Superconducting MgB₂ films via Precursor Post-Processing Approach

M. Paranthaman, C. Cantoni, H.Y. Zhai, H.M. Christen, T. Aytug, S. Sathyamurthy, E.D. Specht, J.R. Thompson, D.H. Lowndes, H. R. Kerchner, and D.K. Christen Oak Ridge National Laboratory, Oak Ridge, TN 37831-6100

(Submitted to Applied Physics Letters 03/23/2001)

Superconducting MgB₂ films with $T_c = 38.6$ K were prepared using a precursor-deposition, *ex-situ* post-processing approach. Precursor films of boron, ~0.5mm thick, were deposited onto Al₂O₃ (102) substrates by e-beam evaporation; a post-anneal at 890°C in the presence of bulk MgB₂ and Mg metal produced highly crystalline MgB₂ films. X-ray diffraction indicated that the films exhibit some degree of *c*-axis alignment, but are randomly oriented in-plane. Transport current measurements of the superconducting properties show high values of the critical current density and yield an irreversibility line that exceeds that determined by magnetic measurements on bulk polycrystalline materials.

PACS #: 74.70.Ad, 74.76.Db, 74.25.Fy, 74.60.Jg

The discovery of superconductivity at 39 K in MgB₂ by Akimitsu et al.¹ has generated intense, worldwide interest. Several groups have rapidly reproduced the results in bulk, polycrystalline MgB₂ and are characterizing the material in detail. Bud'ko et al.² demonstrated a boron isotope effect in $Mg^{10}B_2$ with an increase of T_c to 40.2 K and concluded that the compound behaves as a phonon-mediated BCS superconductor. Larbalestier et al.³ demonstrated a strongly linked current flow in hot pressed MgB₂ disks. The critical current, determined from magnetization curves as a function of behavior temperature. strongly resembles critical current in low temperature superconductors (LTS) such as Nb₃Sn. Magnetically determined critical current densities for porous sintered MgB₂ samples were found to be on the order of 10^5 A/cm² at 6 K.⁴ These results indicate that MgB₂ grain boundaries can transmit rather large supercurrents. Dense MgB₂ wires were prepared by Canfield et al.⁵ by exposing boron filaments to Mg vapor. The resulting wires had a diameter of 160 µm and were 80 % full density. High temporal stability of supercurrents in bulk MgB₂ samples have been observed in studies of flux creep, where the creep rate $S = -dln(J)/dln(t) \le 0.02$ in fields of 1 Tesla, for temperatures up to $T_c/2$.⁶ Compared with high T_c cuprates, the decay rate S is smaller by These results point to possible utility of MgB₂ as a factor of 3-10 or more. superconducting wires or tape coatings for conductor applications. According to the Mg-B binary phase diagram,⁷ MgB₂ decomposes peritectically above 650 °C and has no exposed liquid-solidus surface. This behavior will restrict approaches to single crystal growth. Pulsed laser deposition techniques have already been used to grow MgB₂ films on various substrates followed by an ex-situ⁸⁻¹⁰ or in-situ¹¹ anneal. The T_c varies from 12 to 39 K in these reports. Here, we report our successful demonstration of the growth of

superconducting MgB_2 films using electron beam evaporated B precursor films followed by appropriate post-annealing. We also report results of transport property measurements on these ex-situ grown MgB_2 films.

Electron beam evaporation was used to deposit B films directly on AbO_3 (102) single crystal substrates with dimensions of 0.35 cm x 1.2 cm at room temperature at a base pressure of 1 x 10^{-6} Torr. The deposition rate for B was 10-12 Å/sec with the operating pressure of 10^{-5} Torr, and the final thickness was 5000 Å to 6000 Å. The shinv amorphous B films were sandwiched between cold-pressed MgB₂ pellets, along with excess Mg turnings, and packed inside a crimped Ta cylinder. The polycrystalline MgB₂ powders were prepared by a solid-state reaction of stoichiometric Mg turnings and B in a sealed Ta cylinder at 890°C for 2 hours. The Ta cylinder containing the precursor film was then introduced into a quartz tube, evacuated to 1×10^{-5} Torr, and sealed. The sealed quartz capsule was placed inside a box furnace, where the samples were heated rapidly to 600°C, and maintained there for 5 minutes. Then the furnace temperature was rapidly increased to 890°C, held at 890°C for 10-20 minutes, and then furnace-cooled to room temperature. The as-formed purplish gray film had a very low two-probe resistance of < The MgB₂ films were analyzed by X-ray diffraction. Hitachi S-4100 field 1 Ohm. emission scanning electron microscope was used to take images with a beam voltage of 15 kV. The thickness of the films was determined by Alpha Step profilometer scans. T_c and J_c were measured using a standard four-probe method, at a criterion of 1 μ V/cm to define J_c. During the J_c measurements, a magnetic field (H) was applied perpendicular to the film, and the irreversibility field was defined according to the emerging voltagecurrent power-law characteristic, V α I².

