
Elchin JafarovWoodwell Climate Research Center | WHRC
Elchin Jafarov
Ph.D. University of Alaska Fairbanks
About
67
Publications
20,294
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,756
Citations
Introduction
Cryoshpere, Permafrost, Snow, Soil Biogeochemistry
Additional affiliations
October 2019 - present
September 2016 - September 2019
May 2015 - August 2016
Publications
Publications (67)
Fire is an important factor controlling the composition and thickness of the organic layer in the black spruce forest ecosystems of interior Alaska. Fire that burns the organic layer can trigger dramatic changes in the underlying permafrost, leading to accelerated ground thawing within a relatively short time. In this study, we addressed the follow...
Climate projections for the 21st century indicate that there could be a pronounced warming and permafrost degradation in the Arctic and sub-Arctic regions. Climate warming is likely to cause permafrost thawing with subsequent effects on surface albedo, hydrology, soil organic matter storage and greenhouse gas emissions.
To assess possible changes...
Flooding of low-lying Arctic regions has the potential to warm and thaw permafrost by changing the surface reflectance of solar insolation, increasing subsurface soil moisture, and increasing soil thermal conductivity. However, the impact of flooding on permafrost in the continuous permafrost environment remains poorly understood. To address this k...
We present a numerical Tikhonov regularization method that can be used to reconstruct past ground surface temperature (GST) records from borehole temperatures. The present ground temperature preserves past climatic signals according to the heat diffusion process in permafrost-affected soils. To track past surface temperature, we employ an inverse m...
A significant portion of the Arctic coastal plain is classified as polygonal tundra and plays a vital role in soil carbon cycling. Recent research suggests that lateral transport of dissolved carbon could exceed vertical carbon releases to the atmosphere. However, the details of lateral subsurface flow in polygonal tundra have not been well studied...
The pathways and timing of drainage from the inundated centers of ice-wedge polygons in a warming climate have important implications for carbon flushing, advective heat transport, and transitions from methane to carbon dioxide dominated emissions. Here, we expand on previous research using a recently developed analytical model of drainage from a l...
Active layer thickness (ALT) is a critical metric for monitoring permafrost. How soil moisture influences ALT depends on two competing hypotheses: (a) increased soil moisture increases the latent heat of fusion for thaw, resulting in shallower active layers, and (b) increased soil moisture increases soil thermal conductivity, resulting in deeper ac...
The pathways and timing of drainage from inundated ice-wedge polygon centers in a warming climate have important implications for carbon flushing, advective heat transport, and transitions from carbon dioxide to methane dominated emissions. This research provides intuition on this process by presenting the first in-depth analysis of drainage from a...
Active management of fire-dependent ecosystems for specific species leads to complex tradeoffs, which affect conservation outcomes to other species. Therefore a multi-species evaluation of management actions is required. Habitat Suitability Models (HSMs) can help in predicting the likelihood of species occurrence using corresponding environmental v...
As ice wedge degradation and the inundation of polygonal troughs become increasingly common processes across the Arctic, lateral export of water from polygonal soils may represent an important mechanism for the mobilization of dissolved organic carbon and other solutes. However, drainage from ice wedge polygons is poorly understood. We constructed...
Mercury (Hg) is a naturally occurring element that bonds with organic matter and, when converted to methylmercury, is a potent neurotoxicant. Here we estimate potential future releases of Hg from thawing permafrost for low and high greenhouse gas emissions scenarios using a mechanistic model. By 2200, the high emissions scenario shows annual permaf...
Abstract. The pathways and timing of drainage from inundated ice-wedge polygon centers in a warming climate have important implications for carbon flushing, advective heat transport, and transitions from carbon dioxide to methane dominated emissions. This research helps to understand this process by providing the first in-depth analysis of drainage...
This study investigates and compares soil moisture and
hydrology projections of broadly used land models with permafrost processes
and highlights the causes and impacts of permafrost zone soil moisture
projections. Climate models project warmer temperatures and increases in
precipitation (P) which will intensify evapotranspiration (ET) and runoff i...
Modeling is an important way to assess current and future permafrost spatial distribution and dynamics, especially in data poor areas like the Arctic region. Here, we evaluate a physics-based analytical model, Kudryavtsev's active layer model, which is widely used because it has relatively few data requirements. This model was recently incorporated...
Studies indicate greenhouse gas emissions following permafrost thaw will
amplify current rates of atmospheric warming, a process referred to as the
permafrost carbon feedback. However, large uncertainties exist regarding the
timing and magnitude of the permafrost carbon feedback, in part due to
uncertainties associated with subsurface permafrost pa...
