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Abstract. UAVs have a great potential of application for monitoring, search, de-

tection, communication, delivery and transportation of cargo in various sectors 

of economy. In spite of this, the existing software and hardware, as well as legal 

limitations, prevent the wide application of UAVs. There is intensive research 

related to automation and optimization of missions of one or more UAVs in var-

ious application areas. However, the execution of missions of both individual 

vehicles and their homogeneous or heterogeneous groups depends on the relia-

bility issues of these technical devices, UAVs fleets, and control systems. In this 

paper, we present models for assessing fleet reliability of UAVs that are managed 

centralized or decentralized. The method is based on the representation of the 

fleet as a Binary-State System. The following topologies are considered: (a) a 

homogenous irredundant drone fleet, (b) a homogenous hot stable redundant 

drone fleet, (c) a heterogeneous irredundant drone fleet, and (d) a heterogeneous 

hot stable redundant drone fleet. For the listed topologies, reliability estimates 

were obtained as a function of the number of primary and redundant UAVs. 

Keywords: UAVs, Reliability, Binary-State System, Importance analysis, 

Structure Function, Availability. 

1 Introduction 

A UAV is a relatively new technology used for monitoring, search, communication, 

cargo delivery, etc. [1] The use of UAVs in practice is justified by their relatively low 

cost [2], the availability of devices on the market [3], the possibility of use in hard-to-
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reach places [4], and the possibility of adaptation to special tasks [5] and relatively 

simple control methods [6].  

These advantages provide significant potential for UAV applications ranging from 

the entertainment industry to geological exploration [7-10]. According to estimates, the 

UAV market will reach $127 billion, of which 36% will be used for infrastructure, 26% 

for agriculture, 10% for transportation, etc.[11] (see Chyba! Nenašiel sa žiaden zdroj 

odkazov.). 

 

Fig. 1. Future market of UAVs. 

 

Practical applications of UAVs are considered in close connection with artificial intel-

ligence technologies. In essence, there is a fusion of intelligent data processing and 

UAVs. A set of methods and means of Intelligent Unmanned Aerial Vehicle Technol-

ogy (IUAVT) is being formed) [12]. There are three main categories of limitations that 

limit the widespread use of technology in various sectors of the economy [10]: 

1. Technical. Limitation of battery capacity, flight time, payload, sensor sensitivity, 

dependence on weather conditions, limitations in computing power on board, etc.; 

2. Legal. The impossibility of some use options within the city limits and restrictions 

on the use of UAVs weighing more than 250 grams [13]; 

3. Software and algorithmic. 
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The third group of limitations is caused by the relatively low computing power of the 

onboard computer, and the insufficient development of algorithms related to the main 

applications of UAVs, including flight planning. Flight planning is defined by the mis-

sion performed by one or more UAVs. Among such tasks performed during the flight, 

the literature mentions: search operations, routing for a set of locations, area coverage, 

data collection and recharging in a wireless sensor network (WSN), allocation of com-

munication channels and computing power for mobile devices, and the operational as-

pects of a self-organizing drone network [5]. However, UAVs and ground-based com-

munication and control systems as technical devices are not reliable. The limited relia-

bility of technical means should be taken into account in the planning process, espe-

cially in those tasks that are critically time-dependent (search for victims, application 

of fertilizers and herbicides, organization of communication in emergency areas, etc.). 

In this paper, we consider approaches to estimating the reliability of drone fleets 

using the Binary-State System representation of the fleet. 

The paper consists of the following sections: 

Related works section, analyzes the current state of research on UAV applications, 

reliability assessment methods. 

The third section discusses the methods for analyzing drone fleet reliability and the 

results. 

The fourth section describe the fleet structure and functions of unmanned aerial ve-

hicles. 

Fifth section consist on analysis of the availability of UAV fleets based on a structure 

function. 

In the sixth part analyzing and evaluating the impact of components' failures on a 

system. 

In the last section, conclusion, we summarize the need to calculate UAV fleet relia-

bility when executing missions of different types and particular responsibility. In this 

paper, this gap is partially filled. Methods of evaluation are described in the paper. 

2 Related works 

The IUAVT is used for a variety of tasks, including: 

1. Monitoring:  

 For mapping, which usually requires overlapping images to produce a quality map 

[14, 15]; 

 Monitoring along a predetermined route (structures [16], technical facilities [17] 

pipelines [18,19]; 

 Monitoring using special equipment, such as thermal and multispectral cameras, 

gamma spectrometers, aeromagnetic sensors etc., when it is necessary to take into 

account the peculiarities of the equipment during missions [20,21]; 

 Monitoring-inspection of casualty areas during emergencies [22-24]; 

 Traffic monitoring [25]; 

 Wildlife monitoring [15,26]. 
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2. Detection and identification [27,28]: 

 conditions of structures, harvested crops, animals [29]; 

 violations of laws, such as hunting [30]; 

 air or aquatic environment, periodically at predetermined points in time [31,32,28]. 

3. Search: 

 Protecting and Searching for Animals [33,34]; 

 Injured people [35,36]; 

 Minerals [37,38]; 

 etc. 

