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Abstract

Protein phosphorylation is a common post-translational modification in eukaryotic cells and has a wide range of functional
effects. Here, we used mass spectrometry to search for phosphorylated residues in all the proteins of influenza A and B
viruses – to the best of our knowledge, the first time such a comprehensive approach has been applied to a virus. We
identified 36 novel phosphorylation sites, as well as confirming 3 previously-identified sites. N-terminal processing and
ubiquitination of viral proteins was also detected. Phosphorylation was detected in the polymerase proteins (PB2, PB1 and
PA), glycoproteins (HA and NA), nucleoprotein (NP), matrix protein (M1), ion channel (M2), non-structural protein (NS1) and
nuclear export protein (NEP). Many of the phosphorylation sites detected were conserved between influenza virus genera,
indicating the fundamental importance of phosphorylation for all influenza viruses. Their structural context indicates roles
for phosphorylation in regulating viral entry and exit (HA and NA); nuclear localisation (PB2, M1, NP, NS1 and, through NP
and NEP, of the viral RNA genome); and protein multimerisation (NS1 dimers, M2 tetramers and NP oligomers). Using
reverse genetics we show that for NP of influenza A viruses phosphorylation sites in the N-terminal NLS are important for
viral growth, whereas mutating sites in the C-terminus has little or no effect. Mutating phosphorylation sites in the
oligomerisation domains of NP inhibits viral growth and in some cases transcription and replication of the viral RNA
genome. However, constitutive phosphorylation of these sites is not optimal. Taken together, the conservation, structural
context and functional significance of phosphorylation sites implies a key role for phosphorylation in influenza biology. By
identifying phosphorylation sites throughout the proteomes of influenza A and B viruses we provide a framework for further
study of phosphorylation events in the viral life cycle and suggest a range of potential antiviral targets.
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Introduction

Influenza viruses cause serious and widespread disease in

humans and livestock. Influenza A viruses can infect a wide range

of birds and mammals, including humans [1]. Adaptation of novel

influenza A viruses to humans appears to have caused pandemics

for much of recorded history, including those of the devastating

1918 ‘Spanish’ influenza and the recent 2009 swine-origin

influenza virus [2]. Established influenza A virus strains are

responsible for seasonal influenza epidemics in humans, with

additional cases of seasonal influenza caused by influenza B

viruses, which have a much more restricted host range [3].

Humans are also infected by influenza C viruses, which typically

only cause mild infections [4].

The proteins encoded by influenza viruses undergo a variety of

post-translational modifications. In eukaryotic cells, phosphoryla-

tion of serine, threonine or, less frequently, tyrosine, is a common

reversible protein modification that can have a wide range of

effects on activity, stability, subcellular localisation and protein-

protein interactions [5]. Phosphorylation can be readily detected

using classical biochemical techniques, and a number of studies

have identified phosphorylation of influenza virus proteins [6–23].

However, it is difficult to determine specific sites of phosphory-

lation using such techniques [24] and, to date, relatively few sites

of influenza virus phosphorylation have been identified. In

influenza A viruses phosphorylation has been found at T157 in

the polymerase protein PA [25], T27 and S35 in the virulence

factor PB1-F2 [16], S3 in the nucleoprotein (NP) [7,13], S64, S82,

S89, and S93 in the ion channel M2 (with S64 the major site of

phosphorylation) [11] and S42, S48 and T215 in the non-

structural protein NS1 [26,27]. In addition, phosphorylation has

been identified for S78 and S103 of influenza C virus M2, with

S78 the major site of phosphorylation [28].

Here, we use liquid chromatography and tandem mass

spectrometry (LC-MS/MS) to search for sites of phosphorylation

in the proteomes of influenza A and B viruses. The same approach

also allowed N-terminal processing to be identified, as well as a site

of ubiquitination (in the influenza B virus M1 protein). To the best

of our knowledge, this is the first time mass spectrometry has been

used to simultaneously assess the phosphorylation of all proteins in

a virus. In addition to three previously-identified sites, we report
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22 novel sites of phosphorylation in influenza A viruses and14

novel sites of phosphorylation in influenza B viruses. Comparisons

of experimental data and consensus sequences show that

phosphorylation sites are conserved within and in some cases

between genera. As the influenza A and B virus genera are

estimated to have diverged several thousand years ago [29,30], this

conservation shows the fundamental importance of phosphoryla-

tion in influenza virus life cycles and identifies numerous potential

targets for specific antiviral inhibition.

In the following sections we give an overview of the viruses and

methodologies used in the study, give details of N-terminal

processing of viral proteins, and then describe the location of

phosphorylation sites in the matrix protein M1 and the ion

channel M2, in the non-structural protein NS1 and the nuclear

export protein NEP, in the viral glycoproteins, and in the

polymerase and NP. By analysing the conservation and structural

context of phosphorylation sites we propose that in influenza A

and B viruses phosphorylation sites can affect viral entry and exit

(HA and NA), regulate nuclear localisation (PB2, NP, M1, NEP,

and possibly PB1 and NS1) and affect protein multimerisation

(NP, M2 and NS1). Finally, we present experimental evidence that

phosphorylation sites in influenza A virus NP contribute to viral

growth in tissue culture and play a role at various points in the

viral life cycle.

Results/Discussion

Overview of the Viruses and Methodologies Used in the
Study

For influenza A viruses, we focussed on the well-studied H1N1

laboratory strain A/WSN/33 (WSN), using virions purified from

the growth media of infected MDBK cells (Figure 1). In addition to

the laboratory-adapted WSN virus, candidate vaccine viruses

(CVVs) were considered. Influenza A CVVs were reassortants of

the H1N1 laboratory strain influenza A/Puerto Rico/8/1934

(PR8) with clinical isolates of pandemic H1N1 and seasonal H3N2

viruses (Figure S1A; see Materials and Methods for details). CVV

samples consisted of virions purified from embryonated chicken

eggs and also (in one case) from the growth media of infected

MDCK cells. For an influenza B virus, the directly egg-adapted

CVV influenza B/Brisbane/60/2008 was used, purified from

embryonated chicken eggs. Purification of viral proteins was

assessed by PAGE and Coomassie or silver staining, which

demonstrated the presence of highly concentrated viral proteins

and the exclusion of the majority of cellular contaminants

(Figures 1A, S1A). Purified influenza WSN virus was visualised

by negative-staining and transmission electron microscopy, dem-

onstrating intact virions of the expected morphology, with little

contaminating material (Figure 1B). For purified virions, the entire

protein content of the sample was processed without fractionation.

In addition to protein harvested from virions, proteins of the

WSN virus were purified from lysates of human 293 T cells and

from MDBK cells. In one approach tagged PB2 was used to purify

material from infected cells (Figure S1B); all co-purifying proteins

were analysed. In an alternative approach material co-purified

with tagged proteins from transfected cells (Figure S1C) or

unpurified lysates of infected cells (data not shown), were separated

by PAGE, and bands were cut at the appropriate position to

obtain the major viral proteins. Phosphorylation can alter

electrophoretic mobility, and it is possible that cutting bands

would cause modified proteins to be missed. In an attempt to

counter this, Coomassie staining was used to identify the required

proteins in the gel (data not shown).

Proteins were prepared for mass spectrometry by either excising

them from polyacrylamide gels or by precipitation. Proteins were

digested with trypsin to produce charged peptides, which were

analysed by LC-MS/MS using the Central Proteomics Facilities

Pipeline (CPFP) [31]. Localisation of phosphorylation sites was

assessed using the Modification Localisation Score (ModLS) tool

within CPFP, which is based on the PTMScore and AScore

methods [32,33]. To determine the most probable localisations for

each phosphopeptide, ModLS scored all possible localisations

using the mass-spectral evidence (see Materials and Methods for

details). Detecting and identifying phosphorylated peptides by

mass spectrometry has inherent difficulties [24], and initially we

identified only a small number of sites. During the course of the

investigation, the introduction of improved protocols and

technology (notably, enrichment for phosphopeptides using TiO2

or IMAC resin, and the use of a more sensitive mass spectrometer,

Figure 1. Purification of viral proteins. (A) Purification of WSN virus
from the growth medium of infected MDBK cells. Samples of unpurified
and purified material (0.01 ml from 120 ml and from 0.14 ml,
respectively) were separated by 12% SDS-PAGE and stained with
Coomassie Brilliant Blue. Key proteins are identified by electrophoretic
mobility. (B) Negative-stain transmission electron micrographs of
purified WSN virus. Two different magnifications are shown.
doi:10.1371/journal.ppat.1002993.g001

Author Summary

Eukaryotic cells regulate the function of many of their
proteins through the reversible phosphorylation of serine,
threonine or tyrosine residues. It is known that some
influenza virus proteins are phosphorylated, but few sites
of phosphorylation have been identified. We used mass
spectrometry to identify 39 sites of phosphorylation, most
of them novel, in proteins from influenza A viruses and an
influenza B virus (a separate genus in the orthomyxovirus
family) - to the best of our knowledge, this is the first time
this has been attempted for all the proteins in a virus. By
integrating sequence conservation data and structural
information we were able to propose functions for most of
these sites, providing a foundation for further studies, and
we assessed experimentally the contribution of multiple
phosphorylation sites in the influenza A virus nucleopro-
tein (NP) to viral growth and to transcription and
replication of the genome. In addition, by identifying
phosphorylation sites that are common to both influenza
A and B viruses, we suggest that phosphorylation at these
sites is a highly conserved aspect of influenza biology that
may provide targets for antiviral therapy.

