About
907
Publications
126,581
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
77,830
Citations
Introduction
Observational cosmology and astronomical instrumentation are Ed Wollack's primary research interests. His work concentrates on the characterization of diffuse astrophysical backgrounds and understanding their implications for structures on the largest scales in our universe. In carrying out these efforts he has contributed to the design of a variety of novel sensor, guided wave, and optical systems for ground, sub-orbital, and space-borne applications.
Skills and Expertise
Current institution
Additional affiliations
June 1994 - July 1998
Education
August 1989 - June 1994
August 1982 - June 1987
Publications
Publications (907)
We present Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) maps of the Cosmic Microwave Background temperature and polarization anisotropy at arcminute resolution over three frequency bands centered on 98, 150 and 220 GHz. The maps are based on data collected with the AdvancedACT camera over the period 2017--2022 and cover 19,000 square degr...
We use new cosmic microwave background (CMB) primary temperature and polarization anisotropy measurements from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) to test foundational assumptions of the standard cosmological model and set constraints on extensions to it. We derive constraints from the ACT DR6 power spectra alone, as well as...
We present power spectra of the cosmic microwave background (CMB) anisotropy in temperature and polarization, measured from the Data Release 6 maps made from Atacama Cosmology Telescope (ACT) data. These cover 19,000 deg$^2$ of sky in bands centered at 98, 150 and 220 GHz, with white noise levels three times lower than Planck in polarization. We fi...
The Central Molecular Zone (CMZ) of the Galactic Center (GC) region of the Milky Way contains a substantial fraction of the molecular mass of the Galaxy >10e7 solar masses yet exhibits an order of magnitude lower star formation efficiency (SFE) than expected given the high densities found in this region. There are multiple possible explanations for...
The Simons Observatory (SO) Small Aperture Telescopes (SATs) will observe the Cosmic Microwave Background (CMB) temperature and polarization at six frequency bands. Within these bands, the angular response of the telescope (beam) is convolved with the instrument's spectral response (commonly called bandpass) and the signal from the sky, which leads...
Current- and next-generation Cosmic Microwave Background (CMB) experiments will measure polarization anisotropies with unprecedented sensitivities. The need for high precision in these measurements underscores the importance of gaining a comprehensive understanding of instrument properties, with a particular emphasis on the study of the beam proper...
We present an analysis of the magnetic field strength and morphology in the Sagittarius C complex (Sgr C; G359.43-0.09) in the Milky Way Galaxy's Central Molecular Zone (CMZ) using the 214 $\mu$m polarimetry data acquired with the High-Angular-Resolution Wideband Camera+ (HAWC+) instrument aboard the Stratospheric Observatory for Infrared Astronomy...
The Single Aperture Large Telescope for Universe Studies (SALTUS) probe mission will provide a powerful far-infrared (far-IR) pointed space observatory to explore our cosmic origins and the possibility of life elsewhere. The observatory employs an innovative deployable 14-m aperture, with a sunshield that will radiatively cool the off-axis primary...
Cosmic Microwave Background (CMB) photons scatter off the free-electron gas in galaxies and clusters, allowing us to use the CMB as a backlight to probe the gas in and around low-redshift galaxies. The thermal Sunyaev-Zel'dovich effect, sourced by hot electrons in high-density environments, measures the thermal pressure of the target objects, shedd...
We present measurements of large-scale cosmic microwave background (CMB) E-mode polarization from the Cosmology Large Angular Scale Surveyor (CLASS) 90 GHz data. Using 115 det-yr of observations collected through 2024 with a variable-delay polarization modulator, we achieved a polarization sensitivity of $78\,\mathrm{\mu K\,arcmin}$, comparable to...
Low-loss deposited dielectrics are beneficial for the advancement of superconducting integrated circuits for astronomy. In the microwave band (approximately 1–10 GHz) the dielectric loss at cryogenic temperatures and low electric field strengths is dominated by two-level systems. However, the origin of the loss in the millimeter-submillimeter band...
The detection of primordial B modes of the cosmic microwave background (CMB) could provide information about the early stages of the Universe's evolution. The faintness of this signal requires exquisite calibration accuracy and control of instrumental systematic effects which otherwise could bias the measurements. In this work, we study the impact...
