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A B S T R A C T  
 
Bio-nanotechnology exploits physicochemical approaches and biological 

principles in order to produce specifically functionalized nano-sized particles. 

Nanoparticles may be very effective molecules in the development of novel 

therapeutic approaches against several diseases including cancer. 

Consequently, synthesis of metallic nanoparticles for the improvement of 

therapeutic index and drug delivery applications is coming up as an effective 

strategy in the conventional therapeutic anticancer research. In recent years, 

the auspicious anticancer potential of nano-particulate metallic forms of gold, 

silver, and copper is progressively being established. As a result, the 

development of copper-derived nano-therapeutics is challenging due to the 

cost-effectiveness of copper, and the already extensively studied anticancer 

potential of copper-based nanoparticles such as copper oxide nano-

formulations. However, limited investigations have been conducted on the 

anticancer efficacy of metallic copper nanoparticles. Herein, we present an 

analytical overview of the therapeutic applications of copper nanoparticles as 

efficient anticancer agents. 

Introduction 

Nano-biotechnology, and more specifically the synthetic procedures of metallic 

nanoparticles (NPs) along with their biological applications have attracted 

increasing scientific interest due to their distinctive chemical and physical 

properties [1], synthetic feasibility, low production cost [1] and, additionally, 

because of their significantly valuable applicability in the fields of medicine 

and pharmaceutical science [3-6] Until today, several physicochemical 

approaches have been developed on the synthesis of diversified types of 

metallic NPs. Various research fields such as experimental medicine, drug 

design, drug delivery, electrical and electronics engineering, electrochemical 

sensor and biosensor development, agricultural science and biochemistry are 

delving into the development and further implementation of novel metallic NPs 

[7-9].  

Worldwide, cancer constitutes one of the most common health issues. 

Nowadays, novel cancer treatment approaches include utilization of 

nanomaterials along with their unique biochemical properties. The therapeutic 

efficacy of nano-scale molecules relies heavily on their enhanced reactive 

surface area, compared to conventional small-molecule drugs and 

pharmaceuticals. Until recently, the anticancer potential of nano-particulate  
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forms of metals including gold, silver, and copper has 

progressively being documented [10-13]. However, the 

low cost of copper compared to that of gold and 

silver, 

Although there are several scientific reports on the 

anticancer potential of copper oxide NPs [44-48], 

limited research results have been disseminated on the 

antitumor potency of metallic copper NPs [49,50], 

mainly due to their unstable and easily oxidized form at 

ambient temperature conditions. Herein, we present a 

concise overview of the therapeutic applications of 

copper NPs as anticancer agents. 

Synthesis and characterization techniques of 

metallic NPs 

1. Physical and chemical synthetic methods of copper 

NPs 

Various physical and chemical methods have been 

applied for the synthesis of metallic NPs including 

copper NPs such as: microwave-assisted processes and 

sol-gel procedures [51], co-precipitation [52], pulsed 

wire discharge [53],laser ablation [54],high-energy 

irradiation [55], vacuum-vapor deposition [56], 

mechanical milling [57], lithography [58], 

electrochemistry and photochemical reduction, [59-63], 

hydrothermal reaction [64], micro-emulsion [65], 

electrospray synthesis [66], and chemical reduction [67].  

2. Biosynthetic methods or “green”-synthesized 

copper NPs 

The biosynthetic procedures of NPs are based on green 

chemistry methods employing different biological 

systems including plants [68,69], fungus [40,70-72], 

actinomycetes [73,74] yeast [75-77], bacteria [78-82], 

and viruses [83,84].  

“Green”-synthesized copper NPs are produced through 

the utilization of phytochemicals in order to generate 

nano-formulations of more flexible shapes and sizes by 

controlling either the reaction temperature, time, and pH 

and, additionally, the concentrations of the employed 

plant extract and/or metal salt [67]. The successful 

reduction of the copper ion and the subsequent 

formation of the pursued NPs, which is an instant 

phenomenon, are confirmed through the observed color 

change of the reaction mixture. Phytochemicals also 

operate as the stabilizing agents of the produced NPs, 

as depicted in Scheme 1 [67]. 

“Bionanofactories”, such as macroalgae, can synthesize 

highly stable and functional metallic NPs capable of 

eliminating cell maintenance [85]. Recently, gold NPs 

were synthesized through the utilization of algae 

extracts including Sargassum wightii [86], Laminaria 

japonica [87], Turbinaria conoides [88], and 

Stoechospermum marginatum [89]. In general,  

results in the enhanced development of copper-

based NPs as therapeutics. Copper NPs constitute a 

particular group of metallic NPs produced via 

contemporary technologies and with advantageous 

physicochemical, biological and mechanical properties 

[14,15]. Moreover, it has been proved that copper and 

copper-based NPs exhibit enhanced toxicity against 

various microorganisms, thus becoming an effective 

antimicrobial and antifungal agent [16-22]. 

