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Abstract: This paper examines the effect of introducing positive loading factors into
insurance premia, in insurance markets consisting of groups of individuals in different
risk categories. It is shown that that such loading factors may have far-reaching effects
on insurance market equilibria. 

INTRODUCTION

he existence and nature of equilibria reached in insurance markets
consisting of groups of individuals in different risk categories has

attracted much attention in the literature.1 At the same time, there has been
interest in the literature in the functional forms of the loading factor
component in insurance premia.2 Surprisingly, the relation between insur-
ance loading factors and the type of equilibria in insurance markets has not
been examined in the literature. It is the purpose of this paper show that
loading factors may have far-reaching effects on insurance market
equilibria.

The point is made by constructing a simplified model of an insurance
market. The equilibrium in this market is then examined both in the
absence and in the presence of a simple and very commonly used type of
loading factor. Specifically, it is assumed that there are two types of risk-
averse consumers—high and low-risk—and that these consumers can
either fully insure their risk or remain fully exposed to it. Insurance
coverage is indivisible. The market is competitive. Under these assump-
tions and in the absence of loading factors, the market will be characterized
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by one of two equilibria. The first is a pooling equilibrium, in which all
consumers buy insurance. Because the price of insurance is competitively
determined and equal for both types of individuals, this type of equilib-
rium implies that the low-risk individuals are subsidizing the price paid
for insurance by the high-risk individuals. The second equilibrium is a
separating equilibrium in which the high-risk individuals buy insurance
whereas the low-risks do not. This occurs if the low-risk individuals are
not sufficiently risk-averse to be induced to pay for insurance whose price
partially depends on the riskiness of the high-risk individuals. In the
absence of loading factors there will be no equilibrium in which no insur-
ance is bought.

Once loading factors are introduced, however, potential market out-
comes are significantly altered. In addition to the two types of equilibria
described above, an equilibrium in which no insurance is bought becomes
possible. This occurs if the loading factor exceeds the risk premium that
the high-risk individuals are prepared to pay. Using simulations, and a
specific numerical example, we show that large groups of potential buyers
may refrain from buying insurance as a result of small loading factors.

THE MODEL

Consider a population in which every individual has initial wealth W
and utility function U(Z), where Z is final wealth. Individuals are risk-
averse, i.e., U’(Z) > 0 and U’’(Z) < 0, and they maximize expected utility. A
proportion α of this population consists of high-risk (h) individuals, who
stand to incur a loss equal to X with a probability πh. The remaining
individuals, who make up 1 – α of the population, are low-risk (l), and these
individuals stand to lose X with a probability πh, where πh >πl. Individuals’
risks are independent of each other. If an individual does not incur a loss,
his wealth remains unchanged, Z = W.

An individual can either remain exposed to the risk or buy full insur-
ance coverage against it.3 However, while each individual knows his own
type, this information is not available to insurance companies, because the
cost of risk classification is prohibitively high. Insurance companies charge
premia that reflect both expected claims and positive loading. The loading
covers commissions, administrative costs, and settlement expenses, as well
as normal profit.4 Thus, given the expected value of a claim, A, the premium
charged is f(A) such that f ′(A) > 1. In this paper we assume that f(A) = (1 +
λ)A where λ(≥ 0) is a constant loading factor5,6, whose value is determined
by competitive market forces,7 and investigate the relation between market
equilibrium and λ. As mentioned above, we find that there are three
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possible outcomes, depending on the values of α and λ. In the event that λ
= 0, however, the three outcomes collapse into two.

NO LOADING FACTOR: λ = 0

A Separating Equilibrium

A separating equilibrium is one in which different individuals, in this
case both the high and low-risks, behave differently. Thus, there are two
potential separating equilibria. In the first, high-risk individuals insure and
low-risk individuals do not. In the second, low-risk individuals insure and
high-risk individuals do not. However, as is intuitive and shown below,
only the first of these equilibria is viable. To see this, note that if only high-
risks insure, the insurance premium is

.

Similarly, if only low-risks insure, the insurance premium is

.

Clearly, an equilibrium in which only low-risks insure is not viable,

since if the low-risks are prepared to insure at a premium equal to , then,

a fortiori, so will the high-risks. Given a premium equal to , the benefit
of insurance to high-risk individuals is

.

Also, given a premium equal to  the benefit of insurance to low-risk
individuals is

.

Hence, since 

,
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a separating equilibrium, in which the low-risks insure but the high-risks
do not, is not possible. Moreover, if only the high-risks insure, and the
insurance premium is, therefore, , the net benefit of insurance to a high-
risk individual is 

,

which is positive by the concavity of U. Thus, high-risks insure even if low-

risks do not. Note that for all values of α.

