Efrén Mezura-Montes

Efrén Mezura-Montes
Universidad Veracruzana | UV · Departamento de Inteligencia Artificial

Doctor of Philosophy

About

229
Publications
44,144
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
8,281
Citations
Citations since 2017
105 Research Items
4593 Citations
20172018201920202021202220230200400600800
20172018201920202021202220230200400600800
20172018201920202021202220230200400600800
20172018201920202021202220230200400600800
Introduction
Dr. Efrén Mezura-Montes works on the design and study of nature-inspired meta-heuristics to solve complex optimization problems in different domains like engineering, machine learning, image processing, knowledge discovery in data, among others. He specializes also in constrained optimization.

Publications

Publications (229)
Article
Full-text available
This paper presents the gain tuning of an adaptive control law by means of Particle Swarm Optimization (PSO). The restrictions imposed on the particles in the PSO are obtained from the stability analysis of the adaptive control law. In this way, the PSO produces particles associated with optimal gains that simultaneously guarantee closed-loop stabi...
Article
Full-text available
Optimization makes processes, systems, or products more efficient, reliable, and with better outcomes. A popular topic on optimization today is multiobjective bilevel optimization (MOBO). In MOBO, an upper level problem is constrained by the solution of a lower level one. The problem at each level can include multiple conflicting objective function...
Article
Full-text available
One of the main limitations of traditional neural-network-based classifiers is the assumption that all query data are well represented within their training set. Unfortunately, in real-life scenarios, this is often not the case, and unknown class data may appear during testing, which drastically weakens the robustness of the algorithms. For this ty...
Article
Full-text available
Bacterial Vaginosis is a common disease and recurring public health problem. Additionally, this infection can trigger other sexually transmitted diseases. In the medical field, not all possible combinations among the pathogens of a possible case of Bacterial Vaginosis are known to allow a diagnosis at the onset of the disease. It is important to co...
Chapter
This work deals with the optimal tuning of an Active Disturbance Rejection Controller (ADRC), which is composed of a Luenberger and a Disturbance Observers. The ADRC is applied to the position control of a servo system composed of a DC motor and its associated electronics. The goal of this controller is to reject the disturbances affecting the serv...
Chapter
Convolutional neural networks (CNN) have been extensively studied and achieved significant progress on a variety of computer vision tasks in recent years. However, the design of their architectures remains challenging due to the computational cost and the number of parameters used. Neuroevolution has offered various evolutionary algorithms to provi...
Chapter
This paper presents a comparative study of the performance of an unsupervised feature selection method using three evaluation metrics. In the existing literature, various metrics are used to guide the search for a better feature subset and evaluate the resulting data clusterization. Still, there is no well-established path for the unsupervised wrap...
Article
Full-text available
Breast cancer has become a global health problem, ranking first in incidences and fifth in mortality in women around the world. In Mexico, the first cause of death in women is breast cancer. This work uses deep learning techniques to discriminate between healthy and breast cancer patients, based on the banding patterns obtained from the Western Blo...
Article
Full-text available
In this paper, three metaheuristic optimization algorithms: genetic algorithm (GA), particle swarm optimization (PSO), and differential evolution (DE) are compared in terms of minimizing the total owning cost (TOC) of the active part of a three-phase shell-type distribution transformer. The three methods use six inputs: power rating, primary voltag...
Article
Full-text available
In multi-label classification, each instance could be assigned multiple labels at the same time. In such a situation, the relationships between labels and the class imbalance are two serious issues that should be addressed. Despite the important number of existing multi-label classification methods, the widespread class imbalance among labels has n...
Article
Full-text available
In a mixed-integer nonlinear programming problem, integer restrictions divide the feasible region into discontinuous feasible parts with different sizes. Meta-heuristic optimization algorithms quickly lose diversity in such scenarios and get trapped in local optima. In this work, we propose an Estimation of Distribution Algorithm (EDA) with two mod...