Typical θ -2 θ scans for MgB₂ films on Al₂O₃ single crystal substrates are compared with polycrystalline MgB₂ powders in Figure 1. The strong MgB₂ (001) and (002) signal revealed the presence of a c-axis aligned film. The full width at half maximum (FWHM) value for MgB₂ (002) omega scans was 4.45 °. However, the MgB₂ (101) pole figure indicated that the film has random in-plane texture. The observation of random in-plane texture in MgB_2 films could be due to the initial reaction of Mg vapors with B films at the free surface of the film. This causes the bulk crystallization of MgB_2 to occur rather than the epitaxial nucleation of MgB_2 at the substrate/film interface. Figure 2 shows the microstructure of MgB₂ films determined by SEM. The films have a dense microstructure with large grains present. Both c-axis and random grains are apparently present. The temperature-dependent resistivity near T_c is shown in the inset of Fig. 1 for a 5700 Å thick MgB₂ film, which had a room temperature resistivity near 12 µOhm-cm. The MgB₂ films had a sharp T_c (zero resistance) of 38.0 K with a Δ T_c of 0.3 K and a ratio of the room temperature resistivity to the residual resistivity above T_c of about 2. The resistivity decreased linearly with temperature indicating that the MgB_2 film is metallic. We have also produced MgB₂ films with a high T_c (zero resistance) of 38.6 K with a T_c onset of 39.0 K. At present, MgB_2 film with a T_c of 32.5 K was patterned to 250 μm bridge to perform the J_c measurements. The field dependent transport critical current density, J for a 6300 Å thick MgB₂ film is shown in Figure 3. A transport J of 2 x 10^6 A/cm² at 20 K was obtained in zero field, while at 1 Tesla, J decreased to 2.5 x 10⁵ A/cm^2 . Figure 2 inset shows the temperature dependence J_c in self field. At 5 K, a transport J_c of 4 x 10⁶ A/cm² at self-field was obtained, although this film had a T_c zero of 32.5 K; this level of current conduction is very comparable to that observed magnetically in isolated grains of MgB₂, for the same conditions. The temperature dependence of irreversibility field B_{irr} obtained from transport measurements on MgB₂ films, is shown in Figure 4. These data are compared with those obtained from magnetization measurements⁶ on polycrystalline sintered MgB₂ pellets. These data are quite comparable down to 26 K. At low temperatures, there is some enhancement in the film's B_{irr}, indicating that there is an improvement in flux pinning properties in these MgB₂ films. The temperature dependence is well described by B_{irr} α (1-T/T_c)^{3/2} which is depicted by the solid line fitted to the experimental data. For comparison, the *H*_{c2} data⁵ for MgB₂ are also plotted (solid line). Further improvements in B_{rr} may be possible for epitaxial films and efforts are underway to produce epitaxial films on lattice matched substrates using either in-situ or ex-situ methods.

In summary, we have prepared superconducting MgB₂ films with a sharp T_c of 38.6 K on Al₂O₃ single crystal substrates using electron beam evaporated B films followed by post-annealing. Detailed X-ray diffraction studies indicate that the film is polycrystalline with some degree of c-axis texture. A transport J_c of 2 x 10^6 A/cm² was obtained on MgB₂ films at 20 K. The irreversibility field, B_{irr} obtained from the transport measurements on MgB₂ films indicate that there may be some improvement in flux pinning at lower temperatures.

ACKNOWLEDGEMENTS

Thanks are due to Pam Fleming for evaporating B films. This work was supported by the U.S. Department of Energy, Division of Materials Sciences, Office of Science, Office of Power Technologies-Superconductivity Program, Office of Energy Efficiency and Renewable Energy. The research was performed at the Oak Ridge National Laboratory, managed by U.T.-Battelle, LLC for the USDOE under contract DE-AC05-00OR22725.