A Pooling Equilibrium

A pooling equilibrium is one in which all individuals behave in the
same way. Thus, there are, potentially, two such equilibria: first, an equi-
librium in which both high and low-risk individuals purchase the insur-
ance offered, and second, an equilibrium in which both high and low-risk
individuals do not purchase the insurance offered. In a pooling equilibrium
in which all individuals insure, the expected claim per policy is given by

, implying that the insurance premium is

.

In deciding whether or not to purchase insurance, each individual consid-
ers his expected utility with and without insurance. In the absence of
insurance, the final wealth of a low-risk individual is W with probability

, and W – X with probability . If he does buy insurance, his final

wealth is  with certainty. In a pooling equilibrium, therefore, the net

benefit of buying insurance for an individual in risk category i, (i = l, h) is

, where

.

An individual in group i buys insurance if and only if . Hence,
since 

,

πhX
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this pooling equilibrium exists if and only if

. 

It transpires that whether or not a pooling equilibrium exists depends
on α and on the utility function of the individuals making up the popula-
tion.8 Note that if α = 0, then 

,

because U is concave. Thus, for a sufficiently small α, a pooling equilibrium
will exist. Clearly,

,

i.e., an increase in α reduces . An increase in the number of high-risk

individuals raises the premium charged in a pooling equilibrium. This
makes the buying of insurance less attractive to low-risk individuals. There

may therefore exist a value of α, α∗ (defined by ) such that a pooling

equilibrium exists for  but only a separating equilibrium exists for

. Of course, the value of α* is a function of W, X, πh, and πl, as well
as the risk aversion of a representative individual. It is useful to illustrate
this with a specific utility function and a simple numerical example. Let
the utility function be 

where r is a constant and equal to relative risk aversion, 1 > r ≥ 0. Let W =
10, X = 9, πh = 0.2, and πl = 0.1. Then the premium charged in a pooling
equilibrium in which everyone insures is

,
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so that

.

The value of α that just dissuades high-risk individuals from buying
insurance is therefore given by

.

The reader can gauge the impact of risk aversion on the possibility of
a pooling equilibrium from Table 1 below. If an individual’s relative risk
aversion exceeds 0.854, then, given the above parameter values, a pooling
equilibrium will emerge, regardless of the value of α. Thus, if r ≥ 0.854, then
even if there exist only a negligible number of low-risk individuals, so that
the insurance premium reflects only high-risk individuals, the low-risk
individuals will nonetheless buy insurance.

As is clear from Table 1, as r declines, the tolerance of the low-risk
individuals to α also declines. Thus, for example, while for r = 0.7, α must
be less than 0.743 to ensure a pooling equilibrium, for r = 0.2, α must be
less than 0.156 to ensure a pooling equilibrium.

Table 1. The relation between r and α

r α

0.854 1.000

0.800 0.905

0.700 0.743

0.600 0.597

0.500 0.468

0.400 0.352

0.300 0.248

0.200 0.156

0.100 0.075

Bp
l 10 0.9α 0.9+( )–( )1 r– 0.9 10( )1 r–

– 0.1 0≥–=

α∗ 1.111 1 ln 9.0 0.1 2.3026r( )exp+( )– 2.3026r+
1.0– r+

------------------------------------------------------------------------------------------------- 
 exp– 10.111+=



58 EDEN ET AL.
A POSITIVE LOADING FACTOR: λ > 0

A Separating Equilibrium

Once again there is only one viable separating equilibrium—i.e., high-
risk individuals insure and low-risk individuals do not. If only high-risks
insure, the insurance premium is

.

Given a premium equal to , the benefit of insurance to high-risk
individuals is

.

However, even if λ > 0, then, the concavity of the utility function

ensures that for some parameters combinations, . A separating

equilibrium can emerge.9

However, since 

,

a sufficiently large λ will reduce all demand for insurance to zero. The
reader may gauge the relation between λ and risk aversion by considering
our above functional and numerical example. In this case

so that

.

The value of λ that just dissuades high-risk individuals from buying
insurance is therefore given by 
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.

To give the reader a sense of the magnitudes involved, λ is given in
Table 2 below, for different values of r.10

As is clear from Table 2, as r declines, the tolerance of the high-risk
individuals to λ also declines. Thus, for example, while for r = 0.7, λ must
be less than 0.642 to ensure that this separating equilibrium is viable, for r
= 0.1, λ must be less than 0.0688 to ensure a separating equilibrium.

Pooling Equilibria

As the loading factor, λ, becomes larger, buying insurance is less
attractive for both categories. Thus, there are two possible pooling equilib-
ria. In the first, no insurance is bought by either group, and in the second
both groups by insurance.

