Edward D SturrockUniversity of Cape Town | UCT · Division of Medical Biochemistry
Edward D Sturrock
PhD
About
141
Publications
21,574
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
5,926
Citations
Publications
Publications (141)
Angiotensin‐1‐converting enzyme (ACE) is a zinc‐dependent carboxypeptidase of therapeutic interest for the treatment of hypertension, inflammation and fibrosis. It consists of two homologous N and C catalytic domains, nACE and cACE, respectively. Unfortunately, the current clinically available ACE inhibitors produce undesirable side effects due to...
Human somatic angiotensin converting enzyme (ACE) plays a pivotal role in the renin-angiotensin-aldosterone system by regulating blood pressure and electrolyte balance. Inhibition of ACE is a cornerstone in the management of hypertension, cardiovascular diseases, and renal disorders. Recent advances in structural biology techniques have provided in...
Angiotensin converting enzyme (ACE) exerts strong modulation of myeloid cell function independently of its cardiovascular arm. The success of the ACE-overexpressing murine macrophage model, ACE 10/10, in treating microbial infections and cancer opens a new avenue into whether ACE overexpression in human macrophages shares these benefits. Additional...
Human somatic angiotensin‐1 converting enzyme (sACE) is composed of a catalytic N‐ (nACE) and C‐domain (cACE) of similar size with different substrate specificities. It is involved in the regulation of blood pressure by converting angiotensin I to the vasoconstrictor angiotensin II and has been a major focus in the development of therapeutics for h...
The renin-angiotensin system (RAS) is a key regulator of human arterial pressure. Several of its effects are modulated by angiotensin II, an octapeptide originating from the action of angiotensin-I converting enzyme (ACE) on the decapeptide angiotensin-I. ACE possess two active sites (nACE and cACE) that have their own kinetic and substrate specifi...
Discovered more than 30 years ago, the angiotensin AT2 receptor (AT2R) has evolved from a binding site with unknown function to a firmly established major effector within the protective arm of the renin-angiotensin system (RAS) and a target for new drugs in development. The AT2R represents an endogenous protective mechanism that can be manipulated...
Angiotensin-converting enzyme (ACE) is a zinc-dependent dipeptidyl carboxypeptidase and is crucial in the renin-angiotensin-aldosterone system (RAAS) but also implicated in immune regulation. Intrinsic ACE has been detected in several immune cell populations, including macrophages and neutrophils, where its overexpression results in enhanced bacter...
Hypertension (high blood pressure) is a major risk factor for cardiovascular disease, which is the leading cause of death worldwide. The somatic isoform of angiotensin I-converting enzyme (sACE) plays a critical role in blood pressure regulation, and ACE inhibitors are thus widely used to treat hypertension and cardiovascular disease. Our current u...
Human angiotensin I‐converting enzyme (ACE) has two isoforms, somatic ACE (sACE) and testis ACE (tACE). The functions of sACE are widespread, with its involvement in blood pressure regulation most extensively studied. sACE is composed of an N‐domain (nACE) and a C‐domain (cACE), both catalytically active but have significant structural differences,...
The renin-angiotensin system (RAS) is a key regulator of human arterial pressure. Several of its effects are modulated by angiotensin II, an octapeptide originating from the action of angiotensin-I converting enzyme (ACE) on the decapeptide angiotensin-I. ACE possess two active sites (nACE and cACE) that have their own kinetic and substrate specifi...
N‐acetyl‐seryl‐aspartyl‐lysyl‐proline (Ac‐SDKP) is a physiological antifibrotic peptide that is hydrolysed by angiotensin I‐converting enzyme (ACE). The beneficial antifibrotic effects of ACE inhibitors have been attributed, in part, to its inhibition of Ac‐SDKP cleavage. There is indirect evidence that the SDK fragment of Ac‐SDKP is the main compo...
Combined inhibition of NEP (neutral endopeptidase) and ACE (angiotensin-converting enzyme), without unwanted effects, remains an attractive therapeutic strategy in cardiovascular medicine. Omapatrilat, a dual NEP inhibitor–ACE inhibitor, was a promising antihypertensive drug but failed in trials due to angioedema, an effect possibly caused by inhib...