Protein Phosphorylation in Influenza Viruses
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referred to in the text as ‘optimised methods’) greatly increased the

number of phosphorylation sites detected. The phosphorylation

sites found in influenza A and B viruses are summarised in Tables 1

and 2, respectively. Details of protein sequence coverage for all

combinations of viruses and hosts are given in Table S1 and Figure

S2, and details of phosphorylation sites found using different

methods are given in Table S2. Representative fragment spectra

for each modification identified are given in Figure S3. In all cases

peptides containing the unmodified site were also identified.

When analysing WSN and B/Brisbane/60/2008 virions, we

pooled data from multiple experiments, providing between 43%

and 94% coverage of each protein detected, with each tryptic

peptide detected an average of 18 times (Table S1). For WSN, the

database of proteins searched included all known viral proteins, as

well as the translations of hypothetical open reading frames. No

peptides were found from PB1-F2, or the putative ambisense gene

product NSP/NEG8 [34,35], and no peptides were found

matching the unique sequences of the PA-X [36] or PB1-N40

proteins [37]. Somewhat surprisingly, the non-structural protein

NS1 was readily detected in all preparations of influenza A and B

viruses. While attempts were made to achieve a high degree of

viral purity (Figure 1) the current study cannot definitively

distinguish structural proteins from carry-over of unincorporated

proteins, and it is possible that NS1 was present in cellular debris

that was co-purified with the virus. Consistent with this hypothesis,

label-free quantitation (by SINQ [38] and iBAQ [39], data not

shown) suggested that NS1 was found in the samples only at a low

level, similar to that of many host proteins.

N-terminal Acetylation and Methionine Excision
In addition to phosphorylation it was possible to detect N-

terminal acetylation and methionine excision, which are both

common post-translational modifications in eukaryotic cells [40].

While N-terminal acetylation has been linked to specific functions

for a small number of proteins, its clearest general function is in

preventing protein degradation [41]. As described in Tables 3 and

S3, we detected N-terminal peptides from PB1, PA, NP, M1, M2,

NS1 and NEP of influenza A virus and from PA, NP, M1, NS1

and NEP of influenza B virus, and in all cases N-terminal

Table 1. Summary of influenza A virus phosphorylation sites.

Protein
Putative phosphorylation
site

Peptide
Identification
Probabilitya

Residue Conservation
(%) Kinase predictionsb Samplec Ref

PB2 S742 1.000 99.9 PKA, PKB, RSK S

PB1 T223 0.985 99.8 N T

PA S224/S225 0.998 99.5/69.2 N/N S

HA T358 1.000 99.6 N V

NP S9/Y10 1.000 99.1/99.99 CKI, PKA/INSR V, S

S165 0.999 99.9 PKA V, S

Y296/S297 1.000 99.9/99.98 P/Cdc2 S

S377/T378 0.798 58.6/99.95 CKII/N S

S402/S403 0.999 99.9/0.1 PKC/PKA V, E, S, T

S457 0.970 99.97 N V

T472/S473 1.000 96.0/2.83 N/GSK3 V

NA S160/S164/S166 0.991 99.8/99.98/99.8 PKA, RSK/N/N V

M1 S2/T5 0.968 99.97/99.91 PKA/N V, E

T9/Y10 1.000 98.5/98.5 N/N V, E

T37 1.000 98.6 CKII, PKG V, E

T108 0.978 99.97 CKI V

T168/T169 0.981 93.1/99.9 P/N V

S195/S196 1.000 99.9/99.8 CKI/N V

S224/S225/S226 1.000 92.3/98.7/99.97 N/Cdc2/P V

M2 S64/T65 0.998 98.4/99.4 PKA/P V, E [11]

S64 and T65 0.995 98.4/99.4 PKA/P V

NS1 S48 1.000 45.1 PKA 2 [27]

T197 0.996 37.8 N V

T215 1.000 27.1 Cdk5, GSK3, p38MAPK V, 2, M [26,27]

NEP S23/S24/S25 1.000 99.2/99.8/99.8 CKII/P/CKII V

NB: Residue conservation was calculated for H1-subtype HA and N1-subtype NA.
P = phosphorylation predicted by NetPhos 2.0, with no kinase predicted by NetPhosK 1.0.
N = no phosphorylation predicted.
aof clearest peptide spectral match.
bfrom WSN sequence.
cV: purified WSN virus, S: PB2-CStrep purification from an infection, T: TAP purification from a transfection, E: purified egg-grown CVV, 2: 293 T cell lysates, M: MDCK cell
lysates.
doi:10.1371/journal.ppat.1002993.t001

Protein Phosphorylation in Influenza Viruses
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processing was detected. In most cases it is unclear whether N-

terminal modifications would affect the function of these proteins,

though structural studies suggest that N-terminal acetylation or

methionine excision of PB1 should not affect its ability to interact

with PA (data not shown; [42,43]).

Phosphorylation of the Viral Matrix Protein M1 and the
Ion Channel M2

The matrix protein M1 of influenza A and B viruses is known to

be phosphorylated at multiple sites, predominantly serines but also

threonine [9,10]. M1 is the most abundant protein in the virus

(Figure 1A) [44], and the sequence coverage of M1 was the highest

of any protein analysed (Table S1).

For influenza A viruses, even without enrichment for phospho-

peptides we detected phosphorylation in the N-terminus of WSN,

though it was unclear from the mass spectrum whether this was at

T9 or Y10. Using optimised conditions, we again detected

phosphorylation at this position, with phosphorylation of Y10

giving the best match to the observed mass spectrum (Tables 1,

S2). We also detected phosphorylation at S2/T5, T108, T168/

T169, S195/S196 (S195 has previously been noted to be in the S-

x-E recognition motif of casein kinase [22,45]), and S224/S225/

S226 (with S226 matching the spectrum best; Table S2). In the

PR8-derived M1 proteins of influenza A CVVs, even without

using optimised conditions we once again detected phosphoryla-

tion at S2/T5 (or potentially at T9/Y10) and at S224/S225/S226,

and we also detected phosphorylation at T37.

For the influenza B virus we observed a similar pattern of M1

phosphorylation. Without using optimised conditions we detected

phosphorylation in the N-terminus, most likely at S2 or T7,

though its localisation to Y10 cannot be ruled out (Tables 2, S2).

With optimised conditions we detected this site again, with

additional phosphorylations at residues S41, S84/T88/T89/T91,

S214/S218, and S236/S237. We also detected phosphorylation at

T188, on two peptides which also had di-glycine conjugated to the

side-chain of either K194 or K200. Tryptic digestion of

Table 2. Summary of influenza B virus phosphorylation sites.

Protein Putative phosphorylation site

Peptide
Identification
Probabilitya Residue Conservation (%) Kinase predictions

HA S135/T136 0.913 100/98.2 PKA, PKC/PKC

S465 1.000 100 ATM, CKI

NP S50 0.999 100 GSK3, Cdk5

T55/T56/S57/S58 0.999 99.6/99.4/79.7/88.8 Cdc2/CKII, PKG/P/CKI, CKII

S223 1.000 100 N

Y352/Y357/Y363 0.926 100/100/100 P/P/N

S459/S463/S465 1.000 100/99.6/99.8 N/N/Cdc2, Cdk5, p38MAPK

S486 1.000 98.9 PKA, RSK

M1 S2/T7/Y10 0.983 100/100/100 CKI, PKA/N/N

S41 0.922 100 CKI, CKII

S84/T88/T89/T91 0.862 100/100/100/100 Cdc2/PKC/Cdc2, PKC/PKC

T188 + K194/K200 (Ub) 0.999 99.8+100/99.1 PKC

S214/S218 0.996 100/99.8 PKC/ATM

S236/S237 0.898 100/100 Cdc2/PKA

P = phosphorylation predicted by NetPhos 2.0, with no kinase predicted by NetPhosK 1.0.
N = no phosphorylation predicted.
aof clearest peptide spectral match.
doi:10.1371/journal.ppat.1002993.t002

Table 3. Summary of N-terminal modifications.

