
Eliah G. Overbey- Doctor of Philosophy
- Professor (Assistant) at University of Austin (UATX)
Eliah G. Overbey
- Doctor of Philosophy
- Professor (Assistant) at University of Austin (UATX)
About
54
Publications
11,792
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
610
Citations
Current institution
University of Austin (UATX)
Current position
- Professor (Assistant)
Additional affiliations
September 2024 - present
Education
September 2015 - March 2021
September 2011 - June 2015
Publications
Publications (54)
Common and rare alleles are now being annotated across millions of human genomes, and omics technologies are increasingly being used to develop health and treatment recommendations. However, these alleles have not yet been systematically characterized relative to aerospace medicine. Here, we review published alleles naturally found in human cohorts...
Organismal adaptations to spaceflight have been characterized at the molecular level in model organisms, including Drosophila and C. elegans. Here, we extend molecular work to energy metabolism and sex hormone signaling in mice and humans. We found spaceflight induced changes in insulin and estrogen signaling in rodents and humans. Murine changes w...
The recent acceleration of commercial, private, and multi-national spaceflight has created an unprecedented level of activity in low Earth orbit (LEO), concomitant with the highest-ever number of crewed missions entering space and preparations for exploration-class (>1 year) missions. Such rapid advancement into space from many new companies, count...
It is now widely recognised that the environment in space activates a diverse set of genes involved in regulating fundamental cellular pathways. This includes the activation of genes associated with blood homeostasis and erythropoiesis, with a particular emphasis on those involved in globin chain production. Haemoglobin biology provides an intrigui...
As spaceflight becomes more common with commercial crews, blood-based measures of crew health can guide both astronaut biomedicine and countermeasures. By profiling plasma proteins, metabolites, and extracellular vesicles/particles (EVPs) from the SpaceX Inspiration4 crew, we generated “spaceflight secretome profiles,” which showed significant diff...
Our previous research revealed a key microRNA signature that is associated with spaceflight that can be used as a biomarker and to develop countermeasure treatments to mitigate the damage caused by space radiation. Here, we expand on this work to determine the biological factors rescued by the countermeasure treatment. We performed RNA-sequencing a...
Microgravity is associated with immunological dysfunction, though the mechanisms are poorly understood. Here, using single-cell analysis of human peripheral blood mononuclear cells (PBMCs) exposed to short term (25 hours) simulated microgravity, we characterize altered genes and pathways at basal and stimulated states with a Toll-like Receptor-7/8...
Spaceflight can change metabolic, immunological, and biological homeostasis and cause skin rashes and irritation, yet the molecular basis remains unclear. To investigate the impact of short-duration spaceflight on the skin, we conducted skin biopsies on the Inspiration4 crew members before (L-44) and after (R + 1) flight. Leveraging multi-omics ass...
The SpaceX Inspiration4 mission provided a unique opportunity to study the impact of spaceflight on the human body. Biospecimen samples were collected from four crew members longitudinally before (Launch: L-92, L-44, L-3 days), during (Flight Day: FD1, FD2, FD3), and after (Return: R + 1, R + 45, R + 82, R + 194 days) spaceflight, spanning a total...
The advent of civilian spaceflight challenges scientists to precisely describe the effects of spaceflight on human physiology, particularly at the molecular and cellular level. Newer, nanopore-based sequencing technologies can quantitatively map changes in chemical structure and expression at single molecule resolution across entire isoforms. We pe...
Missions into Deep Space are planned this decade. Yet the health consequences of exposure to microgravity and galactic cosmic radiation (GCR) over years-long missions on indispensable visceral organs such as the kidney are largely unexplored. We performed biomolecular (epigenomic, transcriptomic, proteomic, epiproteomic, metabolomic, metagenomic),...
Spaceflight induces an immune response in astronauts. To better characterize this effect, we generated single-cell, multi-ome, cell-free RNA (cfRNA), biochemical, and hematology data for the SpaceX Inspiration4 (I4) mission crew. We found that 18 cytokines/chemokines related to inflammation, aging, and muscle homeostasis changed after spaceflight....
Maintenance of astronaut health during spaceflight will require monitoring and potentially modulating their microbiomes. However, documenting microbial shifts during spaceflight has been difficult due to mission constraints that lead to limited sampling and profiling. Here we executed a six-month longitudinal study to quantify the high-resolution h...
Human space exploration poses inherent risks to astronauts’ health, leading to molecular changes that can significantly impact their well-being. These alterations encompass genomic instability, mitochondrial dysfunction, increased inflammation, homeostatic dysregulation, and various epigenomic changes. Remarkably, these changes bear similarities to...
Telomeres are repetitive nucleoprotein complexes at chromosomal termini essential for maintaining genome stability. Telomeric RNA, or TERRA, is a previously presumed long noncoding RNA of heterogeneous lengths that contributes to end-capping structure and function, and facilitates telomeric recombination in tumors that maintain telomere length via...