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Recent warming in the Arctic, which has been amplified during the winter1,2,3, greatly enhances microbial decomposition of soil organic matter and subsequent release of carbon dioxide (CO2)⁴. However, the amount of CO2 released in winter is not known and has not been well represented by ecosystem models or empirically based estimates5,6. Here we sy...
Divergence in land carbon cycle simulation is persistent and widespread. Regardless of model intercomparison project, results from individual models diverge significantly from each other and, in consequence, from reference datasets. Here we link model spread to structure using a 15-member ensemble of land surface models from the Multi-scale synthes...
This study investigates and compares soil moisture and hydrology projections of broadly-used land models with permafrost processes and highlights the causes and impacts of permafrost zone soil moisture projections. Climate models project warmer temperatures and increases in precipitation (P) which will intensify evapotranspiration (ET) and runoff i...
Studies indicate greenhouse gas emissions following permafrost thaw will amplify current rates of atmospheric warming, a process referred to as the permafrost carbon feedback (PCF). However, large uncertainties exist regarding the timing and magnitude of the PCF, in part due to uncertainties associated with subsurface permafrost parameterization an...
Arctic feedbacks accelerate climate change through carbon releases from thawing permafrost and higher solar absorption from reductions in the surface albedo, following loss of sea ice and land snow. Here, we include dynamic emulators of complex physical models in the integrated assessment model PAGE-ICE to explore nonlinear transitions in the Arcti...
Recent observations of near-surface soil temperatures over the circumpolar
Arctic show accelerated warming of permafrost-affected soils. The
availability of a comprehensive near-surface permafrost and active layer
dataset is critical to better understanding climate impacts and to
constraining permafrost thermal conditions and its spatial distributi...
Through taliks – thawed zones extending through the entire permafrost layer – represent a critical type of heterogeneity that affects water redistribution and heat transport, especially in sloping landscapes. The formation of through taliks as part of the transition from continuous to discontinuous permafrost creates new hydrologic pathways connect...
A new resource makes it easier for researchers to explore predictions of how melting permafrost might affect carbon release, wetlands, and river deltas as they evolve and other interacting effects.
Recent observations of near-surface soil temperatures over the circumpolar Arctic show accelerated warming of permafrost-affected soils. A comprehensive near-surface permafrost temperature dataset is critical to better understand climate impacts and to constrain permafrost thermal conditions and spatial distribution in land system models. We compil...
Significance
We applied regional and global-scale biogeochemical models that coupled thaw depth with soil carbon exposure to evaluate the dependence of the evolution of future carbon storage in the northern permafrost region on the trajectory of climate change. Our analysis indicates that the northern permafrost region could act as a net sink for c...
Changing climate in northern regions is causing permafrost to thaw with major implications for the global mercury (Hg) cycle. We estimated Hg in permafrost regions based on in situ measurements of sediment total mercury (STHg), soil organic carbon (SOC), and the Hg to carbon ratio (RHgC) combined with maps of soil carbon. We measured a median STHg...
Ground penetrating radar (GPR) has emerged as an effective tool for estimating active layer thickness (ALT) and volumetric water content (VWC) within the active layer. In August 2013, we conducted a series of GPR and probing surveys using a 500 MHz antenna and metallic probe around Barrow, Alaska. We collected about 15 km of GPR data and 1.5 km of...
Arctic feedbacks will accelerate climate change and could jeopardise mitigation efforts. The permafrost carbon feedback releases carbon to the atmosphere from thawing permafrost and the sea ice albedo feedback increases solar absorption in the Arctic Ocean. A constant positive albedo feedback and zero permafrost feedback have been used in nearly al...
We developed a Data Integration Tool (DIT) to significantly speed up the time of manual processing needed to translate inconsistent, scattered historical permafrost data into files ready to ingest directly into the Global Terrestrial Network-Permafrost (GTN-P). The United States National Science Foundation funded this project through the National S...
Historically, in-situ measurements have been notoriously sparse over the Arctic. As a consequence, the existing gridded data of Surface Air Temperature (SAT) may have large biases in estimating the warming trend in this region. Using data from an expanded monitoring network with 31 stations in the Alaskan Arctic, we demonstrate that the SAT has inc...
Modern climate change in Alaska has resulted in widespread thawing of permafrost, increased fire activity, and extensive changes in vegetation characteristics that have significant consequences for socio-ecological systems. Despite observations of the heightened sensitivity of these systems to change, there has not been a comprehensive assessment o...