Protein None Methionine excision N-terminal acetylation
Methionine excision + N-
terminal acetylation

PB1 A A

PA A+B

NP A+B

M1 A+B A+B A+B A+B

M2 A A

NS1 A B

NEP A A B

A: detected in influenza A virus.
B: detected in influenza B virus.
doi:10.1371/journal.ppat.1002993.t003

Protein Phosphorylation in Influenza Viruses
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conjugated ubiquitin leaves a di-glycine tag on the ubiquitinated

protein. This modification therefore provides evidence that M1 of

influenza B virus can be ubiquitinated at either K194 or K200.

M1 of influenza A virus was recently shown to be ubiquitinated

[46]; this observation shows that influenza B virus M1 is also

ubiquitinated and for the first time identifies a site of ubiquitina-

tion in an influenza M1 protein.

Comparison of the sites of phosphorylation in M1 proteins of

influenza A and B viruses indicates a number of common features

(Figure 2A). In alignments of the primary sequences, we found

four phosphorylation sites at similar positions in both genera.

These are the sites in the N-terminal 10 amino acids, at T37 (A)/

S41 (B) (both predicted to be targets of the kinase CKII; Tables 1,

2), at S195/S196 (A)/T188 (B) and at S224-S226 (A)/S214/S218

(B). In addition, three sites (T108 (A), T168/T169 (A) and S236/

S237 (B)), are close to a serine, threonine or tyrosine in the other

genus which could potentially be phosphorylated. Only one of the

sites detected (S84-T91 (B)) does not correspond to a possible site

of phosphorylation in the other genus. Thus, despite estimates that

influenza A and B viruses have been evolving as separate genera

for several thousand years [29,30] their patterns of M1 phosphor-

ylation appear to have been conserved.

The N-terminal domain of influenza A virus M1 has been

crystallised and has a flattened shape, with its opposing faces being

positively and negatively charged [47,48]. The phosphorylation of

S2, T5, T9 or Y10 would contribute to the net negative charge of

one face of M1 (Figure 2B). It has been proposed that M1 may

undergo a conformational change to bind to the inner leaflet of the

plasma membrane, exposing hydrophobic residues in helix 1 and

helix 4 [48]. S2, T5, T9 and Y10 are oriented away from the

hydrophobic face of helix 1, and so their phosphorylation would

not necessarily prevent lipid binding (Figure 2B). It is probable that

these residues account for biochemical observations that a major

site of M1 phosphorylation lies within or close to a stretch of

hydrophobic residues [10]. A similar pattern of charged and

hydrophobic residues, and of potential sites of phosphorylation, is

conserved in the N-terminal M1 sequences of influenza A and B

viruses (Figure 2A), though not in influenza C viruses (data not

shown).

T37 and T108 both form part of another surface of the N-

terminal domain, in this case in loops that pass between the

positively and negatively charged faces (Figure 2B). T108 is close

to the NLS of M1 (Figure 2B; [49]). An identical spacing can be

seen in M1 of influenza B viruses between basic residues

orthologous to this NLS (presumably the influenza B virus M1

NLS) and a conserved serine (S108; Figure 2A). This pattern is not

seen in influenza C viruses (data not shown). Phosphorylation at or

adjacent to NLSs is an important regulator of nuclear import,

acting through a range of stimulatory and inhibitory mechanisms

[50–52]. The conserved spacing of an NLS and a nearby

phosphorylation site in influenza A and B viruses suggests a role

for phosphorylation in regulating the nuclear import of M1,

though whether phosphorylation in this context promotes or

inhibits nuclear import remains to be determined.

The C-terminal domain of influenza A virus M1 has not been

resolved by X-ray crystallography, but a combination of modelling

and experimental studies suggest that it consists of alpha helices

connected by loops [53]. Comparing N- and C-terminal secondary

structures to the phosphorylation sites shows that, with the

exception of phosphorylations in the N-terminal helix 1,

phosphorylations throughout M1 take place on loops (data not

shown).

The M2 protein forms a tetrameric ion channel in the viral

envelope and is subject to a number of post-translational

modifications, including disulphide bond formation, palmitoyla-

tion, fatty acylation, and phosphorylation [11,54]. Previous studies

have shown that for influenza A viruses the majority of M2

phosphorylation takes place at S64 [11,21].

We clearly detected phosphorylation of either S64 or T65 in M2

of influenza A viruses even, in the case of the PR8-derived M2 of

the CVVs, without using optimised conditions (Tables 1, S2).

While some spectra favoured assignment of the phosphorylation to

S64, others were ambiguous as to whether S64 or T65 was

modified. Using optimised conditions, we detected a peptide in

which S64 and T65 were simultaneously phosphorylated (Table 1).

While consistent with previous data suggesting that the majority of

M2 phosphorylation is of S64, this demonstrates that phosphor-

ylation of T65 is also possible.

Figure 2. Location of phosphorylated residues in the matrix
protein M1 and the ion channel M2. (A) The M1 consensus
sequences of influenza A and B viruses, aligned using ClustalW2. Letters
are coloured green for experimentally-confirmed phosphorylation sites,
blue for the nuclear localisation signal (NLS) of influenza A virus and
orthologous basic residues in influenza B virus, and purple for a
ubiquitination site. Where modifications could be assigned to more
than one residue, all probable residues are coloured (see text for
details). Confirmed phosphorylation sites, and their possible ortholo-
gues, are highlighted in green. (B) Location of phosphorylated residues
in the N-terminal portion of influenza A virus M1 (PDB 1EA3 [47]).
Hydrophobic residues in helices 1 and 4 are coloured yellow and basic
residues of the NLS dark blue. (C) Sections of the M2 consensus
sequences of influenza A, B and C viruses. Colours are as (A), with
additional highlighting of structural features: alpha helices are orange
(where experimentally determined; PDB 2L0J [57] and PDB 2KJ1 [56]) or
yellow (where predicted by JPred 3), and a beta sheet is purple
(predicted by JPred 3).
doi:10.1371/journal.ppat.1002993.g002

Protein Phosphorylation in Influenza Viruses
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The M2 protein is translated from a spliced version of the

mRNA encoding M1, with splicing taking place in codon nine of

the M1 open reading frame. As the nine N-terminal residues

common to M1 and M2 do not include a tryptic cleavage site, the

N-termini of the two proteins could be clearly distinguished in this

study. Despite being common to both proteins, residues S2/T5

and T9 are phosphorylated in M1 but not in M2. This is

presumably a difference in phosphorylation, due to the different

N-terminal structures of the two proteins. However, we cannot

exclude the possibility that this difference is due to a chance failure

to detect phosphorylated M2 peptides.

The M2 proteins of influenza A, B and C viruses are all

phosphoproteins [11,28,55], but have little primary sequence

homology ([56] and data not shown). By combining partial

structures of the influenza A virus M2 and influenza B virus BM2

cytoplasmic domains [56,57] with structures predicted from the

primary sequence of influenza A and C viruses, we found that in

all three genera the cytoplasmic tail contains a loop between two

alpha helices, within which is a conserved S-x-E casein kinase

recognition motif (Figure 2C; [45]). The phosphorylation predic-

tion methods NetPhos 2.0 and NetPhosK 1.0 [58] predict

phosphorylation for all three serines – S64 in influenza A viruses,

S91 in influenza B viruses and S78 in influenza C viruses.

Phosphorylation of influenza BM2 was not detected in this study,

but S64 and S78 are known to be the primary sites of M2

phosphorylation in influenza A and C viruses, respectively [11,28].

Thus, phosphorylation of a cytoplasmic loop in M2 appears to be

a general feature of influenza viruses.

Mutating the cytoplasmic loop serine of influenza A and C

viruses reduces the ability of M2 dimers to assemble into tetramers

[21,28]. In influenza A viruses this does not appear to inhibit viral

replication in cell culture or in experimentally infected mice [21],

but these systems are more permissive to viral growth than natural

infections [21], and although the mutation prevented the majority

of M2 phosphorylation it is possible that low levels of T65

phosphorylation may have reduced any phenotype further. It is,

therefore, plausible that phosphorylation of a loop in the

cytoplasmic tail of M2 promotes tetramer formation in influenza

A, B and C viruses.

Phosphorylation of the Non-Structural Protein NS1 and
the Nuclear Export Protein

The non-structural protein NS1 is known to be phosphorylated,

predominantly on threonine [9,17,18,26,27], though the pattern

of phosphorylation may vary between strains [59]. In this study,

we detected three sites of phosphorylation in WSN NS1.

Phosphorylation of S48 was detected in the lysates of 293 T cells,

phosphorylation of T197 in preparations of WSN virus, and

phosphorylation of T215 in lysates of 293 T and MDBK cells, as

well as (with a weaker spectrum) in preparations of WSN virus

(Tables 1, S2).