No insurance bought. In this case, the parameters are such that even
the high-risks do not buy insurance. Thus, if λ >λ*, as defined above, a
pooling equilibrium emerges, in which no insurance is bought.

Both groups buy insurance. In this case, the parameters are such that
risk aversion is sufficiently high to cause even low-risks to buy insurance,
despite paying a premium that is affected by the high-risks and despite the
loading factor. To ensure that both groups buy insurance we require that
the net benefit of the low-risks is non-negative—i.e., that

,

Table 2. The relation between r and λ*

r λ

0.900 0.9067
0.800 0.7693
0.700 0.6420
0.600 0.5241
0.500 0.4157
0.400 0.3163
0.300 0.2256
0.200 0.1431
0.100 0.0688

λ∗ .555 56 ln 8.0 0.2 2.3026r( )exp+( )– 2.3026r+
1.0– r+

------------------------------------------------------------------------------------------------- 
 

·
exp– 4.5556+=

Bp
l U W 1 λ–( ) απh 1 α–( )πl+( )X–[ ] 1 πl–( )U W[ ] πlU W X–[ ] 0≥––=
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since the insurance premium in this case is

.

Once again, the critical values of the parameters α and λ are functions
of W, X, πh, and πl, as well as the risk aversion of a representative individual.
To get further insight, we revert to the above-specified utility function and
numerical example. The premium in this case is 

.11

To obtain a pooling equilibrium we therefore require that

,

i.e., that 

.

The reader may find it of interest to examine the tradeoff between α and r
in deterring the low-risks from insuring.

The above table suggests that even a small loading factor may have a
large impact on the type of equilibrium reached: In order to generate a
pooling equilibrium in which all individuals buy insurance, λ must be
smaller than λ*. Thus, for example, if 10 percent of the consumers are high-
risks, insurance will not be bought by the other 90 percent , for r = 0,
regardless of λ. Moreover, even if r = 0.3, no insurance will be bought by
the low-risks, unless λ < 0.136. A loading factor of 15 percent , say, would

Table 3. λ* for combinations of α and r

α\r 0.1 0.3 0.5 0.7 0.9

0.1 0.000 0.135 0.334 0.584 0.896

0.3 0.000 0.000 0.129 0.340 0.605

0.5 0.000 0.000 0.000 0.162 0.391

0.7 0.000 0.000 0.000 0.000 0.228

0.9 0.000 0.000 0.000 0.000 0.000

Pp 1 λ+( ) απh 1 α–( )πl+( )[ ]X=

Pp 0.9 1 λ+( ) 1 α+( )=

W Pp–( )1 r– 1 πl–( ) W( )1 r–
– πl W X–( )1 r– 0≥–

10 0.9 1 λ+( ) 1.7( )1 r–
– .9 101 r–×–[ ] 0≥
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act to exclude 90 percent of the potential market. This should be compared
with the earlier result, that in the absence of loading costs, all individuals
will insure for these parameters’ value, if r > 0.075.

CONCLUSION

This paper demonstrates that the incorporation of loading factors into
the analysis of insurance market equilibria may yield interesting and
potentially important results. The results presented here are based on a
particular, though commonly used, functional form for the loading factor.
They suggest that further investigation of the relationship between the type
and existence of equilibria in insurance markets is in order.

NOTES

1 The seminal works in this area are Rothschild and Stiglitz (1976) and Wilson (1977).
2 See Pitkanen (1975) and Kahane (1979) for early discussions of this issue. For a more recent
approach, see, for example, Taylor (1994).
3 No partial insurance is permitted in this model.
4 See Kahane (1979).
5 See Pitkanen (1975). Gollier (1996) also refers to this form in discussing the standard in the
literature.
6 Proportional loading factors are often used by insurance companies for several reasons. First,
this is a simple and straightforward pricing method. Second, it corresponds to the cost struc-
ture of the insurance company. Commissions, which are the main costs that the loading factor
must cover, are generally determined as a fraction of the premium. Third, this pricing method
enables the insurers to publish a price list of tariffs, in which the required premium is ex-
pressed as a percentage of the insured sum. Fourth, it enables insurance companies to decen-
tralize the underwriting decisions. And fifth, it avoids the need to negotiate with the customer
on each ordinary policy.
7 Thus λ is such that insurance firms cover their costs and earn normal profits.
8 Remember that all individuals have the same utility function.
9 This will occur if the risk facing the low-risk is sufficiently low to cause them to reject
insurance that is (partially) based on the risk facing the high-risk group.
10 The value of r that dissuades high-risk individuals from buying insurance, even for λ = 0, =
is 0.4739.
11 Note that, in general, λ and α do not enter the insurance premium symmetrically. The fact
that they do so here is a coincidence owing to the parameter values chosen.
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