Article
Full-text available
The conventional methods of parameter estimation in transformers, such as the open-circuit and short-circuit tests, are not always available, especially when the transformer is already in operation and its disconnection is impossible. Therefore, alternative (non-interruptive) methods of parameter estimation have become of great importance. In this...
Article
Full-text available
The Grouping Genetic Algorithm (GGA) is an extension to the standard Genetic Algorithm that uses a group-based representation scheme and variation operators that work at the group-level. This metaheuristic is one of the most used to solve combinatorial optimization grouping problems. Its optimization process consists of different components, althou...
Article
Full-text available
Most real-world problems involve some type of optimization problems that are often constrained. Numerous researchers have investigated several techniques to deal with constrained single-objective and multi-objective evolutionary optimization in many fields, including theory and application. This presented study provides a novel analysis of scholarl...
Preprint
Full-text available
Several Artificial Intelligence based heuristic and metaheuristic algorithms have been developed so far. These algorithms have shown their superiority towards solving complex problems from different domains. However, it is necessary to critically validate these algorithms for solving real-world constrained optimization problems. The search behavior...
Article
This work proposes a new Particle Swarm Optimization (PSO) algorithm specifically designed for parameter identification of physical systems. The key feature of the proposed algorithm is that it takes into consideration the Spectral Richness of the signal used for exciting the system during the identification procedure. The Spectral Richness is esse...
Conference Paper
Full-text available
In a mixed-integer nonlinear programming problem, integer restrictions divide the feasible region into discontinuous feasible parts with different sizes. Evolutionary Algorithms (EAs) are usually vulnerable to being trapped in larger discontinuous feasible parts. In this work, an improved version of an Estimation of Distribution Algorithm (EDA) is...
Article
Full-text available
The one-dimensional Bin Packing Problem (1D-BPP) is a classical NP-hard problem in combinatorial optimization with an extensive number of industrial and logistic applications, considered intractable because it demands a significant amount of resources for its solution. The Grouping Genetic Algorithm with Controlled Gene Transmission (GGA-CGT) is on...
Preprint
Full-text available
This presented study provides a novel analysis of scholarly literature on constraint handling techniques for single-objective and multi-objective population-based algorithms according to the most relevant journals, keywords, authors, and articles. The paper reviews the main ideas of the most state-of-the-art constraint handling techniques in multi-...
Article
Full-text available
Several real optimization problems are very difficult, and their optimal solutions cannot be found with a traditional method. Moreover, for some of these problems, the large number of decision variables is a major contributing factor to their complexity; they are known as Large-Scale Optimization Problems, and various strategies have been proposed...
Article
This work presents a study about a special class of infeasible solutions called here as pseudo-feasible solutions in bilevel optimization. This work is focused on determining how such solutions can affect the performance of an evolutionary algorithm. After its formal definition, and based on theoretical results, two conditions to detect and deal wi...
Article
In the development of quality software, critical decisions related to planning, estimating, and managing resources are bound to the correct and timely identification of the system needs. In particular, the process of classifying this customer input into software requirements categories tends to become tedious and error-prone when it comes to large-...
Article
Full-text available
This paper proposes the tuning approach of the event-triggered controller (ETCTA) for the robotic system stabilization task where the reduction of the stabilization error and the data broadcasting of the control update are simultaneously considered. This approach is stated as a dynamic optimization problem, and the best controller parameters are ob...
Article
Full-text available
A cooperative coevolutionary framework can improve the performance of optimization algorithms on large-scale problems. In this paper, we propose a new Cooperative Coevolutionary algorithm to improve our preliminary work, FuzzyPSO2. This new proposal, called CCFPSO, uses the random grouping technique that changes the size of the subcomponents in eac...
Article
The induction of decision trees is a widely-used approach to build classification models that guarantee high performance and expressiveness. Since a recursive-partitioning strategy guided for some splitting criterion is commonly used to induce these classifiers, overfitting, attribute selection bias, and instability to small training set changes ar...
