Eleonora Chiri

Eleonora Chiri
  • Dr. sc. ETH Zurich
  • Research Associate at Monash University (Australia)

About

32
Publications
7,921
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
828
Citations
Current institution
Monash University (Australia)
Current position
  • Research Associate
Additional affiliations
January 2012 - present
ETH Zurich
Position
  • PhD Student

Publications

Publications (32)
Article
Full-text available
Aerobic methane-oxidizing bacteria (MOB) in soils mitigate methane (CH4) emissions. We assessed spatial and seasonal differences in active MOB communities in a landfill-cover soil characterized by highly variable environmental conditions. Field-based measurements of CH4 oxidation activity and stable-isotope probing of polar-lipid-derived fatty acid...
Article
Full-text available
Investigations of sources and sinks of atmospheric CH4 are needed to understand the global CH4 cycle and climate-change mitigation options. Glaciated environments might play a critical role due to potential feedbacks with global glacial meltdown. In an emerging glacier forefield, an ecological shift occurs from an anoxic, potentially methanogenic s...
Article
Soil-gas turnover is important in the global cycling of greenhouse gases. The analysis of soil-gas profiles provides quantitative information on below-ground turnover and fluxes. We developed a poly-use multi-level sampling system (PMLS) for soil-gas sampling, water-content and temperature measurement with high depth resolution and minimal soil dis...
Article
Aerobic methane-oxidizing bacteria (MOB) play an important role in soils, mitigating emissions of the greenhouse gas methane (CH(4) ) to the atmosphere. Here, we combined stable isotope probing on MOB-specific phospholipid fatty acids (PLFA-SIP) with field-based gas push-pull tests (GPPTs). This novel approach (SIP-GPPT) was tested in a landfill-co...
Preprint
Full-text available
An overriding question in ecology is how new ecosystems form. This question can be tested by studying colonisation of environments with little to no pre-existing life. Here, we investigated the functional basis of microbial colonisation in the forelands of a maritime Antarctic and an alpine Swiss retreating glacier, by integrating quantitative ecol...
Article
Full-text available
Chemolithoautotrophic nitrite-oxidising bacteria (NOB) of the genus Nitrospira contribute to nitrification in diverse natural environments and engineered systems. Nitrospira are thought to be well-adapted to substrate limitation owing to their high affinity for nitrite and capacity to use alternative energy sources. Here, we demonstrate that the ca...
Preprint
Full-text available
Chemolithoautotrophic nitrite-oxidizing bacteria (NOB) of the genus Nitrospira contribute to nitrification in diverse natural environments and engineered systems. Nitrospira are thought to be well-adapted to substrate limitation owing to their high affinity for nitrite and capacity to use alternative energy sources. Here, we demonstrate that the ca...
Article
Significance Termites are textbook examples of the “extended phenotype” given their ability to construct complex mounds and regulate environments. Here, we show that termites also control microbial composition and biogeochemical cycling in their mounds through their emissions of hydrogen. These emissions drive remarkable enrichments of mound bacter...
Article
Full-text available
Knowledge regarding mechanisms moderating methane (CH4) sink/source behaviour along the soil–tree stem–atmosphere continuum remains incomplete. Here, we applied stable isotope analysis (δ¹³C‐CH4) to gain insights into axial CH4 transport and oxidation in two globally distributed subtropical lowland species (Melaleuca quinquenervia and Casuarina gla...
Article
Full-text available
Tree stems are an important and unconstrained source of methane, yet it is uncertain whether internal microbial controls (i.e. methanotrophy) within tree bark may reduce methane emissions. Here we demonstrate that unique microbial communities dominated by methane-oxidising bacteria (MOB) dwell within bark of Melaleuca quinquenervia, a common, invas...
Article
Full-text available
Soil microorganisms globally are thought to be sustained primarily by organic carbon sources. Certain bacteria also consume inorganic energy sources such as trace gases, but they are presumed to be rare community members, except within some oligotrophic soils. Here we combined metagenomic, biogeochemical and modelling approaches to determine how so...
Article
Full-text available
Atmospheric trace gases such as dihydrogen (H2), carbon monoxide (CO) and methane (CH4) play important roles in microbial metabolism and biogeochemical cycles. Analysis of these gases at trace levels requires reliable storage of discrete samples of low volume. While commercial sampling vials such as Exetainers® have been tested for CH4 and other gr...
Preprint
Full-text available
Tree stems are an important and unconstrained source of methane, yet it is uncertain if there are internal microbial controls (i.e. methanotrophy) within tree bark, that may reduce methane emissions. Using multiple lines of evidence, we demonstrate here that unique microbial communities dominated by methane oxidising bacteria (MOB) dwell within bar...
Article
Full-text available
How the diverse bacterial communities inhabiting desert soils maintain energy and carbon needs is much debated. Traditionally, most bacteria are thought to persist by using organic carbon synthesized by photoautotrophs following transient hydration events. Recent studies focused on Antarctic desert soils have revealed, however, that some bacteria u...
Article
Full-text available
