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Abstract—In this study we explored the ability of ensembles

of decision trees to classify hand-to-mouth gestures in order to

detect cigarette smoke inhalations. Three subject independent

models were constructed using a variety of ensemble techniques:

boosting (AdaBoost), bootstrap aggregating (bagging), and Ran-

dom Forests. Data was gathered during previous studies by

extracting features from the signal waveforms of worn sensors.

Each hand gesture was associated with either a smoke inhalation

or a hand gesture of another type (e.g. eating). Subject as well

as group models were trained. For the group models, model

performance was evaluated by computing F-score, precision,

and recall statistics using a 20-fold leave-one-out cross-validation

testing strategy where one subject was held out for evaluation

and models were trained on the remaining 19 subjects. For the

individual models, models were trained on a single subject and

evaluated using 5-fold cross validation. The average and standard

deviation of each statistic across all folds were reported.

Keywords– Smoking, wearable sensors, decision tree ensem-

bles, boosting, Random Forest, inter- and intra-subject variability

I. INTRODUCTION

Tobacco, particularly cigarette smoking, is a leading cause
of preventable death in the United States . Cigarette smoking
is a known major risk factor for the top 4 leading overall
causes of death: diseases of the heart, cancer, chronic lower
respiratory diseases, and cerebrovascular disease (stroke) [1].
Significant efforts have been undertaken to study smoking
habits. The simplest form of which is to ask patients to self-
report cigarette intake. It is well known that patients tend to
under report their levels of tobacco consumption, potentially
by up to 25% or more [2]. The clinical importance of accurate,
noninvasive smoking monitoring systems to quantify intake
cannot be overstated. An ideal system would be able to quan-
tify clinically important features such as quantity of cigarettes
consumed, volume of smoke inhaled, etc. Previous efforts
have included devices to monitor patients’ smoking topog-
raphy. Smoking topography is the quantification of cigarette
puff characteristics such as puff duration or puff velocity
[3]. Unfortunately, systems such as these are not completely
noninvasive and do not fully satisfy the requirements of a free-
living system.

Personal Automatic Cigarette Tracker (PACT) systems were
designed to quantify smoking behavior in free-living en-

vironments [4], [5]. The system uses a wearable Respira-
tory Inductive Plethysmograph (RIP) and proximity sensor
(PS) (arranged in a hand-to-mouth configuration) to record
breathing patterns and hand motions under smoking and non-
smoking conditions. Previous work on these systems includes
the development of a Support Vector Machine (SVM) classifier
using the raw sensor signals. More recently, efforts were
undertaken to extract interpretable features from the raw
sensor signals. In that study, 27 empirically defined features
were computed from the sensor waveforms of hand-to-mouth
gestures and submitted to a SVM classifier.

II. METHODOLOGY

A. Sensor system
In this section we briefly describe the sensor system used

in the experiments. This system is more thoroughly described
in [6], [7]. A commercially available Respiratory Inductive
Plethysmograph (RIP) (Pro-Tech Inc.) was used to record the
subjects’ breathing. This consisted of two elastic monitoring
bands: a thoracic band and an abdominal band (DuraBelt).
These sensors quantified the change in the volume of subjects’
chests during both smoking and non-smoking activities. Out-
put signals were labeled TC(t) and AB(t) from the thoracic
and abdominal bands respectively. Hand-to-mount gestures
were gathered using a transmitter-receiver proximity sensor
system.

B. Data Collection
Experiments were conducted using 20 regular, long-term

(> 1 year) smokers (10 males and 10 females). Consent was
gathered from all participants and the study protocol was
approved by the University of Alabama IRB. Subjects were
on average 23.1 ± 3.3 years old with an average Body Mass
Index of 25.88± 5.24kg/m2 [8].

Each subject performed the following 12 actions: 1) sit
silently (5 minutes), 2) read loudly (5 minutes), 3) stand still
(5 minutes), 4) walk on a treadmill at a self-selected slow
pace (5 minutes), 5) walk on a treadmill at a self-selected
fast pace (5 minutes), 6) browse internet on a laptop (5
minutes), 7) eat food without silverware and drink directly
from a cup (unrestricted time), 8) eat food with silverware
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and drink using a straw (unrestricted time), 9) walk outside
the building (5 minutes), 10) smoke a cigarette in a sitting
position (unrestricted time), 11) rest in a sitting position (5
minutes), and 12) smoke a cigarette in a standing position
(unrestricted time).

Experiments were conducted using the machine learning
modules within MATLAB’s Stats package. Group models were
constructed by aggregating data from 19 subjects with the
data from the remaining subject held out to validate model
performance. That is, 20-1 leave-one-out cross-validation was
conducted to estimate the predictive accuracy of group models.
Individual models were evaluated using a 5-fold cross vali-
dation strategy. That is, data points were divided randomly
into 5 subsets. 5 models were constructed by holding out, in
turn, each subset or fold and training on the rest of the data
observations. Models were then evaluated on the held out fold.