A recently published report noted phosphorylation of S48 [27],

observing that although it is part of the RNA-binding domain of

NS1, it is positioned so that it does not participate in RNA binding

(Figure 3A, [60]). Mutational analysis suggested that phosphory-

lation at S48 does not affect virus replication in tissue culture;

consistent with this, the residue is asparagine in a number of

human isolates [27]. T197 is part of the NS1 effector domain

(Figure 3B). With the nearby S195, it makes strong hydrogen-

bonding interactions with D92, a virulence determinant in H5N1

strains of the virus, and it is adjacent to the dimer interface of NS1

effector domains [61]. It has been proposed that phosphorylation

of either S195 or T197 may destabilise NS1, potentially disrupting

its dimerisation [61], and may regulate its nuclear localisation

[62]. T215 is in the disordered C-terminal tail of NS1 [62], and is

adjacent to a second NLS in some strains of the virus – though not

in WSN [63]. Phosphorylation of T215 has previously been

detected, but although the residue is important for viral growth,

mutational analysis suggests that its phosphorylation is not

required in tissue culture [26,27].

The nuclear export protein (NEP) of influenza A and B viruses is

involved in the nuclear export of the viral genome in the form of

ribonucleoprotein complexes (RNPs) [64–66] and despite initial

descriptions of it as a second non-structural protein (NS2) it has

been shown to be incorporated into virions [19,67,68]. The NEP

of influenza A virus is known to be phosphorylated [19]. Both with

and without optimised conditions, we detected phosphorylation in

the NEP of WSN at S23, S24 or S25 (Table 1). In the clearest

Figure 3. Location of phosphorylated residues in the non-
structural protein NS1 and the nuclear export protein NEP. (A)
Location of S48 in the dimeric NS1 RNA binding domain (PDB 2ZKO
[60]). The subunits of the dimeric NS1 RNA binding domain are shown
in light blue and pink, and RNA in gold. (B) Location of T197 and
interacting residues in the dimeric NS1 effector domain (PDB 2GX9 [61]).
(C) Consensus sequences of the N-terminal residues of influenza A and
B virus NEP. Colours are as in Figure 2, with key hydrophobic residues of
the nuclear export signal (NES) in red.
doi:10.1371/journal.ppat.1002993.g003
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spectra S24 is unambiguously phosphorylated but in others the

localisation is less distinct, and phosphorylation of S23 or S25 in a

proportion of cases cannot be excluded.

The NEP phosphorylation site is adjacent to a previously

identified nuclear export signal (NES) [64,65] (Figure 3C), and is

predicted to lie on a loop between an N-terminal alpha helix

containing the NES and another alpha helix. The same

arrangement of three serines or threonines with respect to the

NES and to predicted alpha helices is found in NEP of influenza B

viruses (Figure 3C; phosphorylated peptides were not detected

from influenza B virus NEP in this study), though not in influenza

C viruses where the NES is located in a different region of the

protein [66].

As with NLSs, phosphorylation in or near to NESs can promote

or inhibit nuclear export through a range of mechanisms [51,52].

The conserved spacing of the NES and phosphorylation site in

influenza A and B viruses (Figure 3C) suggests that phosphory-

lation regulates the interaction of NEP with its nuclear export

factor Crm1 [64]. Blocking activation of the MAP kinase ERK has

been shown to prevent the nuclear export of NEP, indicating that

phosphorylation has a stimulatory effect on the export of NEP,

and thereby of RNPs [69]. A possible mechanism for this is

suggested by the cellular MK2 protein, which also requires

phosphorylation for Crm1-mediated export. In MK2 the NES is

part of an autoinhibitory alpha helix that interacts with an

adjacent domain of the molecule. Phosphorylation of a hinge

region induces a conformational change, reducing the interaction

between the alpha helix and the rest of the molecule and

unmasking the NES [70,71]. The position of the NEP phosphor-

ylation site on a loop between the NES and an adjacent alpha

helix suggests that phosphorylation may unmask the NES in a

similar fashion. The nuclear export of RNPs necessarily precedes

viral assembly, and consistent with this phosphorylated NEP was

readily detected in virions of WSN (Table 1).

Phosphorylation of the Viral Glycoproteins
The haemagglutinin (HA) and neuraminidase (NA) proteins of

influenza viruses are known to be subject to post-translational

modification, notably glycosylation [72–74], but we were not

aware of reported phosphorylation of these proteins. Indeed, we

found comparatively few sites of phosphorylation in the glycopro-

teins, with modifications only detected when optimised conditions

for phosphopeptide detection were used (Table S2).

For HA of the influenza A virus WSN (H1 subtype), we detected

phosphorylation of T358. After cleavage of HA0, T358 forms

residue 15 of the fusion peptide of the HA2 fragment, which

inserts into the endosomal membrane to allow viral fusion

(Figure 4A) [72,75]. T358 is oriented away from the majority of

the hydrophobic residues in the fusion peptide, and is expected to

remain exposed to solvent during fusion rather than being buried

in the membrane [76]. As a result, the presence of a negatively-

charged phosphate at this position should not interfere with the

fusion process (Figure 4A, inset).

Residues in the fusion peptide, including T358 (Table 1), are

highly conserved among H1 haemagglutinins. When consensus

sequences of the fusion peptides of different HA subtypes from

influenza A and B viruses are compared, they conform to an

overall consensus sequence, with a small number of biochemically

conservative changes (Figure 4B). We found that the only position

not to conform to a clear overall consensus is position 15. This can

take the form of the potentially-phosphorylated, small polar

residues serine and threonine (H1, H6, H8 and H9 subtypes); of

Figure 4. Location of phosphorylated residues in haemagglutinin. (A) An influenza A virus H1-subtype HA monomer (PDB 1RVZ [75]) and an
influenza B virus HA monomer (PDB 2RFU [81]). In the influenza A virus HA, T358 is indicated in the N terminus of HA2 and, after conformational
rearrangement, in the fusion peptide (inset; PDB 2KXA [76]); the corresponding residue E377 is indicated in influenza B virus HA2. In influenza B virus
HA S135 in indicated in the head domain (in the structure shown, position 136 is alanine), and S465 in the stem; the corresponding E446 residue is
indicated in influenza A virus HA2. HA1 is shaded pink, HA2 light blue, hydrophobic residues of the fusion peptide yellow, glycosylations of the
influenza B HA orange, the a(2,6)-sialic acid-containing pentasaccharide LSTc red and glutamic acids orthologous to phosphorylation sites purple. (B)
The overall consensus sequence of the HA fusion peptide, compared to the consensus sequences of individual subtypes and lineages. Residue 15 of
the fusion peptide, which corresponds to T358 of the H1 sequence, is shaded.
doi:10.1371/journal.ppat.1002993.g004
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glutamic acid, which has similar physicochemical properties to

phosphoserine or phosphothreonine (H3, H7, H10 and H15

subtypes, as well as both influenza B virus lineages); of glutamine,

which is a similar size to glutamic acid but polar rather than

charged (H2, H4, H5, H14 and H17 subtypes); or of proline, a

small secondary amine which, unlike the other possibilities, is

hydrophobic (H11, H12, H13 and H16 subtypes). This diversity

between subtypes suggests that, unlike the rest of the fusion

peptide, position 15 can tolerate a range of physicochemical

properties. In support of this, an E15V mutation in the H3 fusion

peptide does not affect the fusogenic properties of HA [77]. It is

therefore likely that phosphorylation of T358 in H1 subtypes, as

detected here, would be compatible with HA function. Within

subtypes, however, position 15 is highly conserved, suggesting that

each subtype has an optimal amino acid.

Prior to fusion, HA is maintained in a metastable conformation

by hydrogen bonding between the fusion peptide and a pocket

formed from residues in both the HA1 and HA2 fragments.

Interactions between the fusion peptide and the pocket are

subtype-dependent, and disrupting these interactions by mutation

has been shown to regulate the pH at which HA is activated

[78,79]. A recent study showed that a threonine to isoleucine

mutation proximal to the fusion peptide was an important

determinant of the pH of HA activation and, consequently, of

the respiratory droplet transmissibility of an H5 HA/H1N1

reassortant virus in ferrets [80]. The presence of charged, polar or

hydrophobic amino acids at position 15, as shown here, would be

expected modulate the pH at which activation occurs for a given

HA subtype. If this is the case, phosphorylation of position 15

(possible for the H1, H6, H8 and H9 subtypes) could provide an

additional mechanism for fine-tuning the activation of HA.

In influenza B viruses position 15 of the fusion peptide is

glutamic acid (E377), and hence cannot be phosphorylated

(Figure 4A, B). However, two additional phosphorylation sites

were found. We detected phosphorylation in the HA1 fragment, at

one of two conserved residues, S135 or T136, and also in the HA2

fragment, at the conserved residue S465. The S135/T136 site,

which has no obvious ortholog in the influenza A virus HA

structure (Figure 4A), is surface-exposed on a loop in the head

domain of HA, away from the interface of the trimer subunits [81].