Background
Spaceflight poses a unique set of challenges to humans and the hostile spaceflight environment can induce a wide range of increased health risks, including dermatological issues. The biology driving the frequency of skin issues in astronauts is currently not well understood.
Methods
To address this issue, we used a systems biology appro...
Spaceflight induces molecular, cellular and physiological shifts in astronauts and poses myriad biomedical challenges to the human body, which are becoming increasingly relevant as more humans venture into space1–6. Yet current frameworks for aerospace medicine are nascent and lag far behind advancements in precision medicine on Earth, underscoring...
Human spaceflight has historically been managed by government agencies, such as in the NASA Twins Study¹, but new commercial spaceflight opportunities have opened spaceflight to a broader population. In 2021, the SpaceX Inspiration4 mission launched the first all-civilian crew to low Earth orbit, which included the youngest American astronaut (aged...
Organismal adaptations to spaceflight have been characterized at the molecular level in model organisms, including Drosophila and C. elegans. Here, we extend molecular work to energy metabolism and sex hormone signaling in mice and humans. We found spaceflight induced changes in insulin and estrogen signaling in rodents and humans. Murine changes w...
The increasing accessibility of commercial and private space travel necessitates a profound understanding of its impact on human health. The NASA Open Science Data Repository (OSDR) provides transparent and FAIR access to biological studies, notably the SpaceX Inspiration4 (I4) mission, which amassed extensive data from civilian astronauts. This da...
Background
The Inspiration4 (I4) mission, the first all-civilian orbital flight mission, investigated the physiological effects of short-duration spaceflight through a multi-omic approach. Despite advances, there remains much to learn about human adaptation to spaceflight's unique challenges, including microgravity, immune system perturbations, and...
Ten years ago, it was predicted that the multi-omics revolution would also revolutionize space pharmacogenomics. Current barriers related to the findable, accessible, interoperable, and reproducible use of space-flown pharmaceutical data have contributed to a lack of progress beyond application of earth-based principles. To directly tackle these ch...
The increasing accessibility of commercial and private space travel necessitates a profound understanding of its impact on human health. The NASA Open Science Data Repository (OSDR) provides transparent and FAIR access to biological studies, notably the SpaceX Inspiration4 (I4) mission, which amassed extensive data from civilian astronauts. This da...
Field processing of CPT vacutainers for the Cornell Aerospace Medicine Biobank (CAMbank). Instructions for preserving: Plasma, PBMCs, and RBC Pellets.
Field processing of SST vacutainers for the Cornell Aerospace Medicine Biobank (CAMbank). Instructions for preserving: Serum and RBC Pellets.
Field processing of cfDNA BCTs for the Cornell Aerospace Medicine Biobank (CAMbank). Instructions for preserving: plasma and RBC Pellets.
The role of the space environment in activating a diverse set of genes involved in regulating key cellular pathways is now widely recognized. This includes genes associated with blood control and erythropoiesis, with a particular emphasis on those involved in globin chain production. The comprehensive investigation of haemoglobin biology provides a...
Missions into Deep Space are planned this decade. Yet the health consequences of exposure to microgravity and galactic cosmic radiation (GCR) over years-long missions on indispensable visceral organs such as the kidney are largely unexplored. We performed biomolecular (epigenomic, transcriptomic, proteomic, epiproteomic, metabolomic, metagenomic),...
The I4 mission, the first all-civilian orbital flight mission, investigated the physiological effects of short duration spaceflight through a multi-omic approach. We analyzed telomere length, clonal hematopoiesis of indeterminate potential (CHIP), whole genome stability, cell-free DNA (cfDNA) cell lysis, and immune cell gene expression. Our results...
The SpaceX Inspiration4 mission provided a unique opportunity to study the impact of spaceflight on the human body. Biospecimen samples were collected from the crew at different stages of the mission, including before (L-92, L-44, L-3 days), during (FD1, FD2, FD3), and after (R+1, R+45, R+82, R+194 days) spaceflight, creating a longitudinal sample...
The SpaceX Inspiration4 mission provided a unique opportunity to study the impact of spaceflight on the human body. Biospecimen samples were collected from the crew at different stages of the mission, including before (L-92, L-44, L-3 days), during (FD1, FD2, FD3), and after (R + 1, R + 45, R + 82, R + 194 days) spaceflight, creating a longitudinal...
Sarcopenia is characterized by loss of muscle mass and strength in the elderly. Interestingly, astronauts suffer from a sarcopenic-like phenotype due to microgravity, thus effective countermeasures and preventive strategies are needed. Earth precision medicine combined with statistical, co-expression network and pathway analysis enables us to explo...