4. Delivery [39] and transportation of cargo, including oversized cargo on suspension 

[40]. 

5. Organization of communications: 

 Collection of data from installed sensors: in precision farming [41], wireless sensor 

networks [42]: 

 In natural disaster areas [43-45]. 

Figure 2 shows the distribution of publications on UAV applications. 

 

Fig. 2. Number of publications according to Google Scholar since 2018. 

 

The effective applications of UAVs in the implementation of the discussed problems 

are caused by some characteristics and properties of itself UAVs. One of the important 

properties of UAVs application is the definition of the optimal coverage path planning 
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(CPP) [46-48]. There are two modifications of this problem: CPP1 - without influence 

on the surface analyzed; CPP2 - with influence on the surface coated. 

Another important property of UAVs is reliability, which allows determining the 

conditions of UAVs’ functioning performance at the specified level [49]. The reliability 

analysis or reliability engineering is a knowledge domain, which includes many ap-

proaches, methods, and algorithms for reliability evaluation and risk assessment of 

complex systems. The choice and application of methods for reliability analysis in 

every specified case depend on a system structure, its type, and area of applications. 

UAVs are complex systems from point of view of reliability analysis. In the study [50] 

the classification of UAV reliability analysis depending on different parameters has 

been introduced. This classification is presented in form of a parameters matrix, which 

takes into consideration such aspects as the number of drones in exploitations, homog-

enous or heterogeneous structure of UAVs’ fleet, and type redundancy in drone fleets. 

This classification matrix of UAV’s fleet reliability is shown in Table 1. In this matrix 

types of UAVs’ structures as a single drone, UAVs’ fleet, and UAVs’ multi-fleet are 

considered. These structures can implement one function (it is indicated by “1”) or can 

be multi-functions (this parameter is indicated as MF). The UAVs’ fleet and UAVs’ 

multi-fleet can be formed by homogenous drones or can be heterogeneous, which is 

indicated by “Y” in the column “Heterogeneous” and the symbol “N” in this column 

specifies a homogenous type of drone fleet. A single UAV or UAV’s fleet can be rep-

resented by two mathematical models: Binary-State System (BSS) or Multi-State Sys-

tem (MSS). A BSS is a mathematical model which has two states in the system func-

tioning and two states of components in the mathematical representation. A MSS is a 

mathematical model, which allows consideration in the mathematical representation of 

more than two states for a system functioning and the system's components states. MSS 

permits to describe and analyze a system in more detail: it is possible to analyze not the 

system failure only but the system degradation too. However, the methods for MSS 

reliability analysis request higher computational resources [51]. There are some inves-

tigations of a MSS used for reliability analysis of UAVs [50, 52, 53]. But most of the 

studies in UAVs’ reliability use a BSS for the mathematical representation of the in-

vestigated system [50, 54]. Besides the specified parameters of UAV or UAV’s fleet, 

the specifics of reliability should be taken into consideration too. For UAVs, the first 

should be to consider the redundancy of the system. Typically, two types of redundancy 

are investigated: active redundancy and standby redundancy [55]. A standby redun-

dancy can be hot, cold, and warm standby sparing [56]. The use of every one of these 

types of redundancy is caused by the request for the time or energy resources of the 

specified application of UAVs. The cold redundancy is typically used in the system if 

it is critical for energy consumption: the spare component is started functioning only 

when the worked component fails. Hot standby sparing is used as a failover mechanism 

to provide the reliability of a system, where the recovery time is critical. The mathe-

matical model for this type of redundancy is equal to active redundancy if the switching 

delays and failures are not taken into consideration. Warm standby sparing compro-

mises the energy consumption and the recovery time. The spare components are par-

tially powered up when the primary component is operational and it is fully powered 

up only after the primary component fails. 
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Table 1. Matrix of UAVs’ Fleet Reliability Assessment Parameters from [50]. 

UAV/UAVs’ Fleets Reliability 

Type 

Parameters Irredundant Redundant 

Functions 
Mat. 

Model 

Hetero-

geneous 
 

Hot 

standby 

Cold 

standby 

Warm 

standby 

Singl 

UAV 

1 
BSS  

 

 

 

 
  

MSS      

MF 
BSS   

 

 
  

MSS      

UAVs’ 

flee 

1 

BSS 
Y x x   

N x x   

MSS 
Y     

N     

MF 

BSS 
Y x x   

N x x   

MSS 
Y     

N     

UAVs’ 

Multy-

fleet 

MF 

BSS 
Y     

N     

MSS 
Y     

N     

 

 

The methods of reliability analysis depend on the structure of the system. The methods 

for reliability evaluation of a single drone differ from the methods of UAVs’ fleets. 

According to a study [50, 53] most often used structure for UAVs is the UAV’s fleet. 