This work describes the design and implementation of optics for EXCLAIM, the EXperiment for Cryogenic Large-Aperture Intensity Mapping. EXCLAIM is a balloon-borne telescope that will measure integrated line emission from carbon monoxide at redshifts z < 1 and ionized carbon ([CII]) at redshifts z = 2.5 − 3.5 to probe star formation over cosmic time...
The nature of the magnetic field structure throughout the Galactic Center (GC) has long been of interest. The recent Far-InfraREd Polarimetric Large-Area Central Molecular Zone (CMZ) Exploration (FIREPLACE) Survey reveals preliminary connections between the seemingly distinct vertical and horizontal magnetic field distributions previously observed...
The Single Aperture Large Telescope for Universe Studies (SALTUS) probe mission will provide a powerful far-infrared (far-IR) pointed space observatory to explore our cosmic origins and the possibility of life elsewhere. The observatory employs an innovative deployable 14-m aperture, with a sunshield that will radiatively cool the off-axis primary...
Large angular scale surveys in the absence of atmosphere are essential for measuring the primordial B-mode power spectrum of the Cosmic Microwave Background (CMB). Since this proposed measurement is about three to four orders of magnitude fainter than the temperature anisotropies of the CMB, in-flight calibration of the instruments and active suppr...
We assess the capabilities of the LiteBIRD mission to map the hot gas distribution in the Universe through the thermal Sunyaev-Zeldovich (SZ) effect. Our analysis relies on comprehensive simulations incorporating various sources of Galactic and extragalactic foreground emission, while accounting for the specific instrumental characteristics of the...
We present a high-significance cross-correlation of CMB lensing maps from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) with luminous red galaxies (LRGs) from the Dark Energy Spectroscopic Instrument (DESI) Legacy Survey spectroscopically calibrated by DESI. We detect this cross-correlation at a significance of 38σ; combining our measu...
The Atacama Cosmology Telescope Data Release 6 (ACT DR6) power spectrum is expected to provide state-of-the-art cosmological constraints, with an associated need for precise error modeling. In this paper we design, and evaluate the performance of, an analytic covariance matrix prescription for the DR6 power spectrum that sufficiently accounts for t...
We present the in-lab and on-sky performance for the upgraded 90 GHz focal plane of the Cosmology Large Angular Scale Surveyor (CLASS), which had four of its seven detector wafers updated during the austral winter of 2022. The update aimed to improve the transition-edge-sensor (TES) stability and bias range and to realize the high optical efficienc...
We describe a testbed to characterize the optical response of compact superconducting on-chip spectrometers in development for the EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM) mission. EXCLAIM is a balloon-borne far-infrared experiment to probe the CO and CII emission lines in galaxies from redshift 3.5 to the present. The sp...
We present a stacked lensing analysis of 96 galaxy clusters selected by the thermal Sunyaev-Zel’dovich (SZ) effect in maps of the cosmic microwave background (CMB). We select foreground galaxy clusters with a 5𝜎-level SZ threshold in CMB observations from the Atacama Cosmology Telescope, while we define background source galaxies for the lensing a...
Future cosmic microwave background (CMB) experiments are primarily targeting a detection of the primordial $B$-mode polarisation. The faintness of this signal requires exquisite control of systematic effects which may bias the measurements. In this work, we derive requirements on the relative calibration accuracy of the overall polarisation gain ($...
The high electron temperature in galaxy clusters ($>1\,$keV or $>10^7\,$K) leads to corrections at the level of a few percent in their thermal Sunyaev-Zeldovich effect signatures. Both the size and frequency dependence of these corrections, which are known as relativistic temperature corrections, depend upon the temperature of the objects. In this...
According to CMB measurements, baryonic matter constitutes about $5\%$ of the mass-energy density of the universe. A significant population of these baryons, for a long time referred to as `missing', resides in a low density, warm-hot intergalactic medium (WHIM) outside galaxy clusters, tracing the ``cosmic web'', a network of large scale dark matt...
At frequencies below 1\,Hz, fluctuations in atmospheric emission in the Chajnantor region in northern Chile are the primary source of interference for bolometric millimeter-wave observations. This paper focuses on the statistics of these fluctuations using measurements from the Atacama Cosmology Telescope (ACT) and the Atacama Pathfinder Experiment...
We measure the growth of cosmic density fluctuations on large scales and across the redshift range $0.3<z<0.8$ through the cross-correlation of the ACT DR6 CMB lensing map and galaxies from the DESI Legacy Survey, using three galaxy samples spanning the redshifts of $0.3 \lesssim z \lesssim 0.45$, $0.45 \lesssim z \lesssim0.6$, $0.6 \lesssim z \les...