Angiotensin I‐converting enzyme (ACE, CD143) plays a crucial role in blood pressure regulation, vascular remodeling, and immunity. A wide spectrum of mAbs to different epitopes on the N and C domains of human ACE have been generated and used to study different aspects of ACE biology, including establishing a novel approach–conformational fingerprin...
Objective
Dual inhibitors of neutral endopeptidase (NEP) and ACE (omapatrilat) have potent blood pressure-lowering actions, with angioedema as a side effect, due to bradykinin accumulation. Here we assessed whether a C-domain specific ACE inhibitor, lisinopril-trp (lis-trp), which specifically inhibits Ang II production while maintaining bradykinin...
Objective
Angiotensin-1-converting enzyme (ACE) is a zinc metallopeptidase that is well known for its role in cardiovascular physiology. Through its cleavage of peptides angiotensin I and bradykinin, ACE is involved in the renin-angiotensin-aldosterone and kinin systems, respectively. However, ACE also catalyses the cleavage of a variety of substra...
Angiotensin converting enzyme (ACE) is well-known for its role in blood pressure regulation via the renin–angiotensin aldosterone system (RAAS) but also functions in fertility, immunity, haematopoiesis and diseases such as obesity, fibrosis and Alzheimer’s dementia. Like ACE, the human homologue ACE2 is also involved in blood pressure regulation an...
Angiotensin‐1‐converting enzyme (ACE) is a key enzyme in the renin–angiotensin–aldosterone and kinin systems where it cleaves angiotensin I and bradykinin peptides, respectively. However, ACE also participates in numerous other physiological functions, can hydrolyse many peptide substrates and has various exo‐ and endopeptidase activities. ACE achi...
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV 2) has resulted in a global pandemic, prompting unprecedented efforts to contain the virus. Many developed countries have implemented widespread testing and have rapidly mobilized research programmes to develop vaccines and therapeutics. However, these approaches may be impr...
An elevated blood angiotensin I-converting enzyme (ACE) supports diagnosis of sarcoidosis and Gaucher disease. However, some ACE mutations increase ACE shedding, and patients with these mutations are therefore at risk of being incorrectly diagnosed with sarcoidosis because of elevated serum ACE levels. We applied a novel approach called ‘ACE phenot...
Neprilysin (NEP) and angiotensin-1 converting enzyme (ACE) are two key zinc-dependent metallopeptidases in the natriuretic peptide and kinin systems, and renin-angiotensin-aldosterone system, respectively. They play an important role in blood pressure regulation and reducing the risk of heart failure. Vasopeptidase inhibitors omapatrilat and sampat...
Angiotensin-converting enzyme (ACE) is best known for its formation of the vasopressor angiotensin II that controls blood pressure but is also involved in other physiological functions through the hydrolysis of a variety of peptide substrates. The enzyme contains two catalytic domains (nACE and cACE) that have different affinities for ACE substrate...
Despite the success of renin-angiotensin system (RAS) blockade by angiotensin-converting enzyme (ACE) inhibitors and angiotensin II type 1 receptor (AT1R) blockers, current therapies for hypertension and related cardiovascular diseases are still inadequate. Identification of additional components of the RAS and associated vasoactive pathways, as we...
Somatic angiotensin converting enzyme (sACE) is well-known for its role in blood pressure regulation and consequently, ACE inhibitors are widely prescribed for the treatment of hypertension. More than 60 years after the discovery of sACE, however, the molecular details of its substrate hydrolysis and inhibition are still poorly understood. Isotherm...
Angiotensin-converting enzyme (ACE) is a zinc metalloprotease best known for its role in blood pressure regulation. ACE consists of two homologous catalytic domains, the N- and C-domain, that display distinct but overlapping catalytic functions in vivo owing to subtle differences in substrate specificity. While current generation ACE inhibitors tar...
Omapatrilat was designed as a vasopeptidase inhibitor with dual activity against the zinc metallopeptidases angiotensin-1 converting enzyme (ACE) and neprilysin (NEP). ACE has two homologous catalytic domains (nACE and cACE) which exhibit different substrate specificities. Here we report high-resolution crystal structures of omapatrilat in complex...
This review article aims to: (1) discern from the literature the immune and inflammatory processes occurring in the pericardium following injury; and (2) to delve into the molecular mechanisms which may play a role in the progression to constrictive pericarditis. Pericarditis arises as a result of a wide spectrum of pathologies of both infectious a...