Article
Full-text available
The identification of subnetworks of interest—or active modules—by integrating biological networks with molecular profiles is a key resource to inform on the processes perturbed in different cellular conditions. We here propose MOGAMUN, a Multi-Objective Genetic Algorithm to identify active modules in MUltiplex biological Networks. MOGAMUN optimize...
Article
Full-text available
This work presents a proposal for the automated parameter tuning problem (APTP) modeled as a bilevel optimization problem. Different definitions and theoretical results are given in order to formalize the APTP in the context of this hierarchical optimization problem. The obtained bilevel optimization problem is solved via a population-based algorit...
Article
Cervical cancer represents the fourth cause of death in women worldwide. One of the efforts to decrease this mortality has focused on implementing automatic tools for supporting the experts in diagnosing this illness. In this work, eMODiTS was implemented to explore its performance in this particular domain. A comparison among the most used symboli...
Article
Full-text available
The increasing production of temporal data, especially time series, has motivated valuable knowledge to understand phenomena or for decision-making. As the availability of algorithms to process data increases, the problem of choosing the most suitable one becomes more prevalent. This problem is known as the Full Model Selection (FMS), which consist...
Chapter
In this article we propose a special kind of Neuroevolution, called NeuroEvolution of Augmenting Topologies (NEAT), which is based on a genetic algorithm, that is then used to generate an artificial neural network to analyze tweets written in Mexican Spanish, and then labeling them as positive, negative and neutral. Classification performance of ne...
Article
Full-text available
Convolutional Neural Networks have shown outstanding results in different application tasks. However, the best performance is obtained when customized Convolutional Neural Networks architectures are designed, which is labor-intensive and requires highly specialized knowledge. Over three decades, Neuroevolution has studied the application of Evoluti...
Article
Full-text available
Cloud computing provides effective ways to rapidly provision computing resources over the Internet. For a better management of resource provisioning, the system requires to predict service-level agreements (SLAs) such as virtual machine (VM) startup times under various conditions of computing resources. The VM startup time is an important SLA param...
Chapter
Full-text available
This paper presents an extended empirical comparison of the Advanced jSO (AJSO), an algorithm adapted to solve smart grid optimization problems. An additional algorithm was considered for comparison purposes and a suitable statistical test validation was also added. Furthermore, a convergence analysis was included to give insights about the on-line...
Article
Grouping problems are combinatorial optimization problems, most of them NP-hard, related to the partition of a set of items into different groups or clusters. Given their numerous real-world applications, different solution approaches have been presented to deal with the high complexity of NP-hard grouping problems. However, the Grouping Genetic Al...
Book
This book aims to discuss the core and underlying principles and analysis of the different constraint handling approaches. The main emphasis of the book is on providing an enriched literature on mathematical modelling of the test as well as real-world problems with constraints, and further development of generalized constraint handling techniques....
Article
This paper presents distance-based immune generalised differential evolution (DIGDE), an improved algorithmic approach to tackle dynamic multi-objective optimisation problems (DMOPs). Its novelty is using the inverted generational distance (IGD) as an indicator in its selection mechanism to guide the search. DIGDE is based on the immune generalised...
Article
This work proposes Differential Evolution (DE) to train parameters of Bayesian Networks (BN) for optimizing the Conditional Log-Likelihood (Discriminative Learning) instead of the log-likelihood (Generative Learning). Any given BN structure encodes assumptions about conditional independencies among the attributes and will result in error if they do...
Article
Full-text available
This paper presents a novel approach based on the combination of the Modified Brain Storm Optimization algorithm (MBSO) with a simplified version of the Constraint Consensus method as special operator to solve constrained numerical optimization problems. Regarding the special operator, which aims to reach the feasible region of the search space, th...