Atmospheric trace gases such as dihydrogen (H2), carbon monoxide (CO) and methane (CH4) play important roles in microbial metabolism and biogeochemical cycles. Analysis of these gases at trace levels requires reliable storage of discrete samples of low volume. While commercial sampling vials such as Exetainers® have been tested for CH4 and other gr...
Article
Full-text available
Termite mounds have recently been confirmed to mitigate approximately half of termite methane (CH4) emissions, but the aerobic CH4 oxidising bacteria (methanotrophs) responsible for this consumption have not been resolved. Here, we describe the abundance, composition and CH4 oxidation kinetics of the methanotroph communities in the mounds of three...
Article
Full-text available
Microbial life is surprisingly abundant and diverse in global desert ecosystems. In these environments, microorganisms endure a multitude of physicochemical stresses, including low water potential, carbon and nitrogen starvation, and extreme temperatures. In this review, we summarize our current understanding of the energetic mechanisms and trophic...
Preprint
Full-text available
Termite mounds have recently been confirmed to mitigate approximately half of termite methane (CH4) emissions, but the aerobic methane-oxidizing bacteria (methanotrophs) responsible for this consumption have not been resolved. Here we describe the abundance, composition, and kinetics of the methanotroph communities in the mounds of three distinct t...
Article
Full-text available
A grand challenge in microbiology is to understand how the dormant majority lives. In natural environments, most microorganisms are not growing and instead exist in a spectrum of dormant states. Despite this, most research on microbial metabolism continues to be growth-centric, and many overlook the fact that dormant cells require energy for mainte...
Article
Full-text available
Most aerobic bacteria exist in dormant states within natural environments. In these states, they endure adverse environmental conditions such as nutrient starvation by decreasing metabolic expenditure and using alternative energy sources. In this study, we investigated the energy sources that support persistence of two aerobic thermophilic strains...
Book
Full-text available
Background The global crocodilian skin market is currently in oversupply. As a result, the tanneries can now be very selective about the quality of skins they purchase. The challenge to producers is to meet these quality standards. A part of this challenge is to understand the risk of pathogens to crocodile skin quality. Aims/objectives Collective...
Preprint
Full-text available
Bacteria within aerated environments often exist within a variety of dormant forms. In these states, bacteria endure adverse environmental conditions such as organic carbon starvation by decreasing metabolic expenditure and using alternative energy sources. In this study, we investigated the energy sources that facilitate the persistence of the env...
Article
Full-text available
Termite mounds (TMs) mediate biogeochemical processes with global relevance, such as turnover of the important greenhouse gas methane (CH4). However, the complex internal and external morphology of TMs impede an accurate quantitative description. Here we present two novel field methods, photogrammetry (PG) and cross-sectional image analysis, to qua...
Article
Full-text available
Termite mounds (TMs) mediate biogeochemical processes with global relevance, such as turnover of the important greenhouse gas methane (CH4). However, the complex internal and external morphology of TMs impede an accurate quantitative description. We compare two novel field methods to quantify TM external and internal mound structure against establi...
Article
Full-text available
Glacier forefield soils can provide a substantial sink for atmospheric CH4, facilitated by aerobic methane-oxidizing bacteria (MOB). However, MOB activity, abundance, and community structure may be affected by soil age, MOB location in different forefield landforms, and temporal fluctuations in soil physical parameters. We assessed the spatial and...
Conference Paper
Full-text available
Methane is an important greenhouse gas, and emissions from termites are a significant yet highly uncertain contribution from tropical ecosystems. Methanogenesis in the anoxic termite hindguts has been studied thoroughly, yet little is known about potential microbial methane oxidation (MOX) in the generally oxic nests and mounds of termite colonies....
Conference Paper
Full-text available
In the Northern Territory (NT) and Queensland, Australia, estuarine crocodiles (Crocodylus porosus) are farmed mainly for their skin. There are several types of skin blemishes that reduce the value of hides and the search for a specific causal agent continues. Concomitantly, the acknowledged role of the microbiota in maintaining animal health has l...
Conference Paper
Mature upland soils are currently considered the sole terrestrial sink for atmospheric methane (CH4). But little is known about CH4 dynamics in young, developing soil ecosystems such as glacier forefields formed by progressive glacial retreat. Glacier forefields are situated on diverse bedrock types, exhibit a continuum of soil age (chronosequence)...
Article
Full-text available
Investigations of sources and sinks of atmospheric CH4 are needed to understand the global CH4 cycle and climate-change mitigation options. Glaciated environments might play a critical role due to potential feedbacks with global glacial meltdown. In an emerging glacier forefield, an ecological shift occurs from an anoxic, potentially methanogenic s...

Network

Cited By