 Synthesis of copper NPs involves short and simple 

experimental procedures and cost-effective reaction 

conditions with high production yields compared to other 

types of metal NPs [23,24]. Their wide range of nano-

dimensions and surface-to-volume ratios abet their 

potency as medicinal, pharmaceutical, and therapeutic 

agents [25,26]. Moreover, copper NPs can be utilized 

as DNA-cleavage agents and potent anticancer 

therapeutics due to their binding capacity and 

modifiable surface properties through conjugation with 

various bio-molecules including enzymes and proteins 

[27-30]. Copper NPs can also function as effective drug 

delivery nano-formulations and molecular doping 

systems operating as controllers of cancer cell growth 

[31-33]. 

However, the toxic profile of the implemented chemicals 

and the environmentally harmful physicochemical 

methods applied during the production of copper NPs 

[34,35] urges the need for the development of eco-

friendlier methods of synthesis [36], maintaining the 

desired morphology, size, and stability combined with 

improved pharmaceutical and medicinal properties [37-

40]. Eco-friendly synthesized bio-mediated 

nanoparticles [41] can be used as an effective nano-

drug against several types of cancer disease [42,43]. 
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Scheme 1: Reduction of copper ions and stabilization-capping of the produced copper NPs. 

 

 

 

Scheme 2: Morphological and physicochemical characterization techniques of metallic NPs. 
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macroalgae (seaweeds) constitute a significant source of 

biomedical substances and compounds with exceptional 

antibacterial [90], antifouling [91], and anticoagulant 

activity [92]. 

3. Characterization techniques  

Several techniques are employed for the 

physicochemical and morphological characterization of 

the produced NPs as depicted in Scheme 2. A detailed 

overview of the determined characteristics and 

attributes of each morphological and physicochemical 

characterization technique is presented in Table 1.  

The most widely used analytical methods for the 

detection of copper in aqueous media and/or biological 

fluids are Atomic Absorption Spectrometry (AAS) with 

flame detection or stabilized temperature platform 

graphite furnace, inductively coupled plasma mass 

spectrometry (ICP-MS) or inductively coupled plasma 

atomic emission spectroscopy, and X-ray fluorescence 

spectrometry [93-97]. One of the main applications of 

the specific analytical techniques is the determination of 

main and trace element concentration in different human 

fluids and tissues [98,99]. It has been proved that 

increased copper concentrations in serum results in tumor 

genesis, malignant proliferation and recurrence in 

several types of human cancers [98-100]. 

4 Dietary copper intake and therapeutic copper dosing 

Copper is considered an essential nutrient. In the 

majority of foods, copper is presently bound to 

macromolecules rather than as a free metal ion [101]. 

Recent recommended dietary allowance (RDA) reports 

established a daily copper intake of 900 µg for adults, 

340 µg/day for children for the first 3 years of age, 

440 µg/day for ages between 4-8 years, 700 µg/day 

for ages between 9-13 years, and 890 µg/day for 

ages between 14-18 years [102]. Moreover, RDA 

copper values of 1000 µg/day and 1300 µg/day are 

recommended during pregnancy and lactation, 

respectively. However, no sufficient RDA data have 

been established for infants. Reports on the copper 

concentration in human milk implied that copper intakes 

of 200 µg/day and 220 µg/day were sufficient for the 

first 6 months and for the second 6 months of life, 

respectively. The estimated daily average amounts of 

required copper are 12.5 µg.kg-1 of body weight for 

adults and 50 µg.kg-1

• For copper deficiency: daily doses up to 0.1 

mg

 of body weight for infants, 

respectively [103]. The established tolerable copper 

intake level from foods and supplements for adults 

(including breastfeeding age) is 10 mg/day, 1 mg/day 

for children of age 1-3 years, 3 mg/day for children of 

age 4-8 years, 5 mg/day for children of age 9-13 

years, and 8 mg/day for pregnancy age and ages 

between 14 and 18 years [102]. For 19-year-old men 

and women the copper RDA is 900 mcg/day, and for 

pregnancy and breastfeeding age the copper RDA is 

1000 mcg/day and 1300 mcg/day for women of all 

ages, respectively [104]. The therapeutic copper dose 

levels that have been scientifically studied are [105-

109]: 

Orally: 

.kg-1 of CuSO4

• For osteoporosis: daily mixed doses of 2.5 mg 

copper in combination with 1000 mg 

. 

calcium, 15 mg 

zinc, and 5 mg manganese. 

