulation image

Fig. 9. Modulation functiong used to attenuate the edge map at the vicinity
and inside neighboring snakes.

has pixel values close to 1 at locations that are distant by more
than pixels from the neighbor snakes, and values close to
zero at locations at least pixels deep inside these snakes. (For

, reduces to the complement of the binary image
). Finally, we multiply the original image edge map (for the

synthetic data shown here we use , see Fig. 8(b); for the
real data we use from Section III) by the modulation image

. This results in [see Fig. 8(e)], which can be described
as a “context sensitive” edge map attached to snake.

This new edge map is approximately identical to the orig-
inal edge map [Fig. 8(b)] at distances from the neighbor
snakes,but increasingly attenuated from the original edge map as
one approaches the neighbor snakes, and is almost zero at depths

inside these snakes. Consequently, edges located inside
or in the immediate vicinity of the neighbor snakes are made
less attractive for snake, which is thus encouraged to move in-
stead towardedges locatedoutsideof theneighborsnakes.Acon-
text-sensitive edge map is constructed in the same manner for
each neighbor snake [see Fig. 8(f)], and this edge map penalises
motion toward snake . As a result, snakes now experience a re-
pulsion from other snakes, even if they are not in actual contact.
This effective “buffer zone” between snakes helps to correctly
dissociate contours when two objects in contact move away from
each other, as shown in Fig. 7(b). The width of the buffer zone (or
the range of the “repulsion force”) in pixels is of the order of.
This parameter should be set according to the possible displace-
ment of object boundaries between consecutive frames. For both
the real data analyzed in this paper and the synthetic images of
Figs. 7 and 8, we used .

Our repulsive contour approach places no restrictions on the
number of snakes in the image and does not suffer from in-
creased complexity in the case of multiple objects, in contrast
to the topological operators [20], whose generalization to more
than two objects in contact poses significant difficulties. How-
ever, because the modified edge mapis snake dependent, it
must be recomputed for each individual object. Although this
significantly increases the processing load, the added benefit is
well worth the additional cost in this applicative context where
constraints on computation time are relatively low.

V. RESULTS

A. Summary of the Presented Method

The practical implementation of our method for cell seg-
mentation and tracking can be summarized as follows: for
each image, we first construct the edge mapbased on the
local average deviation, as described in Section III. Then, for
each initial contour present in the image, we compute the
context-sensitive edge map by modulating , as detailed
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 10. Segmentation and tracking of motile cells observed during a 1-min time sequence starting with Fig. 1. (a) Initialization att = 0 s. (b-h) Segmentation
results att = 0 s, 10 s, 20 s, 30 s, 40 s, 50 s, and 60 s. (i) Cell trajectories (during 5 min) superimposed on the first frame. Processing was done on frames separated
by intervals of 1 s.

in Section IV-C. Next, the GVF field for is computed
from (3), where is replaced by . Finally, the contours are
moved according to (2), where is replaced by . To limit
processing time, all contour-specific quantities, such as
and , are computed only in local windows centered on the
considered contours.

The initial contours are defined manually as polygons en-
closing each individual cell on the first image of each temporal
sequence, as in Fig. 10(a). To allow for such a crude initial-
ization and force the convergence of contours toward the cells
that are inside the initial polygons, we set the edge mapto
zero outside these polygons; this is done for the first frame only.
For all following frames, the initial contours are obtained from
the detected contours of the previous frame, thus, automatically
linking objects across frames.

Fig. 10 illustrates a successful application of our method to
the segmentation and tracking of motile cells moving by pseu-
dopod extensions and undergoing frequent intercellular con-
tacts. A more systematic evaluation of our technique is pre-
sented in the following.

B. Validation of Automatic Cell Tracking

In this section, we describe experimental assessments of
our method’s benefits by comparing it with both previous
approaches based on parametric active contours and manually
obtained tracking results.

Our trial data consist of six image sequences obtained from
phase contrast videomicroscopy, totalling nearly 2000 frames.
To confront the key difficulties addressed in this paper, we chose
image sequences in which many cells moved appreciably (i.e.,
over distance at least comparable to their diameter) and fre-
quently interacted with each other (see Fig. 11). We confined
our analysis to cells entirely contained in the image during the
whole sequence (hereafter called “target cells”), thus, ignoring
cells that left from or appeared in the field of view in the course
of the sequence, both situations that our method is not yet de-
signed to address. The total number of target cells in our data
set is 84. In all tests, we monitored the surface of the segmented
cells in each frame and terminated tracking for cells whose com-
puted surface reached unreasonably small or large values. A
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(a) (b) (c)

(d) (e) (f)