Human space exploration is hazardous, causing molecular changes that can alter astronauts' health. This can include genomic instability, mitochondrial dysfunction, increased inflammation, homeostatic dysregulation, and epigenomic changes. These alterations are similar to changes during aging on Earth. However, little is known about the link between...
Maintenance of astronaut health during spaceflight will require monitoring and potentially modulating their microbiomes, which play a role in some space-derived health disorders. However, documenting the response of microbiota to spaceflight has been difficult thus far due to mission constraints that lead to limited sampling. Here, we executed a si...
From our previous work we have shown a key miRNA signature that is associated with spaceflight can be used as a biomarker and countermeasure to mitigate the damage caused by space radiation. Here, we have further expanded on this work to determine key biological factors that are being rescued by the countermeasure treatment. We performed RNA-sequen...
Spaceflight poses a unique set of challenges to humans and the hostile spaceflight environment can induce a wide range of increased health risks, including dermatological issues. The biology driving the frequency of skin issues in astronauts is currently not well understood. To address this issue, we used a systems biology approach utilizing NASA’s...
Organismal adaptations to spaceflight have been characterized at the molecular level in model organisms, including Drosophila and C. elegans. Here we extend molecular work to energy metabolism and sex hormone signaling in mice and humans. We found spaceflight-induced changes in insulin and estrogen signaling in rodents and humans. Murine changes we...
MicroRNAs (miRNAs) are small, non-coding RNA molecules that are post-transcriptional regulators of gene expression. miRNAs have been shown to be key regulators of complicated pathological processes and hence great biomarkers for the early prediction of diseases, such as cardiovascular diseases and radiation-associated alteration after spaceflight....
Single-cell RNA sequencing (scRNA-seq) and spatially resolved transcriptomics (SRT) have experienced rapid development in recent years. The findings of spaceflight-based scRNA-seq and SRT investigations are likely to improve our understanding of life in space and our comprehension of gene expression in various cell systems and tissue dynamics. Howe...
Bioinformatics approaches have proven useful in understanding biological responses to spaceflight. Spaceflight experiments remain resource intensive and rare. One outstanding issue is how to maximize scientific output from a limited number of omics datasets from traditional animal models including nematodes, fruitfly, and rodents. The utility of om...
While the chicken (Gallus gallus) is the most consumed agricultural animal worldwide, the chicken transcriptome remains understudied. We have characterized the transcriptome of 10 cell and tissue types from the chicken using RNA-seq, spanning intestinal tissues (ileum, jejunum, proximal cecum), immune cells (B cells, bursa, macrophages, monocytes,...
Using a ground-based model to simulate spaceflight [21-days of single-housed, hindlimb unloading (HLU) combined with continuous low-dose gamma irradiation (LDR, total dose of 0.04 Gy)], an in-depth survey of the immune and hematological systems of mice at 7-days post-exposure was performed. Collected blood was profiled with a hematology analyzer an...
With the development of transcriptomic technologies, we are able to quantify precise changes in gene expression profiles from astronauts and other organisms exposed to spaceflight. Members of NASA GeneLab and GeneLab-associated analysis working groups (AWGs) have developed a consensus pipeline for analyzing short-read RNA-sequencing data from space...
With the development of transcriptomic technologies, we are able to quantify precise changes in gene expression profiles from astronauts and other organisms exposed to spaceflight. Members of NASA GeneLab and GeneLab-associated analysis working groups (AWGs) have developed a consensus pipeline for analyzing short-read RNA-sequencing data from space...
Extended spaceflight has been shown to adversely affect astronaut visual acuity. The purpose of this study was to determine whether spaceflight alters gene expression profiles and induces oxidative damage in the retina. Ten week old adult C57BL/6 male mice were flown aboard the ISS for 35 days and returned to Earth alive. Ground control mice were m...
Spaceflight poses many challenges for humans. Ground-based analogs typically focus on single parameters of spaceflight and their associated acute effects. This study assesses the long-term transcriptional effects following single and combination spaceflight analog conditions using the mouse model: simulated microgravity via hindlimb unloading (HLU)...
During mammalian embryogenesis, changes in morphology and gene expression are concurrent with epigenomic reprogramming. Using human embryonic stem cells representing the preimplantation blastocyst (naive)and postimplantation epiblast (primed), our data in 2iL/I/F naive cells demonstrate that a substantial portion of known human enhancers are premar...
Cellular reprogramming through manipulation of defined factors holds great promise for large-scale production of cell types needed for use in therapy and for revealing principles of gene regulation. However, most reprogramming systems are inefficient, converting only a fraction of cells to the desired state. Here, we analyze MYOD-mediated reprogram...
Cellular reprogramming through manipulation of defined factors holds great promise for large-scale production of cell types needed for use in therapy, as well as for expanding our understanding of the general principles of gene regulation. MYOD-mediated myogenic reprogramming, which converts many cell types into contractile myotubes, remains one of...