Intravenously: 

• For severe copper deficiency: intravenous 

provision of copper (2-4 mg/day). For mild to moderate 

copper deficiency: intravenous provision of copper (3-8 

mg/day). 

Anticancer Activity of Copper NPs 

1. Anticancer activity of “green”-synthesized copper 

NPs 

Recent studies on the anticancer potential and cytotoxic 

activity of “green” synthesized copper NPs from 

Sargassum polycystum brown seaweed (Figure 1), 

utilizing copper sulfate (CuSO4) as the precursor, 

indicated that NP concentrations of 100 μg.ml−1 can 

efficiently provoke inhibition of the growth of MCF-7 

breast cancer cells at percentages higher than 93% and 

with an IC50 value of 61.25 μg.ml−1

Studies on the biosynthesis of copper NPs utilizing plants 

including Nerium oleander [111], and Magnolia Kobus 

[112], have previously been reported. The findings of 

recent studies on the biosynthetic procedure of copper 

NPs utilizing the E. prostrate aqueous leaf extract as a 

 [110]. 

https://www.webmd.com/vitamins-and-supplements/lifestyle-guide-11/supplement-guide-calcium�
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reducing reagent, suggested a promising copper-based 

nanomaterial with improved activity against cell 

proliferation. The in vitro cytotoxic potential of 

increasing concentrations of the corresponding copper 

NPs (1-500 μg.ml-1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

) on the growth and morphological 

characteristics of the human HepG2 cancer cell line, 

estimated via the MTT assay, indicated cellular toxicity 

values of up to 54.5% [113].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Prosopis cineraria are a well-known therapeutic tree 

species with excellent analgesic, antihyperglycemic, 

antipyretic, antihypercholesterolemic, antioxidant, and 

antitumor properties. Examination of the anticancer 

potential of Prosopis cineraria leaf extracts indicated 

growth inhibition of human HeLa and MCF-7 cancer cells 

[114,115].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Determined characteristics and attributes of each morphological and physico-chemical characterization technique [67]. 

Morphological and physico-chemical characterization techniques Determined characteristics and attributes 

Ultraviolet-visible spectroscopy (UV-vis) Concentration and shape of NPs 

Fourier transform infrared spectroscopy (FTIR) Nature of bonds and functional groups 

X-ray diffraction (XRD) Size and crystallinity of NPs 

Scanning electron microscopy (SEM) Shape, size and structure of nano-formulations 

Field emission scanning electron microscopy (FESEM) Structural and morphological characteristics 

Transmission electron microscopy (TEM) Shape, size and structure of nano-formulations 

Particle size analysis (PSA) Size distribution of solid or liquid particulate materials 

Malvern Zetasizer (MZS) Size, zeta potential, and protein mobility 

Energy-dispersive X-ray spectroscopy (EDX/EDS) Composition of NPs 

Nanoparticle tracking analysis (NTA) Particle size, concentration, and fluorescent properties 

Small-angle X-ray scattering (SAXS) Shape and size conformation 

X-ray reflectometry (XRR) Thickness, density, and roughness 

X-ray fluorescence spectroscopy (XRF) Chemical composition and concentration 

X-ray photoelectron spectroscopy (XPS) Elemental composition 

Brunauer-Emmett-Teller analysis (BET) Specific surface area 

Selected area electron diffraction (SAED) Shape, size and structure of nano-formulations 

Atomic force microscopy (AFM) Particle size and surface characterization 

Atomic absorption spectroscopy (AAS) Amount of metal present in metallic nano-formulations 

Inductively coupled plasma mass spectrometry (ICP-MS) Amount of metal present in metallic nano-formulations 

 

 

Figure 1: Sargassum polycystum brown seaweed. 
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Studies on the microwave-assisted synthesis of “eco-

engineered” copper NPs using P. cineraria leaf extracts 

and their cytotoxic and antiproliferative effects against 

human MCF-7 cancer cell line, estimated by the MTT 

assay, indicated that stabilized copper NPs improved 

the cytotoxic activity strongly associated with the DNA-

fragmentation procedure, significantly more effectively 

compared to that of stabilized silver NPs and plant leaf 

extracts [116]. 

Quisqualis indica Linn is an evergreen plant species with 

therapeutic phytoconstituents exhibiting anti-

inflammatory, antipyretic, immuno-modulatory, and 

antibacterial properties [117]. Efforts on the 

development of a green synthetic procedure of copper 

NPs utilizing the Quisqualis indica Linn floral extract 

resulted in the production of mono-disperse nano-

formulations with a dose-dependent (40-120 μg.ml-1) 

cytotoxic activity, as evidenced through extracellular 

Lactate Dehydrogenase (LDH) release, reactive oxygen 

species (ROS) generation, and intracellular reduced 

glutathione (GSH) content depletion in B16F10 

melanoma cells and with an IC50 value lower compared 

to that of the floral extract [118]. 