The nature of the magnetic field structure throughout the Galactic Center (GC) has long been of interest. The recent Far-InfraREd Polarimetric Large-Area CMZ Exploration (FIREPLACE) Survey reveals preliminary connections between the seemingly distinct vertical and horizontal magnetic field distributions previously observed in the GC. We use the sta...
The kinematic Sunyaev--Zel'dovich (kSZ) effect induces a non-zero density-density-temperature bispectrum, which we can use to reconstruct the large-scale velocity field from a combination of cosmic microwave background (CMB) and galaxy density measurements, in a procedure known as ``kSZ velocity reconstruction''. This method has been forecast to co...
ACT-CL J0034.4+0225 is a previously unrecognized merging galaxy cluster at z = 0.38588 ± 0.00068. Our primary evidence is provided by a 21 ks Chandra image that shows two surface brightness peaks separated by ∼49″ (259 kpc) surrounded by an extended cluster gas distribution. Each gas peak contains a brightest cluster galaxy, offset from the gas pea...
Future far-infrared (IR) observatories require compact and cost efficient optical linear variable bandpass filters (LVBFs) to define their instrument spectral bands. We have designed novel far-IR LVBFs, to our knowledge, that consist of metal-mesh bandpass filters comprising a gold film with cross-slots of varying sizes along a silicon (Si) substra...
Future far-infrared (IR) observatories require compact and cost efficient optical linear variable bandpass filters (LVBFs) to define their instrument spectral bands. We have designed novel far-IR LVBFs that consist of metal-mesh bandpass filters comprised of a gold film with cross-slots of varying sizes along a silicon (Si) substrate with anti-refl...
We conduct a systematic search for astrophysical transients using data from the Atacama Cosmology Telescope (ACT). The data were taken from 2017 to 2022 in three frequency bands spanning 77 GHz to 277 GHz. In this paper we present a pipeline for transient detection using single observation maps where each pixel of a map contains one observation wit...
Statistics that capture the directional dependence of the baryon distribution in the cosmic web enable unique tests of cosmology and astrophysical feedback. We use constrained oriented stacking of thermal Sunyaev-Zel'dovich (tSZ) maps to measure the anisotropic distribution of hot gas $2.5-40$ Mpc away from galaxy clusters embedded in massive filam...
The EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM) is a balloon-borne telescope designed to survey star formation over cosmological time scales using intensity mapping in the 420 - 540 GHz frequency range. EXCLAIM uses a fully cryogenic telescope coupled to six on-chip spectrometers featuring kinetic inductance detectors (KIDs)...
We present a joint analysis of the CMB lensing power spectra measured from the Data Release 6 of the Atacama Cosmology Telescope and Planck PR4, cross-correlations between the ACT and Planck lensing reconstruction and galaxy clustering from unWISE, and the unWISE clustering auto-spectrum. We obtain 1.5% constraints on the matter density fluctuation...
Large angular scale surveys in the absence of atmosphere are essential for measuring the primordial $B$-mode power spectrum of the Cosmic Microwave Background (CMB). Since this proposed measurement is about three to four orders of magnitude fainter than the temperature anisotropies of the CMB, in-flight calibration of the instruments and active sup...
Improved polarization measurements at frequencies below 70 GHz with degree-level angular resolution are crucial for advancing our understanding of the Galactic synchrotron radiation and the potential polarized anomalous microwave emission and ultimately benefiting the detection of primordial B modes. In this study, we present sensitivity-improved 4...
Dark Current Random Telegraph Signal (DC-RTS) characteristics of astronomical H4RG-10 HgCdTe Near Infrared (NIR) image sensors are investigated before irradiation, for cumulative radiation dose up to 5 krad(Si), and for subsequent thermal annealing. This study is carried out as part of the qualification testing for the Roman Space Telescope Wide Fi...
We have developed a suite of infrared-blocking filters made by embedding diamond scattering particles in a polyimide aerogel substrate. We demonstrate the ability to tune the spectral performance of the filters based on both the composition of the base aerogel material and the properties of the scattering particles. We summarize the fabrication, op...