Fig. 11. Cell tracking on the six trial sequences. One representative image fragment is shown from each sequence, together with the computed cell trajectories.
The start and end points of each trajectory are marked “s” and “e,” respectively. Positions of cells in the displayed frame are marked with “x.” The number of
frames and “target” cells (see text) for each sequence are as follows: (a) 540 frames, 7 cells; (b) 300 frames, 10 cells; (c) 300 frames, 16 cells; (d) 300frames,
22 cells; (e) 150 frames, 14 cells; and (f) 300 frames, 15 cells. The time interval between consecutive frames in each sequence is 1 s.

useful indicator of the method’s robustness is thus provided by
the number of cells tracked without termination through the en-
tire sequence divided by the total number of target cells. We will
refer to this ratio as “tracking performance.” In order to demon-
strate the improvements in tracking obtained by the approach
proposed here, we tested the following three methods:

• the GVF active contour model [9], [15] with the standard
edge map (method KX);

• our previous method detailed in [13], which uses Canny
edge filtering and hysteresis thresholding to enhance pseu-
dopod detection and relies on topological operators [20] to
enforce contour separations (method Z01);

• the method described in this paper (method Z02).
Table I indicates the tracking performances achieved by

the three methods on each trial sequence (a)–(f). The average
tracking performance of the method Z02 proposed here, as
estimated on our trial data, is 95%, compared to 67% for our
previous method Z01 [13] and 45% for the original GVF snakes
of method KX [9], [15] (Table I, bottom row). The performance
increase from methods KX to Z01, and from methods Z01 to
Z02 are both significant to the level (Student’st-test
for two paired samples).

The large number of tracking failures of methods KX [9],
[15] and Z01 [13] can be traced back in most cases to either
poor detection of pseudopods and the subsequent progressive
breakdown of segmentation, or poor separations of cells in con-
tact. In contrast, the small number of residual tracking failures
of our method Z02 appears to occur in cases where cells interact
so strongly with each other that no boundary is visible between
cells. To handle these situations, it might be necessary in the
future to include constraints of temporal (in addition to spatial)
regularity into the segmentation process (see Section VI-B).

TABLE I
TRACKING PERFORMANCECOMPARISON OFTHREE PARAMETRIC ACTIVE

CONTOUR METHODS. THE TABULATED PERCENTAGESARE THE ‘TRACKING

PERFORMANCE’ RATIOS DEFINED IN THE TEXT. THE SIX TOPROWSINDICATE

RESULTS FOREACH SEQUENCE. THE BOTTOM ROW INDICATES AVERAGES

(AVG.) AND STANDARD DEVIATIONS (STD.) OVER ALL SEQUENCES

In addition to evaluating the quantity of data extracted by our
tracking method, it is also useful to assess the quality of these
data. To do so, we compared the automatically computed cell
positions to a manually obtained ground-truth. For each of the
six sequences, four users, were asked to track
the positions of a cell by pointing on the perceived cell cen-
ters on consecutive frames. (To limit the manual effort, the
sequence of frames were decimated by a factor of ten, still al-
lowing comfortable visual tracking of cellular identity.) A set
of reference positions can then be computed by averaging the
manually obtained positions among users. Instead of computing
a single reference set by averaging all four, we performed a
“leave-one-out” analysis. Therefore, we define four sets of ref-
erence points obtained by excluding each user

in turn from the averaging. This allows us to compare both
the automatically computed positions (obtained as the mass
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centers of the segmented regions) and the manual positions of
each user to the same reference points . For each user

, each image and each target cell, thus, we compute
the position error of the automatic tracking
and the position error of the manual tracking
method.

Table II indicates in nonbold numbers the mean and standard
deviation of (respectively, ) for individual trial se-
quences (a)–(f) and individual references (respectively users).
Bold numbers on every fifth row indicate averages over the four
references/users, while the last five rows indicate averages over
all sequences. With both manual and automatic tracking, the po-
sition errors are small compared to the size of the cells, which
have an average effective diameter of roughly 40 pixels. For all
sequences, the average “automatic” error is smaller than
the average manual error of most users (compare non-
bold numbers in columns 3 and 5 of Table II), and the average
automatic error is always smaller than the average manual error
(see values for the “average user”, obtained by averaging over
all 4 users). Averaged over all trial sequences, the mean posi-
tion errors of users , , and are, respectively, 3.97,
2.45, 3.23, and 3.56 pixels. The errors of the automatic method,
determined using the same references as for the manual errors
are slightly, but significantly smaller than those of users,
and (t-test for two paired samples: , ,

, respectively; relevant numbers are in columns 3 and 5
in the four top rows of the last group of five rows). The small un-
favorable difference with user is only marginally significant
( ). The dispersion of errors of the automatic method,
as reflected by the standard deviations, does not differ signifi-
cantly from that of manual errors (compare columns 4 and 5)
except for user , who has greater error dispersion.