It is not part of the receptor binding site of HA, and so would not

be expected to interfere directly with sialic acid binding. It has,

however, been noted that in influenza A viruses the net charge of

the HA1 affects the ability of the virus to interact non-specifically

with negatively-charged cell surfaces [82,83]. The virus is known

to require a balance of HA and NA functional activity, and

charged amino acid substitutions reducing the binding affinity of

HA have been shown to compensate for mismatched NA activities

[84]. Phosphorylation of the S135/T136 site would be expected to

reduce the avidity of HA for cell surfaces. As only a proportion of

the viral HA is phosphorylated (unmodified peptides from the

same region were also detected) this suggests a novel mechanism,

of more subtle effect than the substitution of charged residues, for

achieving optimal HA activity.

Phosphorylation of S465 is harder to explain, as it is internal to

the HA trimer and unlikely to be accessible to kinases (Figure 4A).

S465 is in one of the short regions of primary sequence similarity

between influenza A and B virus haemagglutinins, and it is

orthologous to a glutamic acid present in all influenza A subtypes

(E446 in H1 subtypes; data not shown). At the pH of fusion

influenza A virus HA undergoes a drastic conformational change,

exposing this glutamic acid as the HA2 stem folds back on itself

[85]. Assuming HA of influenza B virus undergoes a similar

conformational change, S465 would be exposed to kinases in the

fusion conformation; indeed, it is present in a conserved S-x-E

casein kinase recognition motif. It is interesting to note that the

phosphorylated form of this residue would then have similar

physicochemical properties to the glutamic acid exposed in

refolded influenza A virus HA. However, it seems unlikely that

fusion conformation HA is a major component of the purified

virus preparation, and the functional significance of this residue is

unclear.

For the NA of the influenza A virus WSN (N1 subtype), we

detected phosphorylation (along with an artefactual carbamido-

methylation of C168) which could be plausibly assigned to one of

three serines: residues 160, 164 or 166. All three serines are highly

conserved in N1 neuraminidases (Table 1). When the NA

consensus sequences of different influenza A virus subtypes and

influenza B virus lineages are compared, S160 is not conserved,

S164 is serine for all subtypes and lineages, and S166 is either

serine or threonine (data not shown). S166 is buried and so is

unlikely to be phosphorylated (Figure 5A [86]). S160 is positioned

at the interface of two head domains in the NA tetramer

(Figure 5A). Assuming that all structural NA is assembled into

tetramers, this site would presumably only be accessible to kinases

prior to tetramer assembly in the endoplasmic reticulum. S164, as

well as being conserved in all influenza A and B virus NAs, is

positioned in a more obviously accessible location. It lies at the

base of a pocket containing the neuraminidase active site, and is

one of the supporting framework residues of the active site

(Figure 5A, B) [87]. Phosphorylation would interfere with its polar

contact with the framework residue E212, and the negative charge

it introduces could potentially disrupt interactions with sialic acid,

reducing the ability of newly formed viruses to leave the cell.

Mutations shown to confer neuraminidase inhibitor resistance lie

on the opposite side of the pocket to S164 [88], suggesting that

phosphorylation would not affect known mechanisms of drug

resistance.

Phosphorylation of the Polymerase and Nucleoprotein
Despite previous reports that PB1 and PA were phosphopro-

teins within infected cells [14,20,25], we did not detect phosphor-

ylations in the polymerase proteins of any of the purified viruses,

whether or not optimised conditions were used (Table S2). Two

alternative approaches were used to analyse the polymerase

proteins of WSN in 293 T cells. In one approach, cells were

infected with a modified WSN virus which expressed PB2 protein

fused to a C-terminal tag [89]. The tag was used to isolate PB2-

containing complexes, including RNPs (Figure S1B). In a second

approach, the polymerase proteins were expressed by transfection

and a tag fused to the C-terminus of PB1 was used to purify it from

cell lysates, along with bound PA and PB2 (Figure S1C). In

infected cells we detected phosphorylation of PB2 at S742 and of

PA at S224 or S225, with S225 the more likely assignment. We

also detected phosphorylation of NP, as discussed below (Table 1).

In the transfected cells we identified a single phosphopeptide,

derived from PB1, with phosphorylation of T223 (as well as

artefactual oxidation of M227; Table 1). The failure to detect

phosphorylated polymerase protein in virions suggests that only

non-phosphorylated polymerase proteins are packaged into the

virus, though this may merely reflect a stochastic failure to detect

the relevant phosphopeptides in the samples analysed.

In PB2, S742 forms part of a flexible C-terminal tail containing

the protein’s bipartite NLS [90,91]. This tail unfolds to allow the

protein to bind to alpha importins (Figure 6A, B) [91]. The

phosphorylation site consists of highly conserved residues between

the two parts of the NLS. This arrangement is conserved in

influenza B viruses and apparently also in influenza C viruses,
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suggesting a functional role (Figure 6C). As discussed above,

phosphorylation at or near to NLSs regulates interactions with

nuclear import factors [50–52]. In the case of PB2, a co-crystal

structure of the C-terminus of PB2 bound to importin a5 [91]

shows that S742, although in a flexible region not resolved in the

structure, is positioned near to the surface of the importin

(Figure 6B; the adjacent 741 residue is present in the structure

close the importin surface). Phosphorylation of this residue is

therefore highly likely to affect importin binding, thereby

regulating the nuclear import of PB2. Whether phosphorylation

would promote or inhibit nuclear import is unclear from the

structure alone, and as the approach used here does not

distinguish monomeric PB2, prior to nuclear import, from PB2

present in an RNP, the stage at which this regulation is applied

cannot yet be determined.

In PB1 T223 is highly conserved, and serines or threonines are

conserved at the corresponding residue in influenza B and C

viruses (Figure 6C). In the primary sequence of PB1 T223 is

between the NLS/RanBP5-binding site [92,93] and the core

promoter binding and polymerase motifs [94–98], suggesting a

possible role in regulating nuclear import or RNA binding.

However, as the structure and function of this region of PB1 are

unknown it is hard to draw firm conclusions about the effect of its

phosphorylation.

In PA S224 is highly conserved in influenza A viruses. In

contrast, S225 (a better match to the spectrum, and in an S-x-E

casein kinase consensus) is only present in 69% of isolates, with

most of the remainder having cysteine at this position (Table 1).

Conserved serines or threonines can be found in a similar position

in influenza B and C viruses (Figure 6C). TheS224/S225 site is

positioned in a region of unknown structure and function, between

the N-terminal endonuclease domain and the C-terminal PB1-

interacting domain of PA [99]. In a previous analysis of possible

phosphorylation sites in influenza A/Victoria/3/75, a strain in

which position 225 is cysteine, mutation of S224 to alanine was

shown not to affect RNP activity or the apparent proteolytic

activity of PA [25]. The effect of phosphorylation at this site is

therefore currently unclear.

The nucleoprotein (NP) is, after M1, the most abundant protein

in the virus (Figure 1A) [44], and is known to be a phosphoprotein

Figure 5. Location of phosphorylated residues in neuramini-
dase. (A) The position of S160/S164/S166 in the head domain of an N1-
subtype NA, viewed facing the virion surface (PDB 3BEQ [86]). Head
domains of the NA tetramer are shown in light blue and pink. (B) The
position of S164 in the NA active site, with catalytic residues in yellow
and framework residues in pink.
doi:10.1371/journal.ppat.1002993.g005

Figure 6. Location of phosphorylated residues in the polymer-
ase. The position of S472 in the C-terminal tail of PB2 when (A)
unbound (PDB 2GMO [91]) and (B) bound (PDB 2JDQ [91]) to importin
a5. PB2 is shown in light blue and the importin in gold. In the bound
form residues 742–747 are not resolved in the structure, and are
indicated by a dotted line; the position of S742 has been estimated. (C)
Portions of the consensus sequences of PB2, PB1 and PA from influenza
A, B and C viruses. Colours are as in Figure 2; basic residues of the
bipartite NLS of influenza A virus PB2, and orthologous residues in the
influenza B and C virus sequences, are blue.
doi:10.1371/journal.ppat.1002993.g006

Protein Phosphorylation in Influenza Viruses

PLOS Pathogens | www.plospathogens.org 9 November 2012 | Volume 8 | Issue 11 | e1002993



[6,17,18]. Phosphorylation occurs at multiple sites, predominantly

serines, and can vary between viral strains and host species, as well

as during the course of an infection [7,12,13]. Serine 3 (the residue

is, very unusually, threonine in WSN), accounts for the majority of

N-terminal phosphorylation in infected cells [7], but is not

detected in virions [13]. Additional phosphorylation has been

mapped to the C-terminal 196 residues of the protein [7].

For WSN virus without the use of optimised conditions,

phosphorylation was readily detected at either S402 or S403

(Table 1). We detected the same phosphorylation in WSN NP

from cell lysates, both when RNPs were purified from infected

cells, and when an N-terminal tag was used to purify NP expressed

by transfection in uninfected 293 T cells (Figure S1B, C; Table

S2). While S402 is highly conserved, S403 is an unusual feature of

WSN and is more typically an alanine (Table 1). In the PR8-

derived NP of the influenza A CVVs, for which residue 403 is an

alanine, S402 was unambiguously phosphorylated (Table S2). It is

likely that this residue accounts for much of the previously

observed phosphorylation of the C-terminal portion of NP [7].