A UAVs’ multi-fleet is not often used because needs many resources (energy, financial, 

etc.). A UAV’s fleet allows archive good results in such problems as monitoring [57], 

transportation [58], and agriculture [59]. Therefore, this structure is considered in the 

paper. The parameter of fleet functions has some correlation with the homogenous and 

heterogeneous types of UAVs’ fleet. There are problems in which these parameters 

cannot be joined and should be considered as two independent parameters. In this study, 

we assume the correlation of these parameters: the homogenous fleet implements one 

function and the heterogeneous fleet can have some functions for the implementation 

and every fleet drone is with one function. Typically, the methods for the reliability 

analysis of homogenous [60] and heterogeneous [61] fleets are different. In this paper, 

we propose a new method of the UAVs’ fleet reliability evaluation, which can be used, 

for both homogenous and heterogeneous fleets. From point of view of redundancy, this 
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method can be applied for irredundant drone fleets or fleets with hot redundancy. The 

hot redundancy is considered because in most applications of UAVs' fleet the time is 

critical for the spare drone start. 

3 Method and results 

The proposed method is based on BSS in mathematical representation of the UAVs’ 

fleet. In particular, the structure function based method is developed. The structure 

function as mathematical model in reliability analysis is one of simplest mathematical 

representation [62, 63]. This function maps the set of system components’ states to one 

of the system state. In case of the BSS this function agrees with a Boolean function. Let 

us consider a system of n components (drones). The 𝑖-th drone functioning is denoted 

by variable 𝑥𝑖   (𝑖 =  1, … , 𝑛) where 𝑥𝑖 = 1 if the drone is functioning state and 𝑥𝑖 =
0 if it fails. The system state (its reliability) depends on the states of the components 

(drones). This depending is defined by the structure function [62,63]: 

 𝜙(𝑥1, … , 𝑥𝑛) = 𝜙(𝒙):   {0,1}𝑛 → {0,1}, (1) 

where 𝒙 = (𝑥1, … , 𝑥𝑛) is a vctor of the system components states (state vector); 

𝜙(𝒙) = 1 if the system is functioning and 𝜙(𝒙) = 0  if the system is failure. 

A UAVs fleet is a coherent system. It means that all component are (a) relevant 

for the system (𝜙(1𝑖 , 𝒙) ≠ 𝜙(0𝑖 , 𝒙) for some state vectors) and (b) failure of any com-

ponent cannot result the improvement in the system functioning (𝜙(1𝑖 , 𝒙) ≥ 𝜙(0𝑖 , 𝒙) 

for any component), where 𝜙(1𝑖 , 𝒙) = 𝜙(𝑥1, … , 𝑥𝑖−1, 1, 𝑥𝑖+1, … , 𝑥𝑛) and 𝜙(0𝑖 , 𝒙)  =
𝜙(𝑥1, … , 𝑥𝑖−1, 0, 𝑥𝑖+1, … , 𝑥𝑛). The structure function (1) for a coherent system is mon-

otonically non-decreasing [62]. 

The structure function advantages are possibility of the representation of a sys-

tem of any structural complexity and simplify methods for reliability evaluation. The 

disadvantage of this mathematical model is large dimension of system of many com-

ponents: the structure function dimension is exponential increase depending on the 

number of the system components [62]. For the decision of this difficulty in reliability 

analysis, some approaches have been proposed. One of them is use of Binary-Decision 

Diagram (BDD), which has been developed in Boolean Algebra [64] and are effective 

for the processing of the function of large dimensional [63]. The alternative approach 

is based on the structure function representation in form of survival signature [65].  

4 Structure function of UAV’s fleet 

Need to note that the reliability of the system is a complex characteristic, which includes 

some indices and measures. The reliability analysis of a UAV’s fleet drone supposes 

the calculation of some indices and measures. The drone fleet reliability in the station-

ary state is studied in this paper. The assumption about equivalent properties of multi-
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functions and heterogeneous in this study takes into consideration. It allows us to con-

sider the mathematical model in form of the structure function (1). The structure func-

tion should be defined for the fleet: 

 Homogenous irredundant drone fleet (see Fig. 3 (a)); 

 Homogenous hot stable redundant drone fleet (see Fig. 3 (b)); 

 Heterogeneous irredundant drone fleet (see Fig. 3(c)); 

 Heterogeneous hot stable redundant drone fleet (see Fig. 3 (d)). 

These fleets can include a Main Drone Fleet (MDF) for the implementation of 

the objective action, a Reverse Drone Fleet (RDF) for the support of the functioning 

state of a MDF and Control Unit (CU) for the coordination of drones actions.  

One of the possible ways to construct structure function is based on the application 

of typical structures of systems, which are series, parallel and k-out-of-n systems. There 

are two definitions of k-out-of-n system. A k-out-of-n:G is functioning if k or more of 

n components are in the working states. A k-out-of-n:F is a system that fails if at least 

k components are failed. In this study k-out-of-n:G type is used only, therefore the 

nomination k-out-of-n will be used for this system. It is well known that the system k-

out-of-n is a generalization of two other typical structures: 1-out-of-n corresponds to a 

parallel system and n-out-of-n agrees with a series system. Therefore, the drone fleet 

functioning is presented and studied as k-out-of-n system in this paper. 