C. Signal Pre-processing
Initially, the proximity sensor (PS(t)) signal was normal-

ized to [0, 1]. A tidal volume signal was calculated, defined as
the average of the TC(t) and AB(t) signals. The amplitude
of the V T (t) signal was then scaled to [�1.0, 1.0]. In order
to reduce signal artifacts, an ideal band pass filter was utilized
with cut off frequencies of 0.0001 Hz and 10 Hz. This
also eliminated baseline drift. Finally, the V T (t) signal was
denoised using a moving average.

The airflow signal is defined as the first derivative of
the processed tidal volume V T (t) signal [9] and calculated:
AS(t) = dV (t)

dt .

D. Feature Extraction

Figure 1. Graphical description of extracted features [10]

27 descriptive features were extracted from each hand-to-
mouth gesture and are listed in Table I. These are described
in more detail in [10], [8].

E. Models
1) Decision Trees: A decision tree is a predictive model

that recursively partitions observations into leaves that are
successively more pure (as measured using a variety of meth-
ods) [11]. Branches of the tree represent splits of the data by

Table I
EXTRACTED FEATURES [10]

Feature Description
1 duration of expiration
2 time-duration from the start time

of a hand gesture to peak of AS(t)
3 time-duration of hand-to-mouth gesture to point of air-flow

exceeding threshold
4 time-duration of hand remaining near mouth
5 peak inspiration following the hand-to-mouth gesture

(AS(t))
6 peak inspiration volume following the hand-to-mouth gesture

(V T (t))
7 inspiration duration
8 time-duration between the hand leaving the mouth and the

beginning of respiration,
9 duration of smoking holding

10 expiration duration (AS(t))
11 breath volume
12 expiration duration (V T (t))
13 maximum expiration level
14 mean amplitude of PS
15 maximum amplitude of PS
16 relative difference between the peak inspiration following a

hand-to-mouth gesture and the next peak
17 relative difference between the peak inspiration following the

hand-to-mouth gesture and previous peak
18 relative difference between maximum expiration level

following the hand-to-mouth gesture and the next breathing
cycle’s maximum expiration level

19 relative difference between maximum expiration level
following the hand-to-mouth gesture and previous breathing

cycle’s maximum expiration level
20 relative difference between peak inspiration following

hand-to-mouth gesture and subsequent peak
21 relative difference between the peak inspiration following the

hand-to-mouth gesture and previous peak
22 relative difference between maximum expiration level

following the hand-to-mouth gesture and next breathing
cycle’s maximum expiration level

23 relative difference between maximum expiration level
following the hand-to-mouth gesture and previous breathing

cycle’s maximum expiration level
24 L2-norm of the smoking breathing cycle and the next

breathing cycle (AS(t)) (not shown)
25 L2-norm of the smoking breathing cycle and the next

breathing cycle (not shown)
26 time-duration between peak inspiration following

hand-to-mouth gesture and next peak
27 time-duration between maximum expiration level following

hand-to-mouth gesture and next maximum expiration level.

a single variable. The recursive partitioning procedure stops
when either the leaf is “pure” (all observations in the node
belong to the same class) or another stopping criteria (such
as a minimum number of observations per leaf) is satisfied.
Gini’s diversity index (gdi) was chosen to measure purity of
potential splits (gdi = 1�

P
i p(i)

2).
For example, when predicting customer churn, a variable

“called customer service in the last 3 months” that takes value
1 if the customer used the company’s customer service system
within the previous 3 months and value 0 otherwise may be a
useful split. That is, customers who called the customer service
are likely to have had product issues and so we may predict
that subset to be more likely to switch companies.
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2) AdaBoost: A boosted classifier is constructed as a
weighted sum of base classifiers, denoted h(x), F (x) =PT

i=0 ↵ihi(x) where classification is performed by weighted
majority vote. The general AdaBoost (ADAptive BOOSTing)
is: at time t a learner is trained on all the data with weights
determined by the previous t � 1 rounds of boosting. That
learner is added to the ensemble and the observation weights
are updated to minimize the current error. A more thorough
description of the algorithm is given in [12]. Models were
trained for 50 rounds of boosting.

3) Bootstrap aggregating: From a training set D of size
|D| = n, bootstrap aggregating or bagging creates m training
sets of size n

0 by sampling from D randomly and with
replacement. A model is trained on each of the bootstrapped
training sets [13]. Final classification is performed by majority
vote of the individual models. In our testing we constructed
and trained models on 200 bootstrapped samples of size
n

0 = .8 · n.
4) Random Forest: A random forest classifier is a bagged

decision tree ensemble with the following modification: at
each split in the training procedure, the algorithm selects a
random subset (of size

p
n) of the n features. This is done

to decorrelate the trees (features that may be dominant due to
random chance are less likely to skew all the trees) and thus
reduce bias [14]. For each forest, 200 trees were constructed.