Optimised mass spectrometry conditions allowed us to detect

additional sites of NP phosphorylation in the influenza A virus

WSN. In virions, phosphorylation was detected for S9/Y10, S165

(with an artefactual carbamidomethylation of C164), S457 and

T472/S473. In RNPs purified from infected cell lysates phos-

phorylation was detected at S9/Y10, S165 (again with an

artefactual carbamidomethylation), Y296/S297, and S377/S378.

All of these residues are highly conserved in influenza A viruses,

with the exception of S377 (59% conserved, with the majority of

other usages being asparagines), and S473 (which is typically

asparagine, and which has been speculated to play a role in strain-

specific phosphorylation of NP [13]). Peptides containing residue 3

were hard to identify due to tryptic cleavage sites present very close

to the N-terminus (K4, K7, R8). However, when a peptide

containing T3 was identified in purified virions it was N-terminally

modified but not phosphorylated (Tables 3, S3), consistent with

previous observations that residue 3 was not phosphorylated in

virions, and that phosphorylation of this residue may be strain-

specific [13].

NP has been reported to contain multiple NLSs [100], but the

primary signal for nuclear import of free NP and of RNPs is an

unconventional NLS located in the N-terminus [101–103].

Treatment with the phosphorylation stimulator TPA and the

protein kinase inhibitor H7 showed that the nuclear accumulation

of NP is inhibited by phosphorylation [101]. Mutational analysis

suggests that phosphorylation of S3, which is adjacent to the N-

terminal NLS of NP, inhibits its nuclear accumulation [8]. S9 and

Y10, whose phosphorylation is detected here, are within the

sequence of the N-terminal NLS [101,102], and their phosphor-

ylation would also be expected to inhibit nuclear import [104]. It

therefore appears that phosphorylation may regulate the nuclear

import not only of M1 and PB2 (and potentially of NS1 and PB1)

but also of NP, and through it of the viral genome.

The structure of the N-terminus of NP, including S3/T3, S9

and Y10, is not known. All other sites detected in this study are

located on the surface of the NP monomer (Figure 7A), supporting

their identification as phosphorylated residues. As none of the

residues were part of the RNA-binding groove of NP [105], it is

unlikely that phosphorylation would interfere directly with RNA

binding. In the structure of a WSN NP trimer, S165 and S457

participate in intermolecular van der Waals bonds, and S165,

S402, S403 and S457 participate in intermolecular hydrogen

bonding [105] – interactions that might be disrupted by

phosphorylation. Of particular interest, S402/S403 and S165

are present in the ‘tail loop’ and ‘groove’ (respectively) which

mediate NP oligomerisation (Figure 7B) [105,106]. Phosphoryla-

tion could therefore plausibly interfere with the oligomerisation of

NP.

In influenza B viruses we detected phosphorylation of S50 even

without the use of optimised conditions (Tables 2, S2). This residue

is found in a disordered N-terminal region with no homology to

influenza A virus NP sequences [107,108] and, despite the

relatively high sequence variation of this region (data not shown),

is absolutely conserved. Using optimised mass spectrometry

conditions we identified additional phosphorylation sites, at

T55/T56/S57/S58, S223, Y352/Y357/Y363, S459/S463/S465

and S486 (Figure 7A). With the exception of S57, which is an

isoleucine in 20% of isolates, all of these residues are highly

conserved (Tables 2, S2). Despite significant differences in the

primary sequences of NP from influenza A and B viruses, the

locations of several phosphorylation sites are conserved in the

tertiary structures of influenza A and B viruses [105,108]. Y296/

S297 (A) and Y352-Y363 (B) are both predicted to be targets of the

kinase Cdc2 (Tables 1, 2 and S2) and occupy similar positions on a

loop in the tertiary structure (Figure 7A), though the functional

significance of this site is unclear. Strikingly, in the tail loop/

groove region, phosphorylation is detected in both genera of virus

at conserved serines in the N-terminal end of the tail loop (S402/

S403 (A), S459/S463/S465 (B); Figure 7B), and at a conserved

serine within the groove (S165 (A), S223 (B); Figure 7B).

The Effects of Mutating Phosphorylation Sites in
Influenza A Virus Nucleoprotein

To assess the importance of phosphorylation sites found in NP

in influenza A virions, we introduced alanine mutations into WSN

viruses at the N-terminus, in the tail loop/groove oligomerisation

domain, and in the C-terminus (Figure 8A). Mutations at the N-

terminus that removed phosphorylation sites had pronounced

effects on viral growth kinetics: S9A reduced viral titre by

approximately 10-fold at 30 h post-infection (p.i.), and Y10A by

100-fold. In contrast, and consistent with their distance from

known functional sites in NP, mutations at the C-terminus had

little or no effect on viral growth: S457A caused a slight reduction

in titre (3-fold at 30 h p.i.), whereas T472A had no effect.

In the tail loop-groove region, virus with the S165A mutation

could not be produced in three separate attempts, despite the

generation of WT virus, suggesting that this residue may be

essential for viral growth. Despite phosphorylation of S402 being

readily detected, an S402A mutation caused a relatively small

defect in growth (5-fold at 30 h p.i.). Replacing the residue with

glutamic acid, which is approximately similar in size and charge to

phosphoserine, reduced the titre by approximately 20-fold at 30 h

p.i., suggesting that although S402 phosphorylation is readily

detected in the virion, constitutive phosphorylation of this residue

is not optimal for viral growth. Although S403 is an alanine in the

majority of influenza A virus strains, an S403A mutation caused a

10–100-fold growth defect at 30 h p.i., suggesting a specific

requirement of WSN for serine at this position. A similar defect

was seen when both S402 and S403 were mutated to alanines,

removing the phosphorylation sites entirely (data not shown).

To assess the roles of NP phosphorylation sites in transcription

and replication (including the S165 site, which could not be

mutated in a virus) we performed RNP reconstitutions in 293 T

cells (Figure 8B). The majority of the mutations did not reduce the

transcription or replication of the genome – indeed, very small

though statistically significant increases in activity were seen for

the S9A and S457A mutations. This suggests that the growth

defects caused by these mutations relate to NP functions not

required for transcription and replication during RNP reconstitu-
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Figure 7. Location of phosphorylated residues in the nucleoprotein. (A) Location of phosphorylated residues in NP of influenza A virus WSN
(PDB 2IQH [105]) and influenza B virus (PDB 3TJ0 [108]). The structures do not include N-terminal residues, including S9 and Y10 of influenza A virus
NP and S50 and T55-S58 of influenza B virus NP. The N-termini of the resolved structures and tail loops are indicated; in the orientation shown, the
RNA-binding grooves are on the far side of the molecules. (B) The oligomerisation of NP of influenza A virus or influenza B virus via the tail loop (blue)
and groove (pink), with phosphorylated residues highlighted.
doi:10.1371/journal.ppat.1002993.g007
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tions, for example viral entry, trafficking to the cell surface, viral

assembly or immune regulation. The only residue which appeared

to be important for RNP activity was S165. Mutating this residue

to alanine caused a moderate decrease in RNP activity, but the

phosphomimetic glutamic acid mutation caused a substantial and

significant reduction in both transcription and replication. This is

consistent with structural predictions, which suggest that phos-

phorylation of this residue would be inhibitory to NP oligomerisa-

tion and hence to RNP assembly (Figure 7B). The presence of a

phosphorylation site in the oligomerisation groove of NP is a

conserved feature of both influenza A and B viruses (Figure 7B).

This could be due to a structural requirement for serine at this

position, with phosphorylation simply a deleterious side effect.

However, it is interesting to note that the reversible nature of

phosphorylation could provide the virus with a mechanism for

regulating NP oligomerisation and RNP assembly.

Concluding Remarks
Mass spectrometry allows the detection of specific sites of

protein phosphorylation. By applying this technique to a selection

of influenza A viruses and an influenza B virus we have identified

39 phosphorylation sites, 36 of them novel. Unmodified peptides

were also detected, consistent with phosphorylation typically

acting on a subset of the proteins present in the cell. Strikingly,

we found that a number of phosphorylation sites were conserved

between different strains and even genera, underlining the

fundamental importance of phosphorylation in the life cycles of

influenza viruses.

Patterns of phosphorylation were similar between WSN grown

in MDBK cells and reassortants of the similar PR8 virus grown in

embryonated eggs and MDCK cells. This suggests that the

similarities between these viruses are more important in

determining phosphorylation patterns than the substantial differ-

ences between the hosts in which they were grown. From this it is

reasonable to infer that the phosphorylation sites reported in this

study will, in most cases, be similar to those found in other hosts,

including in natural infections. Of the phosphorylation sites

detected in PR8 reassortants only one was not also detected in

WSN (M1 T37, detected in an MDCK-grown virus). As detection

of phosphorylation by mass spectrometry is a stochastic process we

consider this likely to reflect sampling variation rather than a

difference in phosphorylation patterns. For the same reason,

failure to detect phosphorylation at particular sites in this study (for

example, at residues orthologous to phosphorylation sites in

influenza A and B virus M1; Figure 2A) does not exclude

phosphorylation at these positions.