A homogenous irredundant drone fleet with decentral control (see Fig. 3 (a)) can be 

presented by two topologies. One of them has the distribution control and the other 

topology includes the central CU. A decentral control topology is interpreted as the n-

out-of-n system or the series system with the structure function: 

 𝜙(𝒙) =  ⋀ 𝑥𝑤
𝑛
𝑤=1 , (2) 

where ⋀𝑠
𝑤=1  is the symbol of Boolean operation AND for w variables. 

The structure function of a homogenous irredundant drone fleet with the central 

CU (see Fig. 3 (a)) can be defined as the series system of the MDF and CU, where 

drone fleet is the series system: 

 𝜙(𝒙) = (⋀ 𝑥𝑤
𝑛−1
𝑤=1 )  ⋀ 𝑥𝑛 = ⋀ 𝑥𝑤

𝑛
𝑤=1 , (3) 

where the variables from 𝑥1 to 𝑥𝑛−1 are represent the states of the drones of the MDF 

and variable 𝑥𝑛 represents the states of the CU. 

A homogenous hot stable redundant drone fleet can be presented by two topol-

ogies too (see Fig. 3 (b)). Similar to the previous structure of UAV’s fleet, this structure 

can have distribution control and the central CU for fleet control. The hot stable redun-

dant can be presented as the k-out-of-n. According to [66] the structure function of the 

k-out-of-n system and analysis of its reliability can be based on an analysis of minimal 

paths set. The structure function of such a system is defined as the unit of minimal 

paths: 

 𝜙(𝒙) =  ⋁ ⋀ 𝑥𝑖𝑤
𝑘
𝑤=1𝑄𝑘

, (4) 
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Fig. 3. The topologies of (a) a homogenous irredundant drone fleet, (b) a homogenous hot stable 

redundant drone fleet, (c) a heterogeneous irredundant drone fleet, and (d) a heterogeneous hot 

stable redundant drone fleet. 
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where ⋁𝑘
𝑤=1 is the symbol of Boolean operation OR for k variables; the k variables 

𝑥𝑖𝑠
 (s = 1, …, k) represent the states of the drones which are formed by the minimal 

paths in the topology of k-out-of-n system and the number of the paths 𝑄𝑘 is defined 

as: 

 𝑄𝑘 = (
𝑛
𝑘

) =
𝑛!

(𝑛−𝑘)!𝑘!
, (5) 

The structure function of k-out-of-n system (3) is formed by the 𝑄𝑘 implicants and 

each implicant has k literals. 

The structure function of a homogenous hot stable redundant drone fleet with the 

central CU in Fig. 3 (b) can be defined as the series system of the MDF and CU, where 

the drone fleet is the k-out-of-n system: 

 𝜙(𝒙) = (⋁ ⋀ 𝑥𝑖𝑤
𝑘
𝑤=1𝑄𝑘

)  ⋀ 𝑥𝑛 , (6) 

where the variables from 𝑥1 to 𝑥𝑛−1 represent the states of the drones of the MDF and 

RDF and variable 𝑥𝑛 represents the states of the CU. 

A heterogeneous irredundant drone fleet with decentral control (see Fig. 3 (c)) is 

formed of UAVs of K types. Drones of every type of irredundant drone fleet are formed 

a series system. All of these K series systems must be working for the work of a heter-

ogeneous irredundant drone fleet: 

 𝜙(𝒙) = (⋀ ⋀ 𝑥𝑟,𝑤
𝑙𝐾
𝑤=1

𝐾
𝑟=1 )   = ⋀ 𝑥𝑤

𝑛
𝑤=1 , (7) 

where the number of variables 𝑥𝑟,𝑤 for all possible values of the parameters r and w is 

equal to the number n; 𝑙𝑟  is the number of UAVs of type r (r = 1, …, K). 

A heterogeneous irredundant drone fleet with decentral control from point of view 

of the reliability analysis is a series system that can be worked if all drones of all types 

are functioning. A similar topology has a heterogeneous irredundant drone fleet with 

central control (see Fig. 3 (c)), which is a series system too with the structure function: 

 𝜙(𝒙) = (⋀ ⋀ 𝑥𝑟,𝑤
𝑙𝐾
𝑤=1

𝐾
𝑟=1 )  ⋀ 𝑥𝑛 = ⋀ 𝑥𝑤

𝑛
𝑤=1 , (8) 

where the variables 𝑥𝑟,𝑤 represent states of drones of MDF and for all possible values 

of the parameters r and w the number of these variables is equal to the number n-1; the 

variable 𝑥𝑛 is used for the representation of CU states. 

A heterogeneous hot stable redundant drone fleet with distributed control (see Fig. 