In recent studies, the eco-friendly synthetic approach of 

highly crystalline and small-sized copper NPs using 

Broccoli Green Extract (BGE) resulted, initially, in rapid 

reduction of CuSO4

A relatively rapid and simple synthetic procedure of 

peptide capped copper NPs in the latex of the 

therapeutic Euphorbia nivulia plant species [121] has 

also been reported [122]. Further studies on the 

cytotoxic potential of the resulting biocompatible latex-

capped nano-formulations in human A549 lung 

carcinoma cells indicated the dose-dependent anti-

proliferative activity of the corresponding nano-

formulations in concentrations ranging between 1-100 

μg

 precursor and, subsequently, in the 

production of relatively small and spherical shaped 

copper nano-formulations. Cytotoxicity studies of the 

corresponding surface modified copper NPs via cellular 

density measurements presented no effect on prostate 

cancer (PC-3) cells in concentrations ranging between 

0.5-1.5 μM and after 2 h of exposure time. The 

collective anti-proliferative outcome is comparable to 

reported results on the observed 44-times more intense 

inhibitory effect of silver NPs against HepG2 

cells compared to normal cells [119,120]. 

.ml−1. These observations confirm the ability of copper 

NPs to induce structural damages of the cellular milieu, 

mitochondrial dysfunction, and high indices of oxidative 

stress [104]. 

Research reports on the “green” and cost-effective 

production of copper NPs utilizing green tea aqueous 

extract as reducing, stabilizing and capping agent 

indicated the synthesis of nano-sized copper 

formulations (≈ 20 nm) with a concentration -dependent 

(2-1024 μg.ml-1) cytotoxic activity against animal cells 

as evidenced via the MTT assay [123]. 

2. Anticancer activity of stabilized copper NPs 

2.1. Anticancer activity of chemically stabilized 

copper NPs: In an effort to produce bioactive metallic 

NPs of variable sizes and shapes, with the desired 

stability and resistance against atmospheric parameters, 

researchers developed several synthetic approaches 

such as the Brust-Schiffrin technique [124], as a two-step 

phase transfer synthetic procedure with a mediated 

phase transfer agent (PTA). The unstable nature of the 

as-produced NPs can be controlled through the 

utilization of a capping stabilizing ligand including the 

biologically effective Schiff base ligands [125]. 

Increasing concentrations (0-250 μg.ml-1

Benzimidazole (BMZ) is considered an effective 

antibacterial agent and its derivatives have been 

proved to possess anticancer properties [127,128]. 

Recent studies on nanoparticulate copper based 

benzimidazole complexes (≈ 100 nm), produced via the 

re-precipitation method, demonstrated the improved 

therapeutic potential of the corresponding nano-

) of newly 

synthesized Schiff base stabilized copper NPs with 

pyrimidine derivatives of 2-(4,6-dimethoxypyrimidin-2-

ylimino)methyl)-6-methoxyphenol (DPMM) showed 

enhanced CT-DNA binding affinity through hydrophobic 

interactions and increased anti-proliferative activity 

against MCF-7 cancer cells as evidenced via the MTT 

assay after 24 h of post-exposure [126]. 
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formulations against malignant cells [129], such as 

NIH/3T3 and A549 cell lines. The novel nanomaterials 

operated as adequate photothermal transducers, during 

the application of the Photothermal Therapeutic method 

(PTT), presenting enhanced binding ability to the target 

cells, energy absorbance, cytotoxic efficacy, and limited 

interaction with the healthy cells [130].  

2.2. Anticancer activity of physically stabilized copper 

NPs 

Efforts on the production of nano-formulations with 

enhanced bactericidal activity resulted in the 

development of gelatin stabilized copper NPs by 

reduction of copper chloride (CuCl2) [131]. The 

corresponding NPs presented exceptional stability and 

sizes of around 50-60 nm and were further attested 

against three cancer cell lines such as: human skin 

melanoma A-375, human lung cancer A-549, and rat 

glioblastoma C6-G. The estimated IC50 values of the 

novel copper NPs were 1.71 μg.ml-1 for the first cancer 

cell line, 1.81 μg.ml-1 for the second, and 1.88 μg.ml-1

Naturally occurring active biomolecules have gained 

great attention due to their utilization in the synthesis of 

metallic NPs [135]. Among various functional and 

therapeutic food ingredients, polyphenols, and more 

specifically curcumin

 

for the third, respectively. These results implied a similar 

cytotoxic profile of the produced copper NPS to all the 

attested cancer cell lines, indicated the effectiveness of 

the corresponding nanomaterials compared to other 

alternatively synthesized types of copper NPs 

[132,133], and stressed the ability of these copper 

nano-formulations to selectively target only the cancer 

cells leaving the peripheral healthy cells unaffected 

[134].  