By considering the position of sites of phosphorylation with

respect to known structural and functional motifs we have been

able to suggest cases where phosphorylation is likely to affect viral

protein function. Phosphorylation appears to regulate three broad

categories of function: viral entry and exit (HA and NA), nuclear

localisation (PB2, NP, M1, NEP, and possibly PB1 and NS1), and

multimerisation (NP, M2 and NS1). In addition, a number of

phosphorylations did not have an obvious function, and it is likely

that some of these phosphorylations are non-essential, arising

through interactions with cellular kinases that confer no fitness

advantage to the virus [109]. This has previously been suggested

for phosphorylation of M2 S64 [11,21], though we identify here

an alternative, though relatively uncommon, phosphorylation of

T65 which may compensate for S64 loss.

The functions of a number of phosphorylation sites in NP of the

influenza A virus WSN were tested experimentally, and were

found to contribute to viral growth in cell culture and to RNP

activity to varying extents. In arguing for a functional role for

phosphorylation, studies of this sort are suggestive, though further

studies will be required to address the possibility that the mutations

may introduce unrelated structural changes, or that viral fitness

and/or RNP activity may depend on the residues being present

but unphosphorylated. However, by combining arguments from

evolutionary conservation, structural context and experimental

evidence, a convincing case can be made for the existence of

multiple functional phosphorylation sites.

Figure 8. Effect of mutating phosphorylated residues in the
nucleoprotein. (A) WSN viruses were generated containing the
indicated mutations in NP. MDBK cells were infected at an MOI of 0.001,
and virus harvested at the indicated time points. The mean and range
of two experiments, or, for S402A and S402E, the mean and standard
deviation of 4 experiments, is shown. For S402A and S402E differences
from WT were tested by Student’s unpaired 2-tailed t-tests at each time
point; for both mutants the differences at 8 h are not significant, those
at 24 h significant at p,0.05 and those at 30 h significant at p,0.005.
(B) To assess the function of mutated NP proteins in transcription and
replication, RNP reconstitutions were performed in 293 T cells and RNA
species at 22 h post-transfection measured by primer extension and
autoradiography. A representative image is shown, along with the
mean and s.d. of 4 experiments, relative to WT. Differences from WT
were tested using one-sample t-tests: * p,0.05, *** p,0.0005.
doi:10.1371/journal.ppat.1002993.g008
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Like most viral proteins NP is multi-functional [110], and, as

discussed above, its phosphorylation state has been shown to

change during the course of an infection. This study concentrates

on proteins packaged into viral particles, but it is important to

recognise that these proteins may be subject to a series of

phosphorylation and de-phosphorylation events during the viral

life cycle. As such, the patterns of phosphorylation reported here

represent, for the most part, the final stage in a series of

interactions, functional and non-functional, between the proteins

of influenza viruses and the kinases and phosphatases of the cells

they infect. The increasing power of mass spectrometry to identify

phosphorylation patterns in complex samples will make it possible

in the future to map the dynamics of phosphorylation over the

entire course of an infection [24].

Phosphorylation provides a promising target for antiviral

chemotherapy, particularly as targeting cellular kinases reduces

the capacity for viral escape mutations. Treatment of cells with

protein kinase inhibitors interferes with multiple stages in the

influenza virus life cycle, including nuclear import, transcription,

protein synthesis, nuclear export and viral budding [69,111–114].

Some of these effects are due to changes in phosphorylation of host

factors [115,116], but altered phosphorylation of viral proteins also

has direct effects on the viral life cycle. It is interesting to note that

some of the kinases predicted to phosphorylate sites found in this

study, in particular protein kinase C, are targeted by kinase

inhibitors that are known to affect influenza viruses (Tables 1, 2

and S2; [101,111,112]). Phosphorylation stimulators and kinase

inhibitors affect the nuclear import of NP, and kinase inhibitors

prevent the nuclear export of NEP, as discussed above. A number

of kinase inhibitors, some already approved for cancer treatment,

are being investigated as antiviral drugs [117,118], including as

treatments for influenza [119,120]. Narrow-spectrum kinase

inhibitors such as these, effective at sub-toxic concentrations,

provide a promising route for antiviral therapy. The identification

in this study of specific and highly conserved phosphorylation sites

suggests that influenza viruses have a fundamental requirement for

cellular kinases (predictions of which are given Tables 1, 2 and S2)

and therefore provides a foundation for the targeted development

of novel antiviral strategies.

Materials and Methods

Cells, Viruses and Plasmids
Madin-Darby Bovine Kidney epithelial (MDBK) cells, Madin-

Darby Canine Kidney epithelial (MDCK) cells and 293 T human

embryonic kidney cells were maintained at 37uC and 5% CO2 in

Modified Eagle Medium with Earle’s salts (MEM; PAA) supple-

mented with 2 mM L-glutamine and 10% fetal calf serum (FCS).

Influenza A/WSN/33 virus (WSN) [121] was cultured on

MDBK cells in MEM supplemented with 2 mM L-glutamine and

0.5% fetal calf serum (FCS). Candidate Vaccine Viruses (CVVs)

were a kind gift of Dr Othmar Engelhardt (National Institute of

Biological Standards and Controls, UK). NIB-74xp and NYMC

X-187 have HA and NA genes of the influenza viruses A/

Christchurch/16/2010 (A(H1N1)pdm09) and A/Victoria/210/

2009 (H3N2), respectively, with the remaining genes from

influenza A/Puerto Rico/8/1934 (PR8). NYMC X-181 has HA,

NA and PB1 genes of influenza A/California/7/2009

(A(H1N1)pdm09) with the remaining genes from PR8. Influenza

B/Brisbane/60/2008 virus is an egg-adapted clinical isolate.

CVVs were propagated in embryonated chicken eggs. Addition-

ally, NIB-74xp was cultured in MDCK cells in MEM with 2 mM

L-glutamine, 0.14% bovine serum albumin (Sigma) and 0.75 mg/

ml bovine pancreatic trypsin (Sigma). Plasmids for use in affinity

purification [122–124], RNP reconstitution [125] and reverse

genetics [121] have been described previously. Specific mutations

were introduced into the plasmids by site-directed mutagenesis

and confirmed by sequencing. Mutated WSN viruses were

generated by reverse genetics, as previously described [121,126].

Influenza A/WSN/33 PB2-Cstrep was generated using pPR7-

PB2-Cstrep [89,122] in place of pPOLI-PB2.

Plaque assays were performed on MDBK cells using standard

techniques. RNP reconstitutions were performed in 293 T cells

using segment 6 (NA) vRNA as a template, and RNA accumu-

lation measured by primer extension, PAGE, autoradiography and

phosphorimaging, as described previously [125].

Affinity Purifications
Affinity purifications of PB1-TAP using a Tandem Affinity

Purification (TAP) tag [123,124] were carried out in transfected

293 T cells as previously described. To purify RNPs, 293 T cells

were infected with influenza A/WSN/33 PB2-Cstrep [89,122] at

an MOI of 5. At 6 h post-infection (p.i.) cells were harvested and

resuspended in phosphate buffered saline, pelleted at 450 g/

5 min/4uC, and placed on a rotating wheel for 1 h at 4uC in lysis

buffer (50 mM Tris-HCl pH 8.0, 200 mM NaCl, 33% glycerol,

0.5% NP-40 and 1 mM dithiothreitol with protease inhibitor

cocktail (Roche)). The soluble fraction was separated by centrifu-

gation at 17 000 g/3 min/4uC, diluted 1:5 with binding buffer

(20 mM Tris-HCl pH 8.0, 200 mM NaCl and protease inhibitor

cocktail (Roche)) and incubated overnight at 4uC with 200 ml of

50% suspension Strep-Tactin Superflow high capacity resin (IBA

GmbH). The resin was washed four times with wash buffer

(100 mM Tris-HCl pH 8.0, 150 mM NaCl, 1 mM EDTA, 0.1%

NP-40, 10% glycerol, 1 mM phenylmethylsulfonyl fluoride), and

proteins were eluted in 2 ml of elution buffer (100 mM Tris-HCl

pH 8.0, 150 mM NaCl, 1 mM EDTA, 0.1% NP-40, 10%

glycerol, protease inhibitor cocktail (Roche), 2 mM d-desthiobio-

tin) for 2 h on a rotating wheel at 4uC. Elution fractions were

subsequently concentrated using Amicon Ultra-4 (3K MWCO)

centrifugation devices.