Angiotensin‐1‐converting enzyme (ACE) is a zinc metallopeptidase that consists of two homologous catalytic domains (known as nACE and cACE) with different substrate specificities. Based on kinetic studies it was previously reported that sampatrilat, a tight‐binding inhibitor of ACE, Ki = 13.8 nm and 171.9 nm for cACE and nACE respectively [Sharma e...
Angiotensin-converting enzyme (ACE) plays a central role in the renin-angiotensin system (RAS), which is primarily responsible for blood pressure homeostasis. Studies have shown that ACE inhibitors yield cardiovascular benefits that cannot be entirely attributed to the inhibition of ACE catalytic activity. It is possible that these benefits are due...
Angiotensin-I converting enzyme (ACE) is a Zinc metalloprotease consisting of two catalytic domains (N- and C-). Most clinical ACE inhibitor(s) (ACEi) have been shown to inhibit both domains non-selectively resulting in adverse effects such as cough and angioedema. Selectively inhibiting the individual domains is likely to reduce these effects and...
Sampatrilat is a vasopeptidase inhibitor that inhibits both angiotensin I-converting enzyme (ACE) and neutral endopeptidase (NEP). ACE is a zinc dipeptidyl carboxypeptidase that contains two extracellular domains (nACE and cACE). In this study the molecular basis for the selectivity of sampatrilat for nACE and cACE was investigated. Enzyme inhibiti...
Somatic angiotensin converting enzyme (sACE) is comprised of two homologous domains (N and C domains), whereas the smaller germinal isoform (tACE) is identical to the C domain. Both isozymes share an identical stalk, transmembrane and cytoplasmic domain, and undergo ectodomain shedding by an as yet unknown protease. Here we present evidence for the...
Angiotensin-1-converting enzyme (ACE) is a zinc metalloprotease that plays a major role in blood pressure regulation via the renin-angiotensin-aldosterone system. ACE consists of two domains with differences in inhibitor binding affinities despite their 90% active site identity. While the C-domain primarily controls blood pressure, the N-domain is...
Unlabelled:
Angiotensin-1-converting enzyme (ACE), a zinc metallopeptidase, consists of two homologous catalytic domains (N and C) with different substrate specificities. Here we report kinetic parameters of five different forms of human ACE with various amyloid beta (Aβ) substrates together with high resolution crystal structures of the N-domain...
Angiotensin-I converting enzyme (ACE) is a zinc dipeptidylcarboxypeptidase with two active domains and plays a key role in the regulation of blood pressure and electrolyte homeostasis, making it the principal target in the treatment of cardiovascular disease. More recently, the tetrapetide N-acetyl-Ser-Asp-Lys-Pro (Ac-SDKP) has emerged as a potent...
The renin-angiotensin system (RAS) is a dynamic network that plays a critical role in blood pressure regulation and fluid and electrolyte homeostasis. Modulators of the RAS, such as angiotensin-converting enzyme (ACE) inhibitors, are widely used to treat hypertension, heart failure and myocardial infarction.
The effect of ACE inhibitors (lisinopril...
Abstract Somatic angiotensin-I converting enzyme (sACE) has an essential role in the regulation of blood pressure and electrolyte fluid homeostasis. It is a zinc protease that cleaves angiotensin-I (AngI), bradykinin, and a broad range of other signalling peptides. The enzyme activity is provided by two homologous domains (N- and C-), which display...
The K-26 family of bacterial secondary metabolites are N-modified tripeptides terminated by an unusual phosphonate analog of tyrosine. These natural products, produced via three different actinomycetales, are potent inhibitors of human angiotensin-I converting enzyme (ACE). Herein we investigate the interkingdom pharmacology of the K-26 family by s...
Angiotensin-converting enzyme (ACE, EC 3.4.15.1) is a metallopeptidase comprised of two homologous catalytic domains (N- and C-domains). The C-domain cleaves the vasoactive angiotensin II precursor, angiotensin I, more efficiently than the N-domain. Thus, C-domain-selective ACE inhibitors have been designed to investigate the pharmacological effect...