, have been proved effective 

anticancer agents [136]. Efforts on the development of 

adequate curcumin diverse nanocarriers, in order to 

improve the limited aqueous solubility and 

bioavailability of the corresponding polyphenol, led to 

the synthesis of curcumin-capped copper NPs. The novel 

copper nano-formulations were synthesized according to 

the Creighton method [137], and were further evaluated 

for their anticancer potential via the MTT and cell 

migration assays against human breast cancer cells 

(MDA-MB 231), treated with concentrations ranging 

between 5-25 μM. Furthermore, their antiangiogenic 

potential was further attested using Human Angiogenesis 

ELISA Strip I Kit for profiling eight cytokines and in vivo 

chorioallantoic membrane model (CAM assay). The 

overall results pointed out that the anticancer and 

antiangiogenic activity of the corresponding copper NPs 

did not exceed that of native curcumin [138]. 

Recently, studies on the synthesis of colloidal copper 

nanomaterials led to the production of glycerin 

stabilized copper NPs generated via the reduction of 

CuSO4 by utilizing oxalic acid. The emerged nano-

formulations were further capped with Poly vinyl alcohol 

(PVA). The anticancer activity of the synthesized 

colloidal suspension of copper NPs was determined 

against MCF-7 cancer cells (breast carcinomas) via the 

MTT assay. The results at hand showed that 50% cell 

inhibition was observed after the addition of 250 μg.ml-

1

Recently, chitin nanocomposites with several metallic NPs 

have attracted extensive scientific interest for their 

electronic, optical, catalytic, and mechanical properties. 

In an experimental study on the synthesis of chitin-

copper nanocomposites, the novel nano-formulations 

were further attested for their anticancer activity against 

MCF-7 cancer cells and normal HEK-293T cells. The 

corresponding nanomaterials exhibited enhanced 

anticancer effect, induction of apoptosis, and significant 

 of colloidal copper NPs [139]. 

Anticancer Nanocomposites of Copper NPs 

Polymer/metal nanocomposites represent a category of 

hybrid materials deriving from the synthesis of an 

organic polymer matrix bearing dispersed metallic NPs. 

They are widely applied in drug delivery, molecular 

imaging, cell labeling, diagnosis/treatment, cancer 

therapy, material chemistry and bio-sensing [140-147]. 

Chitin is a non-toxic, renewable, biodegradable, non-

immunogenic, and biocompatible natural polymer that 

can be easily modified into membranes, hydrogels, 

beads, nanofibers, spongesm scaffolds, and 

micro/nanoparticles [148-154].  
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cytotoxicity only to the cancer cells, implying extended 

selectivity and targeted anticancer potential [155].  

Chitosan-copper nanocomposites are a specific type of 

nanomaterials widely used in the fields of biological 

application and environmental remediation [156-158]. 

Studies on newly synthesized spherical chitosan-copper 

nano-formulations proved the ability of the novel 

nanomaterials to induce blebbing and shrinkage of 

A549 cancer cells, reduce cell density and the cell-to-

cell contact in comparison to the corresponding behavior 

of untreated cells. The observed cytotoxic effect 

increased from 0.2% to 10.5%, with increasing 

nanocomposite concentrations from 10 μg.mL-1 to 100 

μg.mL-1, and with the highest IC50 value estimated 

around 434.6 μg.mL-1

Recent efforts on the synthesis of a potent 

chemotherapeutic nano-formulation based on albumin 

led to the production of albumin nano-carriers of copper 

NPs. The novel nanomaterials were further attested for 

their anticancer potential against invasive MDA-MB 231 

cancer cells and normal MCF-10A counterparts. The 

overall findings suggested that the synthesized spherical 

nanomaterials (≈ 100 nm) induced cell death via a 

dose-dependent manner through apoptosis. Their 

cytotoxic activity was estimated 5.7 times more acute 

compared to that on healthy cells as evidenced through 

the observed cyto-morphological changes, cell 

permeability, and the created DNA ladder pattern 

[166]. 

Comparison of the Anticancer Activity between 

Copper NPs and other Types of Metallic NPs 

Various types of metallic NPs have been extensively 

studied for their anticancer properties such as gold 

[167], cobalt [168], silver [169], cerium [170], and 

others. However, copper NPs have become increasingly 

applicable due to their cost effectiveness, enhanced 

cytotoxic potency against cancer cells at low doses and 

longer stability period compared to Au and Ag NPs 

[171-176]. 