3 (d)) is formed by UAVs of K types and every one of these types of drones is the k-

out-of-n system with the structure function which is similar to (6). The working state 

of the fleet is possible if each drone’ type implements specified activity. The structure 

function of this type of heterogeneous drone is a series system of K components which 

are kr-out-of-lr systems: 

 𝜙(𝒙) = ⋀ (⋁ ⋀ 𝑥𝑟,𝑖𝑤

𝑘𝑟
𝑤=1𝑄𝑟

)𝐾
𝑟=1 , (9) 

where 𝑄𝑟  is the number of minimal paths for each type of UAVs which is computed 

according to (5) and 𝑘𝑟 is the number of minimum required working drones for type r 

(r = 1, …, K).  
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A heterogeneous hot stable redundant drone fleet with the central CU (see Fig. 3 (d)) 

in reliability analysis point of view is formed by K kr-out-of-lr systems which are in-

terconnected in series and connected in series with the control element: 

 (𝒙) = (⋀ (⋁ ⋀ 𝑥𝑟,𝑖𝑤

𝑘𝑟
𝑤=1𝑄𝑟

)𝐾
𝑟=1 ) ⋀ 𝑥𝑛  , (10) 

The structure functions (2) – (4) and (6) – (10) are defined for homogeneous and 

heterogeneous UAVs’ fleets that can be irredundant or hot stable redundant. The intro-

duced structure function for all types of irredundant fleets (2), (3), (7), and (8) are equal 

and are presented as series topology. Therefore, the reliability analysis for these fleets 

can be implemented as for one series system. Hot stable redundant drone fleets have 

different structure functions (4), (6), (9), and (10) and for every one of them should be 

proposed reliability evaluation. 

5 Availability of UAV’s fleet defined based on a structure 

function 

The reliability analysis of the system based on the structure function is studied well [62, 

66]. The system availability is defined depending on the probabilities of the system 

components functioning state, which is defined as: 

 𝑝𝑖 = Pr{𝑥𝑖 = 1} , (11) 

and the probabilities of the system components failure, which are: 

 𝑞𝑖 = 1 − 𝑝𝑖 = Pr{𝑥𝑖 = 0} , (12) 

The system probability to be in the functioning state is system availability [62, 66]. 

Because the UAV’s fleet is a coherent system than the availability can be defined as: 

  
𝐴 = Pr{𝜙(𝒙) = 1} , (13) 

 

and the system unavailability is defined as: 

 𝑈 = 1 − 𝐴 = Pr{𝜙(𝒙) = 0}. (14) 

As the first, the series structures of the irredundant fleets are considered. A homog-

enous irredundant drone fleet with decentral control (Fig. 3 (a)) is formed for drones 

that have equal characteristics, in particular, the probability of the drone to be in a 

working state: 𝑝𝑖 = 𝑝𝑗 = 𝑝 for 𝑖 ≠ 𝑗. It allows us to define this fleet availability 𝐴𝐻𝑜𝐼𝐷 

according to (2) and (13) as : 

𝐴𝐻𝑜𝐼𝐷 = Pr { ⋀ 𝑥𝑤

𝑛

𝑤=1

} = ∏ 𝑝𝑤

𝑛

𝑤=1

= 𝑝𝑛 , (15) 

 

The availability of a homogenous irredundant drone fleet with central CU (see Fig. 

3 (a)) 𝐴𝐻𝑜𝐼𝐶 is similar to the availability of a homogenous irredundant drone fleet with 
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decentral control. But the definition of this availability should take into consideration 

of the probability of functioning of the CU 𝑝𝑛: 

 

 𝐴𝐻𝑜𝐼𝐶 = Pr{ (⋀ 𝑥𝑤
𝑛−1
𝑤=1 )  ⋀ 𝑥𝑛} = (∏ 𝑝𝑤

𝑛−1
𝑤=1 ) ∙ 𝑝𝑛 = 𝑝𝑛−1 ∙ 𝑝𝑛 , (16) 

 

where 𝑝 is the probability of the working state of UAVs of MDF and 𝑝𝑛 is the proba-

bility of CU being in the working state. 

The definitions of availability (15) and (16) for irredundant homogenous UAV fleets 

allow us to provide the analysis and comparison of the availability of these homogenous 

fleets (see Fig.4). The curves of availabilities in Fig. 4 reflect the average values of 

availabilities of these two fleets. They have been computed for the probabilities of UAV 

and CU, which change from 0.600 to 0.999 accordingly and the probability of CU func-

tioning is more than the probability of UAV working state. According to this study, a 

homogenous irredundant drone fleet with central CU has the best availability for the 

fleet which consists of less than 12 UAVs. 

 

 

Fig. 4. The availabilities of homogenous irredundant UAV fleets. 

The availability of heterogeneous irredundant fleets should take account of some 

types of UAVs. The probability of UAV of type r functioning is denoted as 𝑝𝑟, where 

r = 1, …, K, and lr is the number of UAVs of type r. The availability of a heterogeneous 

irredundant drone fleet with decentral control (see Fig. 3 (c)) 𝐴𝐻𝑒𝐼𝐷 according to (7) 

and (13) is: 

 𝐴𝐻𝑒𝐼𝐷 = Pr{ (⋀ ⋀ 𝑥𝑟,𝑤
𝑙𝐾
𝑤=1

𝐾
𝑟=1 )} = ∏ 𝑝𝑟

𝑙𝑟𝐾
𝑟=1 , (17) 