F. Model Evaluation
For each fold in the cross-validation scheme, the following

performance statistics were computed:
• Precision: P = TP/(TP + FP )
• Recall:R = TP/(TP + FN)
• F-score: F = 2 · P ·R/(P +R)

TP is the number of true positives (gestures classified as part
of a smoke inhalation that are actually part of a smoke inhala-
tion), FP is the number of false positives (gestures labeled
smoke inhalations that are actually another type of gesture),
and FN is the number of false negatives (gestures not label
to be smoke inhalations that actually are smoke inhalations).
In short, precision measures the fraction of positively labeled
observations that are truly positive, recall measures the fraction
of truly positive observations that were labeled positive, and
the F-score is the harmonic mean of precision and recall.

This process was repeated for each subject. Statistics for all
models were averaged (and standard deviation computed) to
estimate classifier performance on new data.

III. RESULTS

We summarize the results of this study in the following
tables:

Table II
INDIVIDUAL ENSEMBLE MODELS

Model F-score (%) Precision (%) Recall (%)
Adaboost 77.60± 20.40 84.06± 10.31 79.08± 20.99
Bagging 82.84± 10.55 86.82± 10.45 83.44± 10.60

Random Forest 84.41± 10.16 90.18± 10.86 84.37± 10.06

Table III
INDIVIDUAL SVM MODELS

Model F-score (%) Precision (%) Recall (%)
27 Features (SVM) 68.67± 27.28 73.48± 24.28 68.38± 28.85

Table IV
GROUP ENSEMBLE MODELS

Model F-score (%) Precision (%) Recall (%)
Adaboost 71.66± 12.98 80.21± 14.01 69.09± 19.76
Bagging 70.75± 14.23 80.32± 13.55 67.01± 20.84

Random Forest 69.12± 17.63 82.92± 13.25 63.06± 22.99

Table V
GROUP SVM MODELS

Model F-score (%) Precision (%) Recall (%)
27 Features (SVM) 65.09± 21.64 76.56± 17.96 61.32± 26.51

The performance of these models is visualized in Figure
2 by displaying the false positive/false negative tradeoffs
through several receiver operating characteristic (ROC) curves
for Random Forest group models.
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Figure 2. Selected ROC curves for group models with Random Forest
classifiers

The training of these models is visualized in Figure 3 by
displaying the out-of-bag error for 4 subject’s group models
as a function of trees in the ensemble.

IV. DISCUSSION

Models of all three types of decision tree ensembles outper-
formed the SVM classifier using the 27 features (Table II and
Table III) on average. Not only did decision tree ensembles
outperform in terms of average F-score, precision, and recall,
these models also had a lower variance than SVM models
on average. Lover variance on average is advantageous in
that it allows us to more accurately quantify and describe
the performance of these models. Larger variance of results
implies that model type (in this situation, SVM) but not
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Figure 3. Number of trees vs out-of-bag prediction error for selected subject
group models using Random Forest classifier

be as well suited to this problem. Of the individual models
trained, Random Forest classifiers performed best across all
performance metrics. It is apparent that there is significant
individual variation that a group model may not be able to
fully capture. This is evident from the higher accuracy that
individual models possess (on average).

As we can see from Table IV, AdaBoost outperformed the
other two techniques as measured by F-score, but not by a
large amount. AdaBoost models also had lower variance on
F-scores and recall rates than other model types. Random
forests exhibited higher precision rates on average than both
AdaBoost and bagging but at the expense of lower recall
ability. Average performance (across all model types) was
higher than our previous group results computed using the
extracted waveforms but lower than results found using 1503-
element feature vectors (Table V, [10]).

Figure 2 illustrates the performance of the Random Forest
group models by plotting several ROC curves. It is evident that
models generalize better to certain subjects than others. This
is to be expected and indicates that certain validation subjects
are easier, that is, that their breathing patterns are similar to
training subjects and that certain subjects’ breathing patterns
are dissimilar to the rest of the group. In particular, the models
generalize better to Subject 3 than Subject 9.

Figure 3 visualizes the performance of models (as measured
by out-of-bag error) as a function of the number of trees in the
ensemble for the subjects included in Figure 2. It is apparent
from this figure that 200 trees probably more than strictly
necessary, as generalization error fell rapidly from 1 to 50
trees and then stabilized from 50 to 200 trees.

Some suggestions for future studies include:

1) Obtaining further samples from each individual partic-
ipant, for example by having the participant repeat the
activities on a later trial.

2) Explore the utility of feature selection methods (utilized
in previous work [10]) for decision tree ensemble mod-
els.

V. CONCLUSION

Prior to tuning or optimization, decision tree ensemble mod-
els outperform previously tested SVM classifiers in individual
models on average. The group ensemble models perform
comparably, that is, they outperform but only slightly, pre-
viously tested SVM models. Models tested provide a method
to accurately classify new, never before seen hand-to-mouth
gestures. This is a key component of a future system to fully
quantify cigarette smoke intake in free living invironments.
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