As an alternative to silver or gold NPs, CuS NPs and 

generally copper based chalcogenide semiconductor 

NPs represent a novel group of photothermal conducting 

agents that can be easily and cost-effectively 

synthesized and possess a remarkable translational 

potential. Moreover, in contrast to gold NPs, they 

possess a tunable absorption, based on the particle size, 

which can be formulated below 20 nm ensuring near-

infrared absorption, improved clearance and 

pharmacokinetic properties, high tumor accumulation, 

and efficient elimination from the body when their size is 

below 6 nm [177]. 

 [159]. 

In general, the basic characteristic of a potent 

chemotherapeutic drug is its ability to destroy selectively 

only the targeted cancer cells without altering the 

cellular integrity of the peripheral healthy tissues. 

Albumin NPs, as nano-carriers for targeted 

chemotherapeutic drug delivery applications, have 

attracted the scientific attention due to their main ability 

to enhance the endocytic drug uptake by cancer cells 

[160]. This attribute relies heavily on: a) the strong 

permeability and retention effect (EPR) of albumin NPs 

mediated by passive albumin uptake in cancer cells, and 

b) the enhanced active drug absorption by cancer cells, 

initiated by albumin NPs via the albumin receptor. As a 

result, novel drug delivery nano-formulations have been 

designed based on albumin such as prodrugs, drug-

albumin conjugates, albumin-binding drug derivatives, 

and albumin NPs [161]. Another important advantage of 

albumin NPs is their ability to eliminate ethanol, 

cremophor and emulsifiers due to the enhanced drug 

solubility [162]. Serum albumin is considered a very 

functional blood protein due to its ability to maintain 

osmotic pressure and blood pH, transport various types 

of exogenous and endogenous molecules [163], bear 

several binding sites, and possess high half-life in blood 

circulation, great stability and solubility [164,165]. 

Compared to silver and gold, the cytotoxic activity of 

copper has been less studied [178]. However, recent 

investigations on the toxicity of several types of metallic 

NPs (Au, Ag, Cu and Co NPs) through the laser ablation 

method that generates uncapped NPs in solution [179], 

indicated that all types of NPs possess moderate 

cytotoxic behavior to PC3 and HeLa human cell lines 
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with copper NPs presenting the lowest cytotoxicity 

[180]. 

Recent studies on the synthetic procedure of water 

soluble starch stabilized copper NPs produced via the 

utilization of ascorbic acid as the reducing agent 

resulted in the generation of 10 nm copper NPs with 

relatively low cytotoxic levels and enhanced 

bactericidal effect [181]. 

Evaluation studies of the cytotoxic activity of DPMM-

stabilized copper and nickel NPs revealed that the 

newly synthesized DPMM-Cu NPs are more biologically 

active compared to the corresponding nickel NPs due to 

their lower 50% cell viability, better binding affinity 

with CT-DNA, increased interactions with DNA and 

enhanced cytotoxicity against MCF-7 cancer cells [126]. 

Comparative studies through MTT assay on the cytotoxic 

and antiproliferative activity of Prosopis cineraria 

biofabricated copper and silver NPs against MCF-7 

cancer cells proved that the bioengineered copper NPs 

presented better cytotoxic effect (lower IC50) compared 

to that of silver NPs [116]. 

Comparative Analysis of the Anticancer Activity 

of Copper-Derived NPs 

 There are several types of copper-derived NPs with 

proved anticancer activity such as CuI, CuO, CuCO3, 

Cu(PO4)2, Cu2O, CuS [171-176].Recent reports on the 

anticancer potential of CuI and Cu(PO4)2 NPs, with sizes 

ranging from 35 nm to 67 nm, respectively, showed that 

low doses of CuI NPs were more effective in comparison 

to Cu(PO4)2 NPs with 2.5 μg.ml-1 LD50 value for CuI 

and 10 μg.ml-1 for the corresponding Cu(PO4)2 NPs. 

Both types of NPs cause apoptotic mediated cell death 

by inducing ROS-mediated DNA damage [171]. 

Newly synthesized crystalline and amorphous CuS NPs 

of similar sizes (≈50 -60nm) presented enhanced 

cytotoxicity on tumor cells. The LD50 values on HL-60 

cell lines were 29 μg.ml-1 for CuS nanocrystals and 18.5 

μg.ml-1

Research studies on the anticancer potential of Cu

 for amorphous CuS NPs. Moreover, both types of 

NPs mediated targeted apoptosis in tumor cells 

unaffecting peripheral healthy cells [176]. 