REFERENCES

- ¹J. Akimitsu, Symposium on transition metal oxides, Sendai, January 10, 2001; J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature **410**, 63 (2001).
- ²S.L. Bud'ko, G. Lapertot, C. Petrovic, C.E. Cunningham, N. Anderson, and P.C. Canfield, Phys. Rev. Lett. **86**, 1877 (2001).
- ³D.C. Larbalestier, L.D. Cooley, M.O. Rikel, A.A. Polyanskii, J.Y. Jiang, S. Patnaik, X.Y. Cai, D.M. Feldmann, S.A. Gurevich, A.A. Squitieri, M.T. Naus, C.B. Eom, E.E. Hellstrom, R.J. Cava, K.E. Regan, N. Rogado, M.A. Hayward, T. He, J.S. Slusky, P. Khalifah, K. Inumara, and M. Hass, Nature **410**, 186 (2001).
- ⁴D.K. Finnemore, J.E. Ostenson, S.L. Bud'ko, G. Lapertot, and P.C. Canfield, Phys. Rev. Lett. **86**, 2420 (2001).
- ⁵P.C. Canfield, D.K. Finnemore, S.L. Bud'ko, J.E. Ostenson, G. Lapertot, C.E. Cunningham, and C. Petrovic, Phys. Rev. Lett. **86**, 2423 (2001).
- ⁶J.R. Thompson, M. Paranthaman, D.K. Christen, K.D. Sorge, H.J. Kim, and J.G. Ossandon, submitted to Supercond. Sci. and Tech. (March 23, 2001).
- ⁷Binary Alloy Phase Diagrams, Second Edition, Edited by T. Massalski, ASM International, 1990.
- ⁸A. Brinkman, D. Mijatovic, G. Rijnders, V. Leca, H.J.H. Smilde, I. Oomen, A.A. Golubov, F. Roesthuis, S. Harkema, H. Hilgenkamp, D.H.A. Blank, and H. Rogalla, cond-mat/0102 (2001).
- ⁹W.N. Kang, H-J. Kim, E-M. Choi, C.U. Jung, S.I. Lee, cond-mat/0103179 (2001).
- ¹⁰C.B. Eom, M.K. Lee, J.H. Choi, L. Belenky, S. Patnaik, A.A. Polyanskii, E.E. Hellstrom, D.C. Larbalestier, N. Rogado, K.A. Regan, M.A. Hayward, T. He, J.S. Slusky, K. Inumaru, M.K. Haas, and R.J. Cava, cond-mat/0103425 (2001) (submitted to Nature).
- ¹¹H.Y. Zhai, H.M. Christen, C. Cantoni, M. Paranthaman, B.C. Sales, C. Rouleau, D.K. Christen, and D.H. Lowndes, APS Meeting, Seattle, Washington, March 12, 2001; H.M. Christen, H.Y. Zhai, C. Cantoni, M. Paranthaman, B.C. Sales, C. Rouleau, D.P. Norton, D.K. Christen, and D.H. Lowndes, submitted to Physica C (March 22, 2001).

FIGURE CAPTIONS

- Figure 1 A typical θ -2 θ scans for (a) MgB₂ film on Al₂O₃ (102) substrate, and (b) powdered MgB₂ material. The MgB₂ film has a preferred c-axis orientation. Inset is the expanded version of the resistivity plot. MgB₂ films had a T_c (zero resistance) of 38.0 K and a T_c onset of 38.3 K.
- Figure 2 SEM micrograph for 6300 Å thick MgB₂ film on AbO₃ substrate, indicating the presence of a granular microstructure.
- Figure 3 The field dependence of the transport critical current density, J for a 6300 Å thick MgB₂ film on A_2O_3 substrate at 20 K. Inset is the temperature dependence J_c for the same film at H = 0.
- Figure 4 The temperature dependence of the irreversibility field, B_{irr} obtained from a transport measurement for MgB₂ film on Ab₂O₃ substrate (closed triangles) are compared with those obtained from the polycrystalline 61% dense MgB₂ pellets (closed circles) (obtained from reference 6) and H_{c2} data for bulk Mg¹⁰B₂ sample (solid line) (obtained from reference 4)

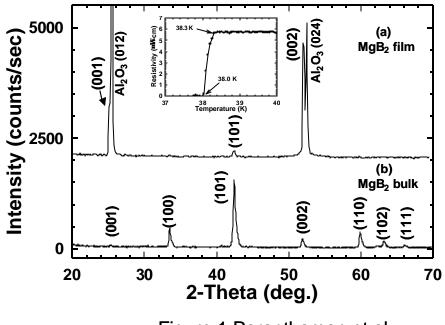


Figure 1 Paranthaman et al

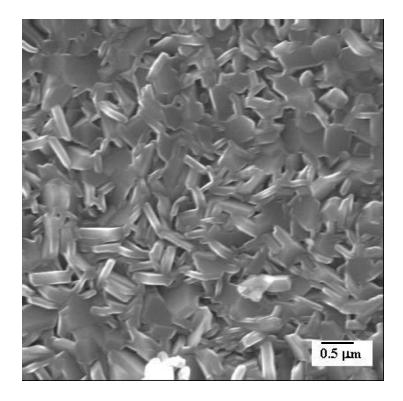
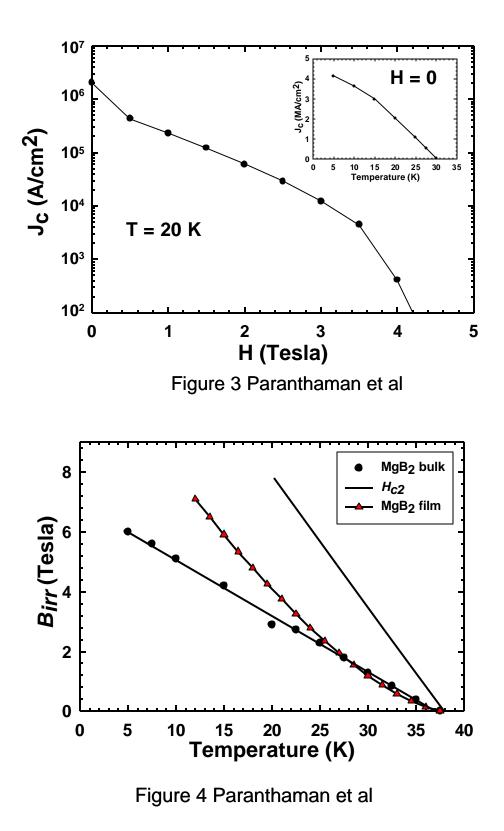



Figure 2 Paranthaman et al