Virus Purification
Viruses grown in cell culture were harvested from the growth

media of four T175 flasks of infected cells (120 ml; 109–1010

plaque-forming units (PFU) of virus for WSN) at 2 days p.i. The

medium was clarified by low-speed centrifugation (2000 g/30 min

then 18 000 g/30 min, at 4uC), then layered onto a cushion of

30% sucrose in NTC (100 mM NaCl, 20 mM Tris-HCl pH 7.4,

5 mM CaCl2) and pelleted by ultracentrifugation (112 000 g/

90 min/4uC in an SW 28 rotor (Beckman Coulter)). Pellets were

resuspended in NTC and spun through a 30–60% sucrose

gradient in NTC (209 000 g/150 min/4uC in an SW 41 Ti rotor

(Beckman Coulter)) to produce a visible band of virus which was

drawn off with a needle and pelleted through NTC (154 000 g/

60 min/4uC in an SW 41 Ti rotor) and resuspended in a small

volume of NTC (typically 120 ml, containing 108–109 PFU WSN).

A similar method was used to purify CVVs from infected eggs.

Briefly, infected allantoic fluid was harvested, filtered and mixed

with sodium azide. Virus was pelleted by ultracentrifugation,

resuspended and spun on 10–40% sucrose gradients to produce a

visible band of virus which was harvested and pelleted by

ultracentrifugation. Samples of virus were taken to determine

plaque titre; separated by SDS-PAGE and Coomassie or Silver

stained according to standard techniques; or fixed with 2.5%

glutaraldehyde, 2% paraformadehyde and 0.1% picric acid in

100 mM cacodylate buffer (pH 7.0), adsorbed onto formvar-

coated grids, negative-stained with 2% aqueous uranyl acetate and
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examined by transmission electron microscopy using a FEI Tecnai

12 electron microscope.

Mass Spectrometry
Samples of purified virus or PB2-Cstrep purified material were

prepared for mass spectrometry by boiling in Laemmli buffer and

running a short distance into a polyacrylamide gel (typically a

precast 8–16% Precise Protein Gel (Thermo Scientific)) to remove

detergent and salts; the entire sample was then cut out of the gel

with a clean scalpel. As an alternative method, some WSN samples

were boiled in 1.25% SDS, precipitated in 220uC acetone, and

resuspended in 8 M urea, 25 mM ammonium bicarbonate. Whole

cell lysates and TAP-purified samples were separated by SDS-

PAGE and stained with Coomassie; bands of the appropriate

electrophoretic mobility were excised with a clean scalpel. Samples

were then washed with 50 mM ammonium bicarbonate in 50%

acetonitrile, reduced with 10 mM DTT and 55 mM iodoaceta-

mide or chloroacetamide and digested with 0.5 mg trypsin

(Promega) at 37uC for 16 h. Peptides were extracted with 0.1%

formic acid in 50% acetonitrile, lyophilised in a SpeedVac

(Thermo Savant) and desalted using an in-house manufactured

C18 purification tip. Enrichment for phosphopeptides using TiO2

[127] or IMAC [128] were carried out essentially as described

previously; flow-through samples were also retained and analysed,

and the data pooled with that of the enriched sample. Samples

were lyophilised and stored at 220uC, then dissolved in 0.1%

formic acid prior to mass spectrometry analysis.

All LC-MS/MS experiments were performed using either an

Ultimate 3000 nano HPLC system (Dionex, Camberley, UK) run

in direct injection mode, coupled to an LTQ XL Orbitrap mass

spectrometer or a Q Exactive mass spectrometer (Thermo

Electron, Hemel Hempstead, UK). Separation of peptides was

performed by reverse-phase chromatography using a 15 cm (LTQ

XL Orbitrap) or 25 cm (Q Exactive) by 75 mm inner diameter

picotip analytical column (New Objective, Woburn, MA, USA),

packed in house with Reprosil-Pur C18-AQ phase, 3 mm particle

size (Dr Maisch, Germany), at a flow rate of 300 nl/min. Samples

were typically resolved on a 120 min gradient. The LTQ XL

Orbitrap mass spectrometer was operated in a ‘‘Top 5’’ and the Q

Exactive in a ‘‘Top 10’’ data-dependent acquisition mode. Charge

state +1 ions were rejected from selection and fragmentation and

dynamic exclusion with 40 s was enabled.

Analysis of Mass Spectra
Mass spectra were analysed using the Central Proteomics

Facilities Pipeline (CPFP) [31]. For purified virions data from

repeat experiments were merged to increase sample coverage; for

searches of CVVs data from two injections of sample were

merged. Peptide spectral matches were made to custom databases

that concatenated the proteome of the relevant virus with that of

the host (Bos taurus for MDBK cells, Canis lupus familiaris for

MDCK cells, Gallus gallus for chicken eggs and Homo sapiens for

293 T cells) and with common contaminants and decoy

sequences. For WSN the viral proteome was expanded to include

experimentally confirmed and hypothetical proteins, as well as a

translation of all six complete forward and reverse-sense reading

frames from each viral segment. To identify peptides, CPFP uses

iProphet [129] to combine searches made with Mascot (Matrix

Science, London, UK), OMSSA [130] and X!TANDEM [131],

with peptide identifications validated using PeptideProphet [132].

Combined protein identifications were then assigned using

ProteinProphet [133] with a 1% false discovery rate. Searches

were made for peptides with up to two missed cleavages and with

common post-translational modifications including phosphoryla-

tion at S, T or Y. The Modification Localisation Score (ModLS)

algorithm within CPFP was applied to phosphopeptide identifi-

cations to assess the confidence of phosphorylation site assign-

ments. MS/MS search engines may not always assign phosphor-

ylation at the site that is most probable given the spectral

evidence, since their emphasis is on peptide identification rather

than phosphorylation localisation. The ModLS algorithm re-

assigns phosphorylation sites when the search-engine reported

assignment is a poorer fit to the spectral evidence than an

alternative localisation. PTMScores are calculated as previously

described [32], with the exception that the peak depth per

100 m/z units is varied between 1 and 10, and the highest

scoring result obtained is used. ModLS assesses the confidence

with which phosphorylation sites can be assigned on a peptide by

the difference between the highest and second-highest

PTMScores calculated for all possible localisations of phosphor-

ylation on a given peptide. Assessment of the ModLS algorithm

using spectra from mixtures of known phosphopeptides [134]

shows that a ModLS of ,14 gives a false localisation rate of ,1%

(data not shown). As N-terminal modifications are not reported

correctly in the version of CPFP used, peptide spectra matched to

N-terminal peptides by Mascot were searched manually. All

spectra of reported modified peptides were manually inspected,

and representative spectra are given in Figure S3.

Sequence and Structural Analysis
Full-length influenza protein sequences were downloaded from

GISAID (http://platform.gisaid.org) or from the NCBI influenza

virus resource (http://www.ncbi.nlm.nih.gov/genomes/FLU/

FLU.html) and aligned with MAFFT [135] using the FFT-NS-2

method. The number of sequences analysed for each protein is

given in Table S4. Alignments were edited using BioEdit [136]

and consensus sequences were generated with Jalview [137].

Protein structures were visualised using PyMOL (Schrödinger

LLC); predictions of secondary structure were made using JPred 3

[138]. Phosphorylation sites were predicted using NetPhos 2.0 and

NetPhosK 1.0 [58].

Supporting Information

Figure S1 Purification of viral proteins. (A) Candidate

vaccine viruses (CVVs) were purified from embryonated chicken

eggs or the culture medium of infected MDCK cells, separated by

SDS-PAGE and silver stained. (B) 293 T cells were infected with

A/WSN/33 PB2-Cstrep, and affinity purification was used to

purify PB2-Cstrep and associated proteins from cell lysates.

Proteins were separated by SDS-PAGE and silver stained. Key

proteins are identified by electrophoretic mobility. (C) Affinity

purification of PB1-TAP (with co-purifying PB2 and PA) and,

separately, TAP-NP from transfected 293 T cells. Protein was

separated by SDS-PAGE and stained with Coomassie Brilliant

Blue; the indicated viral proteins were excised from the gel and

submitted for LC-MS/MS.

(TIF)

Figure S2 Coverage of sequences. The full sequences of all

proteins to which peptides were matched, with peptides assigned

by CPFP shaded. Peptides with N-terminal acetylation (Table S3)

were scored separately and are not necessarily shown.

(PDF)

Figure S3 Representative spectra. Fragment ion spectra for

N-terminal peptides and for phosphorylated peptides, annotated

by Mascot or CPFP. The clearest spectrum showing each

modification referred to in the text is presented (including
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overlapping peptides and unmodified peptides where available).

Each spectrum was manually inspected.

(PDF)

Table S1 Protein sequence coverage.
(DOC)

Table S2 Summary of phosphopeptides.
(DOC)

Table S3 N-terminal modifications.
(DOC)

Table S4 Number of sequences used in alignments.
(DOC)
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