The Cosmology Large Angular Scale Surveyor (CLASS) is a telescope array that observes the cosmic microwave background (CMB) over ∼75% of the sky from the Atacama Desert, Chile, at frequency bands centered near 40, 90, 150, and 220 GHz. CLASS measures the large angular scale CMB polarization to constrain the tensor-to-scalar ratio and the optical de...
We assess the capabilities of the LiteBIRD mission to map the hot gas distribution in the Universe through the thermal Sunyaev-Zeldovich (SZ) effect. Our analysis relies on comprehensive simulations incorporating various sources of Galactic and extragalactic foreground emission, while accounting for specific instrumental characteristics of LiteBIRD...
We present a stacked lensing analysis of 96 galaxy clusters selected by the thermal Sunyaev-Zel'dovich (SZ) effect in maps of the cosmic microwave background (CMB). We select foreground galaxy clusters with a $5\sigma$-level SZ threshold in CMB observations from the Atacama Cosmology Telescope, while we define background source galaxies for the len...
Front-end polarization modulation enables improved polarization measurement stability by modulating the targeted signal above the low-frequency $1/f$ drifts associated with atmospheric and instrumental instabilities and diminishes the impact of instrumental polarization. In this work, we present the design and characterization of a new 60-cm diamet...
Recent advances in cosmological observations have provided an unprecedented opportunity to investigate the distribution of baryons relative to the underlying matter. In this work, we robustly show that the gas is much more extended than the dark matter at 40$\sigma$ and the amount of baryonic feedback at $z \lesssim 1$ strongly disfavors low-feedba...
We present the second data release (DR2) of the Far-InfraREd Polarimetric Large-Area CMZ Exploration (FIREPLACE) survey. This survey utilized the Stratospheric Observatory for Infrared Astronomy High-resolution Airborne Wideband Camera plus instrument at 214 μ m ( E band) at a resolution of 19.″6 to observe thermal polarized dust emission throughou...
We present a high-significance cross-correlation of CMB lensing maps from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) with spectroscopically calibrated luminous red galaxies (LRGs) from the Dark Energy Spectroscopic Instrument (DESI). We detect this cross-correlation at a significance of 38$\sigma$; combining our measurement with the...
We present an estimate of the Atacama Cosmology Telescope (ACT) detector polarization angle systematic uncertainty from optics perturbation analysis using polarization-sensitive ray tracing in CODE V optical design software. Uncertainties in polarization angle calibration in CMB measurements can limit constraints on cosmic birefringence and other c...
Context. How protoclusters evolved from sparse galaxy overdensities to mature galaxy clusters is still not well understood. In this context, detecting and characterizing the hot intracluster medium (ICM) at high redshifts ( z ∼ 2) is key to understanding how the continuous accretion from the filamentary large-scale structure and the mergers along i...
We present the detection of a magnetized dust ring (M0.8–0.2) in the central molecular zone (CMZ) of the Galactic center. The results presented in this paper utilize the first data release of the Far-Infrared Polarimetric Large Area CMZ Emission (FIREPLACE) survey (i.e., Paper I of this series). The FIREPLACE survey is a 214 μ m polarimetric survey...
\textit{LiteBIRD}, the next-generation cosmic microwave background (CMB) experiment, aims for a launch in Japan's fiscal year 2032, marking a major advancement in the exploration of primordial cosmology and fundamental physics. Orbiting the Sun-Earth Lagrangian point L2, this JAXA-led strategic L-class mission will conduct a comprehensive mapping o...
The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission concept to measure the energy spectrum and linear polarization of the cosmic microwave background (CMB). A single cryogenic Fourier transform spectrometer compares the sky to an external blackbody calibration target, measuring the Stokes I, Q, U parameters to levels ~200 Jy/sr i...
Low-loss deposited dielectrics are beneficial for the advancement of superconducting integrated circuits for astronomy. In the microwave band ($\mathrm{\sim}$1-10 GHz) the cryogenic and low-power dielectric loss is dominated by two-level systems. However, the origin of the loss in the millimeter-submillimeter band ($\mathrm{\sim}$0.1-1 THz) is not...
The SALTUS Probe mission will provide a powerful far-infrared (far-IR) pointed space observatory to explore our cosmic origins and the possibility of life elsewhere. The observatory employs an innovative deployable 14-m aperture, with a sunshield that will radiatively cool the off-axis primary to <45K. This cooled primary reflector works in tandem...