2O 

NPs indicated the specific and selective anticancer 

activity of the corresponding type of copper NPs only 

against cancer cells, even at low concentrations, without 

affecting the normal cells [175]. Novel synthetic 

approaches resulted in the production of CuCO3 NPs of 

20 nm average size that can induce ROS-mediated DNA 

and mitochondria damage, resulting in apoptosis in 

tumor cells. The corresponding CuCO3 NPs were 

modified with folic acid in order to obtain targeted 

action against cancer cells. Folic acid is used as a 

precursor for DNA synthesis and its high effectiveness 

depends on its demand for fast reproducibility. 

Furthermore, the corresponding folate receptor is over-

expressed in the majority of cancer cells leading to the 

internalization of folic acid. Consequently, upon 

treatment of mice cancer models with folic acid modified 

CuCO3 NPs, toxicity decreased to the lowest level and 

survivability increased significantly in comparison to the 

control group. Additionally, a reduction of the tumor 

volume was also observed [173]. 

Newly synthesized CuO NPs of spherical shape from 

“green” synthetic approaches and chemical reduction 

processes, resulted in the production of NPs with sizes 

ranging from 5-100 nm depending on the employed 

plant species and the type of the applied chemical 

reduction process. The corresponding group of CuO NPs 

showed enhanced effectiveness against cervical, HeLa 

and MCF-7 breast cancer cells. The proposed anticancer 

mechanism includes autophagy which is provoked by the 

intracellular stress induced by the ROS mediated DNA 

damage leading to apoptosis. Furthermore, conjugation 

of folic acid to the corresponding CuO NPs utilizing 

APTS enhanced their targeted activity and selectivity 

towards cancer cells when attested in vivo [173-

176,182]. 

Several novel types of copper-containing NIR-absorbing 

nano-formulations have been synthesized and further 

attested for PTT such as copper selenide (Cu2-xSe) 

nanocrystals, monodispersed CuTe nanorods, nanoplates, 

and nanocubes, copper bismuth sulfide (Cu3BiS3) nano-

structures. All of the above-mentioned copper-derived 

nano-molecules present enhanced photothermal heating 

efficiency and significant anticancer potential [177]. 
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Developing Approaches of Targeted Anticancer 

Copper and Copper-Derived Nano-Formulations 

Τhe development of lipid and polymer nanocarriers has 

eased the delivery of several therapeutic molecules to 

diseased tissues and cells. Copper NPs, copper-derived 

NPs or copper complexes with organic substrates can be 

easily encapsulated into bioavailable, biodegradable, 

and non-toxic nano-vehicles for targeted administration 

to specific cellular targets.  

Recent scientific results on the encapsulation of 

anticancer copper complexes indicated the development 

of a hydrophobically stearic acid modified chitosan 

nano-formulation bearing hydrophobic copper 

complexes [183,184]. The resulting nanomaterials 

targeted effectively the folate and HER 2 receptors of 

tumor cells, resulting in tumor regression when attested in 

vivo [183]. 

Recently, a novel liposomal nanocarrier bearing the 

antialcoholic drug disulfiram (lipo-DS) combined with 

copper gluconate, was tested in vivo against CSCs 

(tumor initiating cells) in order to avoid pan-

chemoresistance. The corresponding nano-formulations 

targeted the NFκB pathway, presenting an enhanced 

anti-CSC efficacy towards hypoxia-induced CSCs [185]. 

Furthermore, newly synthesized soft copper oleate NPs 

were proved to possess effective photoacoustic (PA) 

contrast, equivalent to gold-based nano-formulations but 

more cost-effective and with higher availability of the 

starting materials. The corresponding type of copper 

NPs presented a strong PA contrast, similar to that of 

gold nanobeacons and relative to blood. Additional in 

vivo studies in the Matrigel angiogenesis model showed 

that ανβ3

Research studies on the development of double-strand 

DNA-hosted copper nanoclusters by utilizing random 

dsDNA (double-stranded DNA) or poly(thymine) ssDNA 

(single-stranded DNA) as the template, indicated that 

the fluorescent properties of the corresponding 

nanomaterials could be applied in the identification 

processes of SNPs (Single nucleotide polymorphisms), 

providing a tool for the fluorimetric diagnosis of DNA 

mismatches [187]. 

Experimental studies on the development of targeted 

drug delivery and bioimaging molecules resulted in the 

formation of transferrin (Tf) templated copper 

nanoclusters (Tf-CuNCs) with enhanced luminescence. The 

corresponding nano-molecules were further formulated 

into spherical transferrin copper nanocluster-doxorubicin 

(Dox) NPs (Tf-CuNC-Dox-NPs) of spherical shape, 

based on the electrostatic interactions with doxorubicin. 