The availability of a heterogeneous irredundant drone fleet with central CU (see 

Fig. 3 (c)) 𝐴𝐻𝑒𝐼𝐶 according to (8) and (13) and the assumption of the probability 𝑝𝑛 of 

the working state of CU is: 
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 𝐴𝐻𝑒𝐼𝐶 = Pr{ (⋀ ⋀ 𝑥𝑟,𝑤
𝑙𝐾
𝑤=1

𝐾
𝑟=1 )  ⋀ 𝑥𝑛} = (∏ 𝑝𝑟

𝑙𝑟𝐾
𝑟=1 ) ∙ 𝑝𝑛, (18) 

The analysis of the availabilities of heterogeneous irredundant drone fleets is 

shown in Fig.5. The curves of availability have been computed for the different number 

of drone types and the number of drones in the fleet. The number of drone types is taken 

into account too: from 2 to 5 types have been evaluated for these fleets of 20 drones. 

This experimental investigation shows that the increase in the number of UAV types 

has a threshold and the larger number of drone types has no positive impact on fleets' 

availability. The best solution for a fleet that consists of less than 7 drones is two types. 

 

 

Fig. 5. The availabilities of heterogeneous irredundant UAV fleets. 

The background topology of hot stable redundant drone fleets is the k-out-of-n 

system. A homogenous hot stable redundant drone fleet with decentral control (see Fig. 

3 (b)) is k-out-of-n system with identical components. The availability of this system, 

for example, is defined in [66, 67] and for this UAV’s fleet is: 

  

𝐴𝐻𝑜𝑅𝐷 = Pr { ⋁ ⋀ 𝑥𝑖𝑤

𝑘

𝑤=1𝑄𝑘

} = ∑ (
𝑛
𝑠

) ∙ 𝑝𝑠 ∙ 𝑞𝑛−𝑠

𝑛

𝑠=𝑘

, (19) 

 

The availability of a homogenous hot stable redundant drone fleet according to 

(19) depends on the number of part of working drones’ k (see Fig.6). Therefore, the 

analysis of this fleet availability is provided depending on the number of drones in the 

fleet and the specified number of working drones. This analysis shows that the increase 

in the number of specified working drones for the fixed number of drones in the fleet 

results in the deterioration in reliability. Similar to the previous experiments, Figure 4 
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shows the average dependences, and the studies were performed for a set of probabili-

ties of the operational state of drones from 0.6 to 0.0999. 

 

 

Fig. 6. The availability of homogenous hot stable redundant drone fleet with decentral 

control. 

The structure function of a homogenous hot stable redundant drone fleet with cen-

tral CU in Fig. 3 (b) is defined by (1.5) and besides k-out-of-n system includes the 

component CU, which is in series. Therefore, the availability of this fleet is: 

  

𝐴𝐻𝑜𝑅𝐶 = Pr { (⋁ ⋀ 𝑥𝑖𝑤

𝑘

𝑤=1𝑄𝑘

)  ⋀ 𝑥𝑛 , } = (∑ (
𝑛 − 1

𝑠
) ∙ 𝑝𝑠 ∙ 𝑞𝑛−𝑠

𝑛−1

𝑠=𝑘

) ∙ 𝑝𝑛 , (20) 

 

The availability of a homogenous hot stable redundant drone fleet with the central 

CU is similar to the availability of a homogenous hot stable redundant drone fleet with 

decentral control. The change of the fleet control from decentralized to centralized leads 

to a slight decrease in the reliability of this fleet with central CU (see Fig.7). 

A heterogeneous hot stable redundant drone fleet with distributed control (see Fig. 

3 (d)) consists of drones of types and has structure function (9). The availability of this 

fleet according to (13) and the definition of the availability of the k-out-of-n system in 

[66, 67] is computed as: 

  

𝐴𝐻𝑒𝑅𝐷 = Pr { ⋀ (⋁ ⋀ 𝑥𝑟,𝑖𝑤

𝑘𝑟

𝑤=1𝑄𝑟

)

𝐾

𝑟=1

} = ∏ ∑ (
𝑙𝑟

𝑠
) ∙ 𝑝𝑟

𝑠 ∙ 𝑞𝑟
𝑙𝑟−𝑠

𝑙𝑟

𝑠=𝑘𝑟

𝐾

𝑟

. (21) 

 

The evaluation of the average availability of a heterogeneous hot stable redundant 

drone fleet with distributed control is in Fig.8, which shows that the increase in the 

number of UAVs in the fleet leads to a decrease in its availability. Therefore, the het-

erogeneity of the fleet increasing without a due need is unjustified from the point of 

view of availability. 
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Fig. 7. The comparison of availability of a homogenous hot stable redundant drone 

fleets with decentral control and central CU. 

 

 

Fig. 8. The availability of a heterogeneous hot stable redundant drone fleet with dis-

tributed control. 