Modern geoscientists have online access to an abundance of different data sets and models, but these resources differ from each other in myriad ways and this heterogeneity works against interoperability as well as reproducibility. The purpose of this paper is to illustrate the main issues and some best practices for addressing the challenge of repr...
A significant portion of the large amount of carbon (C) currently stored in soils of the permafrost region in the Northern Hemisphere has the potential to be emitted as the greenhouse gases CO2 and CH4 under a warmer climate. In this study we evaluated the variability in the sensitivity of permafrost and C in recent decades among land surface model...
Active-layer thickness (ALT) is an important parameter for studying surface energy balance, ecosystems, and hydrologic processes in cold regions. We measured ALT along 10 routes with lengths ranging from 0.7 to 6.9 km located on the Alaska North Slope near Toolik Lake and the Happy Valley airstrip (between 68.475° and 69.150°N, and -149.512° and -1...
As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of fur...
We present an approach to estimate the feedback from large-scale thawing of permafrost soils using a simplified, data-constrained model that combines three elements: soil carbon (C) maps and profiles to identify the distribution and type of C in permafrost soils; incubation experiments to quantify the rates of C lost after thaw; and models of soil...
This data set includes estimates of permafrost Active Layer Thickness (ALT; cm), and calculated uncertainties, derived using a ground-penetrating radar (GPR) system in the field in August 2014 near Toolik Lake and Happy Valley on the North Slope of Alaska. GPR measurements were taken along 10 transects of varying length (approx. 1 to 7 km). Traditi...
We examined natural and anthropogenic controls on terrestrial evapotranspiration (ET) changes from 1982 to 2010 using multiple estimates from remote sensing-based datasets and process-oriented land surface models. A significant increasing trend of ET in each hemisphere was consistently revealed by observationally-constrained data and multi-model en...
Respiration in frozen soils is limited to thawed substrate within the thin water films surrounding soil particles. As temperatures decrease and the films become thinner, the available substrate also decreases, with respiration effectively ceasing at −8 °C. Traditional exponential scaling factors to model this effect do not account for substrate ava...
Permafrost-affected soils contain twice as much carbon as currently exists in the atmosphere. Studies show that warming of the
perennially frozen ground could initiate significant release of the frozen soil carbon into the atmosphere. To reduce the
uncertainty associated with the modeling of the permafrost carbon feedback it is important to start w...
Active layer thickness (ALT) is a critical parameter for monitoring the status of permafrost that is typically measured at specific locations using probing, in situ temperature sensors, or other ground-based observations. Here we evaluated the Remotely Sensed Active Layer Thickness (ReSALT) product that uses the Interferometric Synthetic Aperture R...
Wildfire is a major disturbance in the Arctic tundra and boreal forests, having a significant impact on soil hydrology, carbon cycling, and permafrost dynamics. This study explores the use of the microwave Interferometric Synthetic Aperture Radar (InSAR) technique to map and quantify ground surface subsidence caused by the Anaktuvuk River fire on t...
We present an inverse modeling approach for reconstructing the effective thermal conductivity of snow on a daily basis using air temperature, ground temperature and snow depth measurements. The method is applied to four sites in Alaska. To validate the method we used measured snow densities and snow water equivalents. The modeled thermal conductivi...
By any measure, climate change promises to bring major impacts to parks and preserves in the Alaska region. We know with great certainty that temperatures will continue to increase in coming decades, and warming will undoubtedly be accompanied by some combination of altered precipitation regimes, changes in seasonal weather patterns, and shifting e...
INSTITUTIONS (ALL): 1. National Snow and Ice Data Center, University of Colorado, Boulder, CO, United States.
2. Flathead Lake Biological Station, University of Montana, Polson, MT, United States.
ABSTRACT BODY: The Permafrost Carbon Feedback (PCF) is an amplification of surface warming due to the release of CO2 and CH4 from thawing permafrost. C...
Climate projections for the 21st century indicate that there could be a pronounced warming and permafrost degradation in the Arctic and sub-Arctic regions. Climate warming is likely to cause permafrost thawing with subsequent effects on surface albedo, hydrology, soil organic matter storage and greenhouse gas emissions. To assess possible changes i...
An increasing amount of ground temperature data from permafrost
observation stations in Alaska provides a valuable dataset for detailed
analysis and modeling of permafrost current dynamics. The ground
temperature data from fourteen boreholes were used to forecast
permafrost thermal state by the end of the current century. We studied
variations in g...