Preprint
Full-text available
Grouping problems are combinatorial optimization problems, most of them NP-hard, related to the partition of a set of items into different groups or clusters. Given their numerous real-world applications, different solution approaches have been presented to deal with the high complexity of NP-hard grouping problems. However, the Grouping Genetic Al...
Article
Full-text available
This study presents an empirical comparison of the standard differential evolution (DE) against three random sampling methods to solve robust optimization over time problems with a survival time approach to analyze its viability and performance capacity of solving problems in dynamic environments. A set of instances with four different dynamics, ge...
Article
Full-text available
We present a novel bi-objective approach to address the data-driven learning problem of Bayesian networks. Both the log-likelihood and the complexity of each candidate Bayesian network are considered as objectives to be optimized by our proposed algorithm named Non-dominated Sorting Genetic Algorithm for learning Bayesian networks (NS2BN) which is...
Article
Full-text available
This work proposes Differential Evolution (DE) to train parameters of Bayesian Networks (BN) for optimizing the Conditional Log-Likelihood (Discriminative Learning) instead of the log-likelihood (Generative Learning). Although Discriminative Parameter Learning algorithms have been proposed, to the best of the authors' knowledge, a metaheuristic app...
Article
Full-text available
An essential aspect in the interaction between people and computers is the recognition of facial expressions. A key issue in this process is to select relevant features to classify facial expressions accurately. This study examines the selection of optimal geometric features to classify six basic facial expressions: happiness, sadness, surprise, fe...
Article
Full-text available
Time series discretization is a technique commonly used to tackle time series classification problems. This manuscript presents an enhanced multi-objective approach for the symbolic discretization of time series called eMODiTS. The method proposed uses a different breakpoints vector, defined per each word segment, to increase the search space of th...
Article
Full-text available
We present a novel bi-objective approach to address the data-driven learning problem of Bayesian networks. Both the log-likelihood and the complexity of each candidate Bayesian network are considered as objectives to be optimized by our proposed algorithm named Nondominated Sorting Genetic Algorithm for learning Bayesian networks (NS2BN) which is b...
Article
Full-text available
This work presents the assessment of the well-known Non-Dominated Sorting Genetic Algorithm II (NSGA-II) and one of its variants to optimize a proposed electric power production system. Such variant implements a chaotic model to generate the initial population, aiming to get a better distributed Pareto front. The considered power system is composed...
Preprint
Full-text available
The identification of subnetworks of interest - or active modules - by integrating biological networks with molecular profiles is a key resource to inform on the processes perturbed in different cellular conditions. We here propose MOGAMUN, a Multi-Objective Genetic Algorithm to identify active modules in multiplex biological networks. MOGAMUN opti...
Article
Full-text available
Multi-objective optimization has been adopted in many engineering problems where a set of requirements must be met to generate successful applications. Among them, there are the tuning problems from control engineering, which are focused on the correct setting of the controller parameters to properly govern complex dynamic systems to satisfy desire...
Article
Full-text available
Grouping problems are a special type of combinatorial optimization problems that have gained great relevance because of their numerous real-world applications. The solution process required by some grouping problems represents a high complexity, and currently, there is no algorithm to find the optimal solution efficiently in the worst case. Consequ...
Chapter
User Interface Design Patterns (UIDPs) improve the interaction between users and e-applications through the use of interfaces with a suitable and intuitive navigability without restrictions on the size of the screen to show the content. Nowadays, UIDPs are frequently used in the development of new mobile apps. In fact, mobile apps are ubiquitous: i...
Article
This paper describes a permutational-based Differential Evolution algorithm implemented in a wrapper scheme to find a feature subset to be applied in the construction of a near-optimal classifier. In this approach, the relevance of a feature chosen to build a better classifier is represented through its relative position in an integer-valued vector...
Chapter
In the modern era, the applications of the wireless network increase rapidly in the forms of several variations. Wireless Body Area Sensor Network (WBASN) is one of the variations of the wireless network. The purpose of this network is to monitor and detect several characteristics of the body and transmit into the proper destination. This is an int...