 

The availability of a heterogeneous hot stable redundant drone fleet with central CU 

(see Fig. 3 (d)) 𝐴𝐻𝑒𝑅𝐶  is defined in a similar way:  
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𝐴𝐻𝑒𝑅𝐷 = Pr { (⋀ (⋁ ⋀ 𝑥𝑟,𝑖𝑤

𝑘𝑟

𝑤=1𝑄𝑟

)

𝐾

𝑟=1

) ⋀ 𝑥𝑛 } = (∏ ∑ (
𝑙𝑟

𝑠
) ∙ 𝑝𝑟

𝑠 ∙ 𝑞𝑟
𝑙𝑟−𝑠

𝑙𝑟

𝑠=𝑘𝑟

𝐾

𝑟

)

∙ 𝑝𝑛. , (22) 

The use of a central CU for the control in a heterogeneous hot stable redundant 

drone fleet causes the availability decreasing (see Fig.9). The availability of a hetero-

geneous hot stable redundant drone fleet with central CU is similar to the availability 

of a fleet with decentral control. 

 

 

Fig. 9. The comparison of availability of a heterogeneous hot stable redundant drone 

fleets with decentral control and central CU. 

The general evaluation of availabilities of fleets structures shows that the best struc-

ture in point of view of the availability is homogenous hot stable redundant drone fleet 

with decentral control. But un the practical application should be taken into account the 

technical complication for the implementation of the decentral control of fleet, which 

can cause the decreasing of the UAV reliability properties [68]. Therefore, the alterna-

tive can be homogenous hot stable redundant drone fleet with central CU. 

6 Importance analysis of UAV fleets  

The availability of the different structures of UAV fleets allows for evaluating a fleet 

as the system as a whole. But often system exploitation needs to have quantification of 

the influence of some components' failure on system reliability or availability. For ex-

ample, quantification of the influence of failure of different drone types on a fleet func-

tioning can be useful for the maintenance of a UAV's fleet. The analysis and evaluation 

of the influence of specified components functioning or their failure on a system is part 
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of the reliability analysis which is known as importance analysis [69]. Methods of im-

portance analysis allow computing of Importance Measures (IM), which quantify the 

impact of specified system components on a system failure or performance. There are 

different types of IMs that quantify various aspects of a system failure or operation in 

case of failure or recovery of a failed component. Most of them depend on the proba-

bility of the component being in working or failed states and they can be computed 

based on data, which is collected in system exploitation. Structural Importance (SI) is 

one of IMs which is based on the topological properties of the system and can be used 

in the step of the system development. Where the information about probabilities of 

components failure is absent. The SI evaluates the probability of the system failure 

depending on specified component fails and it is computed as a relative number of state 

vectors at which a failure of the i-th system component causes a system failure [69]. 

This definition supposes the identification of situations in which a failure of a fixed 

component causes the system failure. In the case of a drone fleet analysis, this measure 

allows us to evaluate the probability of a fleet failure if a specified drone or CU fail. 

There are different algorithms, which allow the computation of the SI [67, 69]. One 

of the known algorithms is based on the application of Direct Partial Boolean Deriva-

tives (DPBD) [63]. According to the definition of this derivative in Boolean algebra, 

DPLD with respect of the i-th variable allows defining the sets of a Boolean function 

variables values for which the change of the i-th variable value results in the change of 

the Boolean function value [70, 71]. In reliability analysis DPLD of the structure func-

tion (1) allows the definition of the system component states (state vectors) for which 

the change of the i-th component state results in the change of the system state [63]: 

  
𝜕𝜙(𝑗 → 𝑗̃)

𝜕𝑥𝑖(𝑠 → �̃�)
= {

1, 𝑖𝑓 𝜙(𝑠, 𝒙) = 𝑗 𝑎𝑛𝑑  𝜙(�̃�, 𝒙 ) = 𝑗̃) 
0, 𝑜𝑡ℎ𝑒𝑟                                                  

, (23) 

 

where s, �̃�, j, 𝑗̃ {0,1} and 𝑠 ≠ �̃�, 𝑗 ≠ 𝑗̃; the change of the variable value from s to �̃� 

and the function value from j to 𝑗̃ is defined by the symbol . 

In this paper, an unrecoverable fleet is considered, therefore the SI for the system 

failure depending on its components failure is used in the analysis. In this case, the 

DPLD is defined as: 

 
𝜕𝜙(1→0)

𝜕𝑥𝑖(1→0)
= {

1, 𝑖𝑓 𝜙(1, 𝒙) = 1 𝑎𝑛𝑑  𝜙(0, 𝒙 ) = 0) 
0, 𝑜𝑡ℎ𝑒𝑟                                                  

= 𝜙(0𝑖, 𝒙)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∧ 𝜙(1𝑖 , 𝒙),  (24) 

The definitions of the SI and DPLD (1.23) have an obvious correlation, which can be 

used for the SI computation based on DPLD [63]: 

  

SI𝑖 = TD (
𝜕𝜙(1 → 0)