From these results, the automatic tracking can be considered
to be at least as accurate, if not more accurate, than manual
tracking. The small dispersion of the means and standard de-
viations of among the four references (as compared to that
of among users), indicates that the reference positions are
relatively robust to permutations of the users, therefore, these
reference positions are likely to be good approximations of the
true cell positions.

The position errors of the automatic method cannot be at-
tributed to individual user errors and instead reflect imperfect
segmentations. As previously mentioned, these errors are largest
when cells are in strong interaction and the boundary between
them becomes invisible. A significant further reduction in posi-
tioning error could be achieved by improving segmentation for
these situations (see Section VI-B).

C. Applications

The segmentation and tracking method presented here is de-
signed to allow the quantitative analysis of cellular shape and
motion from videomicroscopy data. We have applied our tool in
a biological research project [21] to compare the motility of dif-
ferent strains ofE. histolytica. The automatic tracking of a large
number of cells was instrumental in enabling statistically sig-
nificant comparisons of motility between strains despite the im-
portant dispersion of the motility phenotype within each strain

TABLE II
COMPARISON OFAUTOMATIC AND MANUAL TRACKING. TABULATED

VALUES ARE THE AVERAGE (AVG.) AND STANDARD DEVIATION (STD.)
OF POSITION ERRORSFROM AUTOMATIC (�r ) OR MANUAL (�r )
TRACKING COMPARED TO THEREFERENCEPOSITIONS. FOR A GIVEN

USER, THE REFERENCEPOSITIONSARE OBTAINED BY AVERAGING THE

POSITIONS DEFINED BY THE OTHER THREE USERS. AVERAGES OVER

THE FOUR REFERENCES/USERSARE GIVEN IN BOLD ON EVERY FIFTH

ROW. THE LAST FIVE ROWS INDICATE AVERAGES OVER ALL TRIAL

SEQUENCES. ALL VALUES ARE IN PIXELS

[21]. In future studies, we will apply our method to quantita-
tively analyze the dynamics of cellular morphology. The results
of such analyzes should help in selecting molecules targeting the
parasite’s potential for invasion and paghocytosis, and thereby
reducing its pathogenicity.

VI. CONCLUSION

A. Summary

We have presented a quasi-automatic method to track and
segment highly deformable cells through large image sequences
based on the framework of parametric active contours [9] (Sec-
tion II-A). Our method uses the GVF model [15] (Section II-B)
to increase segmentation robustness, topological operators [20]
(Section IV-B) to handle cell divisions, and introduces the new
concept of repulsive interactions between contours to handle
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cell contacts. The proposed techniques largely overcome two
main shortcomings of previously reported approaches in their
application to cellular imaging, namely their inability to cor-
rectly segment pseudopods and cells in contact. To achieve cor-
rect segmentation of pseudopods, we used an edge map that
takes advantage of the relative homogeneity of the background
to better localize weak object boundaries (Section III). To main-
tain contour separation between objects in contact, and allow
correct localization of this separation at the cell-cell interface,
we integrated a repulsive coupling between contours into the en-
ergy minimization scheme through a modification of the local
edge map (Section IV-C). The ability of our method to substan-
tially improve cell tracking was demonstrated experimentally
on a representative data set (Section V-B).

Our approach will be useful to quantitatively study the dy-
namics of various migrating cells such as amoeba, fibroblasts,
leukocytes, or tumor cells. It could thereby find applications in
the fields of tissue repair, inflammatory response and cancer, as
well as for studies of non pathogenic processes such as embry-
onic development.

B. Future Work

Additional efforts will be required to overcome some of the
limitations of the present technique.

• Our method only tracks the cells that were manually ini-
tialized in the first frame, and is unable to handle objects
entering the scene later in the sequence. In the applica-
tions of our method, we bypassed this issue at the expense
of the extracted amount of data, by confining our study
to cells remaining in the field of view throughout the se-
quence. To take full advantage of the whole data set, the
proposed framework should be supplemented by an auto-
matic initialization scheme at the borders of the field of
view, aiming at detecting new objects. This might be done
by a limited use of the level-set technique [17].

• The integration of region statistics into an active contour
approach (e.g., [22]) potentially offers higher robustness
to image noise and may be applicable to a wider range of
image modalities.

• Occasionally, cells interact so closely that any boundary
between them becomes invisible, and in experiments re-
quiring a large density of cells, objects may be in such
close contact that the background can no longer be used for
the segmentation. To handle these cases, it may be neces-
sary to impose temporal continuity constraints to establish
object identities and boundaries. This might be achieved
within the framework of deformable models [4] by consid-
ering the image sequence as a three-dimensional
data set.
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