We derive new constraints on the $E_G$ statistic as a test of gravity, combining the CMB lensing map estimated from Data Release 6 (DR6) of the Atacama Cosmology Telescope with SDSS BOSS CMASS and LOWZ galaxy data. We develop an analysis pipeline to measure the cross-correlation between CMB lensing maps and galaxy data, following a blinding policy...
We present tomographic measurements of structure growth using cross-correlations of Atacama Cosmology Telescope (ACT) DR6 and Planck cosmic microwave background (CMB) lensing maps with the unWISE Blue and Green galaxy samples, which span the redshift ranges 0.2 ≲ z ≲ 1.1 and 0.3 ≲ z ≲ 1.8, respectively. We improve on prior unWISE cross-correlations...
We investigate the impact and mitigation of extragalactic foregrounds for the cosmic microwave background (CMB) lensing power spectrum analysis of Atacama Cosmology Telescope (ACT) data release 6 (DR6) data. Two independent microwave sky simulations are used to test a range of mitigation strategies. We demonstrate that finding and then subtracting...
We have developed a suite of infrared-blocking filters made by embedding diamond scattering particles in a polyimide aerogel substrate. We demonstrate the ability to tune the spectral performance of the filters based on both the composition of the base aerogel material and the properties of the scattering particles. We summarize the fabrication, op...
We have developed a suite of infrared-blocking filters made by embedding diamond scattering particles in a polyimide aerogel substrate. We demonstrate the ability to tune the spectral performance of the filters based on both the composition of the base aerogel material and the properties of the scattering particles. We summarize the fabrication, op...
The Astrophysics 2020 Decadal Report recommended a line of Probe missions with far-infrared imaging or spectroscopy capabilities. The achievable sensitivity of these FIR missions will be enabled by cooled telescopes and advanced cryogenic detector technologies, potentially resulting in up to three orders of magnitude improvement in sensitivity and...
We present fluxes and light curves for a population of asteroids at millimeter wavelengths, detected by the Atacama Cosmology Telescope (ACT) over 18,000 deg ² of the sky using data from 2017 to 2021. We utilize high cadence maps, which can be used in searching for moving objects such as asteroids and trans-Neptunian Objects, as well as for studyin...
Observations of the millimeter sky contain valuable information on a number of signals, including the blackbody cosmic microwave background (CMB), Galactic emissions, and the Compton-y distortion due to the thermal Sunyaev-Zel’dovich (tSZ) effect. Extracting new insight into cosmological and astrophysical questions often requires combining multiwav...
We present the first data release of the Far-Infrared Polarimetric Large Area CMZ Exploration (FIREPLACE) survey. The survey was taken using the 214 μ m band of the HAWC+ instrument with the SOFIA telescope (19.″6 resolution; 0.7 pc). In this first data release we present dust polarization observations covering a ∼0.°5 region of the Galactic center...
Measurement of the largest angular scale ( ℓ < 30) features of the cosmic microwave background (CMB) polarization is a powerful way to constrain the optical depth to reionization and search for the signature of inflation through the detection of primordial B -modes. We present an analysis of maps covering 73.6% of the sky made from the 40 GHz chann...
We have performed targeted searches of known extragalactic transient events at millimetre wavelengths using nine seasons (2013–2021) of 98, 150, and 229 GHz Atacama Cosmology Telescope (ACT) observations that mapped ∼40 per cent of the sky for most of the data volume. Our data cover 88 gamma-ray bursts (GRBs), 12 tidal disruption events (TDEs) and...
We present cosmological constraints from a gravitational lensing mass map covering 9400 deg ² reconstructed from measurements of the cosmic microwave background (CMB) made by the Atacama Cosmology Telescope (ACT) from 2017 to 2021. In combination with measurements of baryon acoustic oscillations and big bang nucleosynthesis, we obtain the clusterin...
We present new measurements of cosmic microwave background (CMB) lensing over 9400 deg ² of the sky. These lensing measurements are derived from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) CMB data set, which consists of five seasons of ACT CMB temperature and polarization observations. We determine the amplitude of the CMB lensing p...
We developed a broadband two-layer anti-reflection (AR) coating for use on a sapphire half-wave plate (HWP) and an alumina infrared (IR) filter for the cosmic microwave background (CMB) polarimetry. Measuring the faint CMB B-mode signals requires maximizing the number of photons reaching the detectors and minimizing spurious polarization due to ref...