The newly synthesized nanomaterials were further 

assesed in vivo on TfR (Transferrin Receptor) positive 

DLA (Daltons Lymphoma Ascites) bearing mice revealing 

enhanced inhibition of tumor growth and prolongation of 

the survival of the animals [188]. 

Additionally, integration of 

-CuNPs significantly increased the neovessel 

sprout formation levels and operated as efficient anti-

angiogenic fumagillin-prodrug nanocarriers providing 

the first applied targeted approach for the 

development of a drug delivery treatment combined 

with a PA contrast agent [186]. 

64Cu radionuclide into CuS 

NPs without the introduction of radiometal chelators, led 

to the production of the radioactive [64

Physicochemical studies on copper NPs indicate their 

tendency to form aggregates of low solubility in vehicle 

Cu]CuS NPs, 

adequate for quantitative tissue analysis and PET 

(positron emission tomography) imaging. Quantitative 

tissue analysis plays a significant role in the design of 

targeted approaches for NP-based therapy [177]. 

In Vivo Effects of Copper and Copper-Derived NPs 

Studies on the systematic comparison of renal clearance 

rates of luminescent degradable glutathione-coated 

copper NPs (GS-CuNPs) and their dissociated products, 

Cu(II)-glutathione disulfide (GSSG) complexes (Cu(II)-

GSSG), in vivo, indicated that GS-CuNPs can be 

accumulated in the liver less than their dissociation 

counterparts and eliminated through the urinary system 

significantly faster. This behavior can be attributed to 

the increased resistance of GS-CuNPs against serum 

protein adsorption compared to that of Cu(II)-GSSG. 

Additionally, the biodistribution and renal clearance of 

GSCuNPs depend on the type of the dissociation process 

(zero-order chemical kinetics) and the primary injection 

doses [189].  
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or simulated intestinal environment. It has also been 

proved that copper NPs present a satisfactory 

dissolution level in acidic environment but lower than that 

of copper ions. These observations indicate the existing 

interdependence of the biological system and the 

physicochemical characteristics of copper NPs that 

further affect their in vivo toxic behavior. Copper NPs, 

via kinetic studies, have been proved to present 

delayed and lower concentrations of accumulated or 

absorbed copper levels in tested organs and blood 

compared to copper ions. Additionally, the in vivo toxic 

behavior of copper NPs is more profound at high doses 

compared to that of copper ions, eliciting similar 

response with distinct sex-related differentiations. 

Furthermore, copper NPs can induce morphological and 

functional changes in the spleen, kidneys, and liver due 

to in vivo systemic toxic effects associated with their 

biodistribution rate and solubility [190]. Further in vivo 

studies have proved that the decreased particle size of 

copper NPs along with their morphological 

characteristics and the species-specific vulnerability of 

cells can affect their toxicity [191].  

Conclusion 

Several diversified strategies utilize metallic NPs against 

cancer disease. It is proved that NPs can present either 

direct antitumor effects or indirect hyper thermic 

anticancer activity, in vitro and in vivo. Moreover, NPs 

can operate as a conventional anticancer drug, reducing 

both the side effects and the required dose. Despite the 

fact that research on the anticancer potential of metallic 

NPs has been increased, there are still limitations due to 

the cell heterogeneity utilized for each tumor 

environment which hinders the comparative studies. 

Another limitation regards the formation of protein 

corona after the interactions of NPs with the blood and 

the plasma proteins, affecting the in vivo clearance and 

distribution. New research efforts will enable the 

development of novel types of metallic NPs, such as 

copper NPs, with improved and selective anticancer 

activity, enhanced biocompatibility and bio-distribution, 

and low toxicity for normal tissues. 

In this review, we have thoroughly discussed the 

anticancer therapeutic applications of copper and 

copper-derived NPs in vitro and in vivo including drug 

delivery, cancer imaging, image-guided therapy, PTT, 

and developing approaches on selective targeting and 

mitigation of potential toxicities. In comparison to other 

inorganic nanomaterials, such as carbon nanotubes, gold 

nanoshells or nanorods, and other types of metallic NPs, 

copper NPs have not been extensively studied, 

especially in vivo. Their multifunctional features and 

characteristics render copper NPs ideal nanomaterials 

for theranostic applications as contrast agents or nuclear 

tracers for various diagnostic and imaging techniques, 

photothermal cancer cell destruction, and controlled drug 

release applications. Despite many experimental reports 

in vitro, more effort should be focalized on the in vivo 

efficiency, disposition, and properties of copper NPs, 

including their potential cytotoxicity, pharmacokinetics, 

and pharmacodynamics in order to evaluate their 

limitations and advantages along with their controllable 

long-term cytoxicity, favorable in vivo pharmacology, 

and photothermal conversion capacity. 
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