𝜕𝑥𝑖(1 → 0)
) =

𝜌

2𝑛−1
, (25) 

where TD(.) is the truth density of the argument and this value agrees with the relative 

number of vectors for which the argument takes a nonzero value; 𝜌 is the number of 

the system states for which the i-th system component failure causes the system failure 

or it is non-zero values of the DPBD (24) 
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The SIs for considered structures of drone fleets are computed based on their struc-

ture function definitions (2) – (4), (6) – (10) according to (25). the computation of SIs 

of a drone of homogenous and heterogeneous irredundant drone fleets (Table 2) are 

computed as SI of a series system. The SIs of CU in irredundant drone fleets with cen-

tral CU are computed based on a series system too. The definition of SI of UAV in a 

homogenous hot stable redundant drone fleet with decentral control is SI of k-out-of-n 

system defined in [72]. In the study [73] the chain rule for the calculation of DPBD of 

complex structure function represents a system has been introduced. In the study [73], 

a complex system is interpreted as a system that can be decomposed to a set of based 

structures as series, parallel, and k-out-of-n. The chain rule is used for the definition of 

SIs of a drone and CU for a homogenous hot stable redundant drone fleet with central 

CU in Table 2. Based on the chain rule the SIs of a drone in heterogeneous hot stable 

redundant drone fleets with decentral control and central CU have been defined too. 

Table 2. The SIs of the components of drone fleets. 

A fleet structure SI 

the i-th drone CU 

Homogenous irredun-

dant drone fleet with 

distributed control 

1

2𝑛−1
 

 

Homogenous irredun-

dant drone fleet with 

central CU 

1

2𝑛−1
 

1

2𝑛−1
 

Homogenous hot stable 

redundant drone fleet 

with decentral control 

(𝑛 − 1)!

2𝑛−1 ∙ (𝑛 − 𝑘)! ∙ (𝑘 − 1)!
 

 

Homogenous hot stable 

redundant drone fleet 

with central CU 

(𝑛 − 2)!

2𝑛−1 ∙ (𝑛 − 1 − 𝑘)! ∙ (𝑘 − 1)!
 

(𝑛 − 2)!

2𝑛−2 ∙ (𝑛 − 1 − 𝑘)! ∙ (𝑘 − 1)!
 

Heterogeneous irre-

dundant drone fleet 

with decentral control 

1

2𝑛−1
 

 

Heterogeneous irre-

dundant drone fleet 

with central CU 

1

2𝑛−1
 

1

2𝑛−1
 

Heterogeneous hot sta-

ble redundant drone 

fleet with decentral 

control 

(∏ ∑
(𝑙𝑟 − 1)!

2𝑙𝑟−1 ∙ (𝑙𝑟 − 𝑘𝑟)! ∙ (𝑘𝑟 − 1)!

𝑙𝑟

𝑠=𝑘𝑟

𝐾

𝑟

) 
 

Heterogeneous hot sta-

ble redundant drone 

fleet with central CU 

(∏ ∑
(𝑙𝑟 − 1)!

2𝑙𝑟−1 ∙ (𝑙𝑟 − 𝑘𝑟)! ∙ (𝑘𝑟 − 1)!

𝑙𝑟

𝑠=𝑘𝑟

𝐾

𝑟

) (∏ ∑
(𝑙𝑟 − 2)!

2𝑙𝑟−2 ∙ (𝑙𝑟 − 𝑘𝑟 − 1)! ∙ (𝑘𝑟 − 1)!

𝑙𝑟−1

𝑠=𝑘𝑟

𝐾

𝑟

) 
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7 Conclusion 

UAVs are widely used for monitoring, search, communications, etc. A significant num-

ber of scientific works are devoted to solving the problems of mission optimization for 

solving the problems of territory coverage, selection of the optimal route under various 

conditions of application of individual UAVs and groups of vehicles. Much less atten-

tion is paid to the reliability analysis of missions by groups (fleets) of UAVs. 

Calculation of UAV fleet reliability is necessary to assess the required degree of fleet 

redundancy in the execution of missions of different types and especially high-respon-

sibility ones. This paper partially closes this gap. The paper describes evaluation meth-

ods. 

Availability of UAV’s fleet based on a structure function. In this paper, a new 

method for the reliability estimation of drone fleet is proposed. This method is based 

on the fleet representation by the structure function (1). The structure function is one of 

the mathematical models in reliability engineering which allows the representation of 

a system of any structural complexity. It is confirmed by a drone fleet analysis. The 

proposed method can be used for the analysis of homogenous and heterogeneous fleets 

which have different types of control. The formulas for the availability calculation for 

8 types of drone fleets are defined (15) – (22). These definitions of availability can be 

used for the simplified evaluation of the fleets of different types (structures). The pro-

posed definitions of availability for different types of drone fleets allow for the provid-

ing of fleets’ reliability analysis with reduced computational complexity. In addition, 

these definitions allow us to evaluate the availability behavior of the considered types 

of UAV’s fleet and propose recommendations for their structure (numbers of drones, 

number of reserved drones, number of drones’ types). These recommendations can be 

formed according to the curves of availabilities changes depending on the structural 

parameters of fleets that are shown in the diagrams in Fig. 4 – 9. The influence of a 

drone breaks down to the fleet failure is studied through the importance analysis ap-

proach. The measures of SIs are defined in Table 2 for considered structures of fleets. 

In the future investigation the analysis of these measures will be implemented in more 

detail and other IMs, for example, Birnbaum Importance will be studied too. 
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