We use data from the Atacama Cosmology Telescope (ACT) DR4 to search for the presence of neutrino self-interaction in the cosmic microwave background. Consistent with prior works, the posterior distributions we find are bimodal, with one mode consistent with ΛCDM and one where neutrinos strongly self-interact. By combining ACT data with large-scale...
We use time-domain simulations of Jupiter observations to test and develop a beam reconstruction pipeline for the Simons Observatory Small Aperture Telescopes. The method relies on a mapmaker that estimates and subtracts correlated atmospheric noise and a beam fitting code designed to compensate for the bias caused by the mapmaker. We test our reco...
We present a measurement of the cross-correlation between the MagLim galaxies selected from the Dark Energy Survey (DES) first three years of observations (Y3) and cosmic microwave background (CMB) lensing from the Atacama Cosmology Telescope (ACT) Data Release 4 (DR4), reconstructed over ∼ 436 deg² of the sky. Our galaxy sample, which covers ∼ 414...
Astronomical kinetic inductance detectors (KIDs), similar to quantum information devices, experience performance-limiting noise from materials. In particular, 1/f (frequency) noise arises from two-level system defects (TLSs) in the circuit dielectrics and material interfaces and can be a dominant noise mechanism. Here, we present a dual-resonator K...
We present a cross-correlation analysis between 1 ′ resolution total intensity and polarization observations from the Atacama Cosmology Telescope (ACT) at 150 and 220 GHz and 15″ mid-infrared photometry from the Wide-field Infrared Survey Explorer (WISE) over 107 12.°5 × 12.°5 patches of sky. We detect a spatially isotropic signal in the WISE×ACT T...
We search for signatures of cosmological shocks in gas pressure profiles of galaxy clusters using the cluster catalogs from three surveys: the Dark Energy Survey (DES) Year 3, the South Pole Telescope (SPT) SZ survey, and the Atacama Cosmology Telescope (ACT) data releases 4, 5, and 6, and using thermal Sunyaev-Zeldovich (SZ) maps from SPT and ACT....
Diffusion damping of the cosmic microwave background (CMB) power spectrum results from imperfect photon-baryon coupling in the pre-recombination plasma. Energy release at redshifts 5×104<z<2×106 can create μ-type spectral distortions of the CMB. These μ distortions trace the underlying photon density fluctuations, probing the primordial power spect...
The dynamic atmosphere imposes challenges to ground-based cosmic microwave background observation, especially for measurements on large angular scales. The hydrometeors in the atmosphere, mostly in the form of clouds, scatter the ambient thermal radiation and are known to be the main linearly polarized source in the atmosphere. This scattering-indu...
The increasing statistical power of cosmic microwave background (CMB) datasets requires a commensurate effort in understanding their noise properties. The noise in maps from ground-based instruments is dominated by large-scale correlations, which poses a modeling challenge. This paper develops novel models of the complex noise covariance structure...
The Astrophysics 2020 Decadal Report recommended a line of Probe missions with far-infrared imaging or spectroscopy capabilities. The achievable sensitivity of these FIR missions will be enabled by advanced cryogenic detector technologies, potentially resulting in up to three orders of magnitude improvement in sensitivity and mapping speeds up to m...
Photonic technologies offer numerous functionalities that can be used to realize astrophotonic instruments. The most spectacular example to date is the ESO Gravity instrument at the Very Large Telescope in Chile that combines the light-gathering power of four 8-m telescopes through a complex photonic interferometer. Fully integrated astrophotonic d...
We conduct a systematic search for transients in 3 yr of data (2017–2019) from the Atacama Cosmology Telescope (ACT). ACT covers 40% of the sky at three bands spanning from 77–277 GHz. Analysis of 3 day mean-subtracted sky maps, which were match filtered for point sources, yielded 29 transient detections. Eight of these transients are due to known...
The Cosmology Large Angular Scale Surveyor (CLASS) is a telescope array that observes the cosmic microwave background over 75% of the sky from the Atacama Desert, Chile, at frequency bands centered near 40, 90, 150, and 220 GHz. This paper describes the CLASS data pipeline and maps for 40 GHz observations conducted from 2016 August to 2022 May. We...
This research compares the use of NF3 and SF6 process gases for the removal of the native oxide from Al mirrors and their subsequent fluorination using low-temperature electron-beam generated plasmas. This single step process produces a stoichiometric AlF3 layer of controllable thickness which provides an excellent passivation layer for Al mirrors...