
Eleanor W TrotterThe University of Manchester
Eleanor W Trotter
About
32
Publications
8,440
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,659
Citations
Citations since 2017
Publications
Publications (32)
A major challenge in cancer genomics is identifying “driver” mutations from the many neutral “passenger” mutations within a given tumor. To identify driver mutations that would otherwise be lost within mutational noise, we filtered genomic data by motifs that are critical for kinase activity. In the first step of our screen, we used data from the C...
A major challenge in cancer genomics is identifying driver mutations from the large number of neutral passenger mutations within a given tumor. Here, we utilize motifs critical for kinase activity to functionally filter genomic data to identify driver mutations that would otherwise be lost within mutational noise. In the first step of our screen, w...
Head and neck squamous cell carcinoma (HNSCC) includes epithelial cancers of the oral and nasal cavity, larynx, and pharynx and accounts for ~350,000 deaths/year worldwide. Smoking-related HNSCC is associated with few targetable mutations but is defined by frequent copy number alteration, the most common of which is gain at 3q. Critical 3q target g...
Non-small cell lung cancer (NSCLC) is the most frequent lung cancer subtype and it affects near 1.5 million patients worldwide annually. The lack of actionable mutations in NSCLC patients presents a significant hurdle in the administration of targeted therapies for this disease, and their identification is an urgent unmet need. Here we identify som...
Review Process File
Source Data for Figure 1
Expanded View Figures PDF
Source Data for Expanded View
Source Data for Figure 2
Source Data for Figure 4
The lack of actionable mutations in patients with non-small cell lung cancer (NSCLC) presents a significant hurdle in the design of targeted therapies for this disease. Here, we identify somatically mutated ABL1 as a genetic dependency that is required to maintain NSCLC cell survival. We demonstrate that NSCLC cells with ABL1 mutations are sensitiv...
Protein kinase C (PKC) remains an elusive chemotherapeutic target despite decades of research. To determine whether PKC isozymes function as oncogenes or tumor suppressors, we analyzed 8% of PKC mutations identified in human cancers. Surprisingly, the majority were loss-of-function and none were activating. Loss-of-function mutations were found in...
Protein kinase C (PKC) isozymes have remained elusive cancer targets despite the unambiguous tumor promoting function of their potent ligands, phorbol esters, and the prevalence of their mutations. We analyzed 8% of PKC mutations identified in human cancers and found that, surprisingly, most were loss of function and none were activating. Loss-of-f...
Cancer genome sequencing is being employed at an increasing rate to identify actionable driver mutations that can inform therapeutic intervention strategies. A comparison of two of the most prominent cancer genome sequencing databases from different institutes (CCLE and COSMIC) revealed marked discrepancies in the detection of missense mutations in...
RAF inhibitor therapy yields significant reductions in tumour burden in the majority of V600E-positive melanoma patients; however, resistance occurs within 2-18 months. Here we demonstrate that the mixed lineage kinases (MLK1-4) are MEK kinases that reactivate the MEK/ERK pathway in the presence of RAF inhibitors. Expression of MLK1-4 mediates resi...
Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA
Protein kinase C (PKC) levels are aberrant in diverse cancers and over 400 mutations in PKC have been identified in human cancers. Here we characterized PKC mutations identified in human cancers to investigate whether PKCs function as oncogenes or tumor suppressors or whether th...
Approximately 70% of all NSCLC patients present with late stage disease (stage III-IV) and there is a pressing need to develop better therapies for these patients. This remains a major challenge as the underlying genetic causes of nearly half of all NSCLCs remain unknown. Recent success with therapies targeting mutationally activated EGFR and const...
Approximately 70% of patients with non-small-cell lung cancer present with late-stage disease and have limited treatment options, so there is a pressing need to develop efficacious targeted therapies for these patients. This remains a major challenge as the underlying genetic causes of ∼50% of non-small-cell lung cancers remain unknown. Here we dem...
Objective:
Systemic lupus erythematosus (SLE) is a prototype autoimmune disease that is assumed to occur via a complex interplay of environmental and genetic factors. Rare causes of monogenic SLE have been described, providing unique insights into fundamental mechanisms of immune tolerance. The aim of this study was to identify the cause of an aut...
Understanding gene regulation requires knowledge of changes in transcription factor (TF) activities. Simultaneous direct measurement of numerous TF activities is currently impossible. Nevertheless, statistical approaches to infer TF activities have yielded non-trivial and verifiable predictions for individual TFs. Here, global statistical modelling...
Many bacteria undergo transitions between environments with differing O₂ availabilities as part of their natural lifestyles and during biotechnological processes. However, the dynamics of adaptation when bacteria experience changes in O₂ availability are understudied. The model bacterium and facultative anaerobe Escherichia coli K-12 provides an id...
Oxygen availability is the major determinant of the metabolic modes adopted by Escherichia coli. Although much is known about E. coli gene expression and metabolism under fully aerobic and anaerobic conditions, the intermediate oxygen tensions that are encountered
in natural niches are understudied. Here, for the first time, the transcript profiles...
The yeast Tsa1 peroxiredoxin, like other 2-Cys peroxiredoxins, has dual activities as a peroxidase and as a molecular chaperone. Its peroxidase function predominates in lower-molecular-mass forms, whereas a super-chaperone form predominates in high-molecular-mass complexes. Loss of TSA1 results in aggregation of ribosomal proteins, indicating that...
Acrolein is a ubiquitous reactive aldehyde which is formed as a product of lipid peroxidation in biological systems. In this
present study, we screened the complete set of viable deletion strains in Saccharomyces cerevisiae for sensitivity to acrolein to identify cell functions involved in resistance to reactive aldehydes. We identified 128 mutants...
Thioredoxins are small, highly conserved oxidoreductases which are required to maintain the redox homeostasis of the cell.
Saccharomyces cerevisiae contains a cytoplasmic thioredoxin system (TRX1, TRX2, and TRR1) as well as a complete mitochondrial thioredoxin system, comprising a thioredoxin (TRX3) and a thioredoxin reductase (TRR2). In the presen...
Depletion of the cellular pool of glutathione is detrimental to eukaryotic cells and in Saccharomyces cerevisiae leads to sensitivity to oxidants and xenobiotics and an eventual cell cycle arrest. Here, we show that the Yap1 and Met4
transcription factors regulate the expression of γ-glutamylcysteine synthetase (GSH1), encoding the rate-limiting en...
Our studies in yeast show that there is an essential requirement for either an active thioredoxin or an active glutathione (GSH)-glutaredoxin system for cell viability. Glutathione reductase (Glr1) and thioredoxin reductase (Trr1) are key regulatory enzymes that determine the redox state of the GSH-glutaredoxin and thioredoxin systems, respectively...
Thioredoxins are small, highly conserved oxidoreductases that are required to maintain the redox homeostasis of the cell. They have been best characterized for their role as antioxidants in protection against reactive oxygen species. We show here that thioredoxins (TRX1, TRX2) and thioredoxin reductase (TRR1) are also required for protection agains...
Cells may sense heat shock via the accumulation of thermally misfolded proteins. To explore this possibility, we determined the effect of protein misfolding on gene expression in the absence of temperature changes. The imino acid analog azetidine-2-carboxylic acid (AZC) is incorporated into protein competitively with proline and causes reduced ther...
Accumulation of misfolded proteins in the cell at high temperature may cause entry into a nonproliferating, heat-shocked state. The imino acid analog azetidine 2-carboxylic acid (AZC) is incorporated into cellular protein competitively with proline and can misfold proteins into which it is incorporated. AZC addition to budding yeast cells at concen...