The somatic isozyme of angiotensin I-converting enzyme (ACE) is comprised of two distinct, zinc-dependent catalytic domains with different substrate specificities for angiotensin I (cleaved selectively by the C- domain) and bradykinin (cleaved equally efficiently by both the N and C- domains). Classical ACE inhibitors (ACEI) target both domains, wi...
Angiotensin I-converting enzyme (ACE) has two functional N- and C-domain active centers that display differences in the metabolism of biologically-active peptides including the hemoregulatory tetrapeptide, Ac-SDKP, hydrolysed preferentially by the N domain active center. Elevated Ac-SDKP concentrations are associated with reduced tissue fibrosis.
W...
Somatic angiotensin-converting enzyme (sACE), a key regulator of blood pressure and electrolyte fluid homeostasis, cleaves the vasoactive angiotensin-I (AngI), bradykinin, and a number of other physiologically relevant peptides. sACE consists of two homologous and catalytically active N and C domains which display marked differences in substrate sp...
Human somatic angiotensin‐I converting enzyme (ACE) is a zinc‐dependent dipeptidyl carboxypeptidase and a central component of the renin angiotensin aldosterone system (RAAS). Its involvement in the modulation of physiological actions of peptide hormones has positioned ACE as an important therapeutic target for the treatment of hypertension and car...
Angiotensin-1 converting enzyme (ACE) is a zinc metallopeptidase that plays a prominent role in blood pressure regulation and electrolyte homeostasis. ACE consists of two homologous domains that despite similarities of sequence and topology display differences in substrate processing and inhibitor binding. The design of inhibitors that selectively...
The renin–angiotensin system ( RAS ) is central to regulation of blood pressure and electrolyte homeostasis.
Angiotensin‐converting enzyme ( ACE ), a key protease in the RAS , has a range of substrates, including N ‐acetyl‐Ser‐Asp‐Lys‐Pro (Ac‐ SDKP ). The peptide Ac‐ SDKP is cleared almost exclusively by ACE , and specifically by the N‐domain activ...
Angiotensin-converting enzyme (ACE) inhibitors are first-line therapy for the treatment of hypertension, congestive heart failure, and diabetic nephropathy. ACE inhibitors are associated with adverse side effects such as persistent dry cough (ACE-cough) and, rarely, life-threatening angioedema (ACE-AE). The authors investigated the influence of ACE...
Somatic angiotensin I-converting enzyme (ACE)has two homologous active sites (N and C domains) that show differences in various biochemical properties.In a previous study, we described the use of positionals canning synthetic combinatorial (PS-SC) libraries of fluorescence resonance energy transfer (FRET) peptides to define the ACE C-domain versus...
The insertion allele of the angiotensin-converting enzyme (ACE) gene has been associated with endurance performance. Since a large portion of the variance seen in circulatory ACE levels is unaccounted for by the insertion/deletion polymorphism it is likely that the ACE phenotype would serve as a more informative marker in assessing elite endurance...
Unlabelled:
Human somatic angiotensin-1 converting enzyme (ACE) is a zinc-dependent exopeptidase, that catalyses the conversion of the decapeptide angiotensin I to the octapeptide angiotensin II, by removing a C-terminal dipeptide. It is the principal component of the renin-angiotensin-aldosterone system that regulates blood pressure. Hence it is...
Angiotensin-I converting enzyme (ACE), a two-domain dipeptidylcarboxypeptidase, is a key regulator of blood pressure as a result of its critical role in the renin-angiotensin-aldosterone and kallikrein-kinin systems. Hence it is an important drug target in the treatment of cardiovascular diseases. ACE is primarily known for its ability to cleave an...
Cardiovascular disease (CVD) affects a significant proportion of the African adult population and requires new and improved strategies for the effective control of this disease. Angiotensin-converting enzyme (ACE) is a two-domain zinc metallopeptidase that plays a central role in the renin-angiotensin-aldosterone system and has thus been identified...
To the Editor: The incidence of constrictive pericarditis in HIV uninfected patients with pericardial tuberculosis is very high (31.65 cases per 1000 person-years) despite modern rifampicin-based antituberculosis treatment.1 The cellular mediators and molecular mechanisms of post-tuberculous pericardial fibrosis are unknown. N-acetyl-seryl-aspartyl...
A number of membrane proteins are enzymatically cleaved or 'shed' from the cell surface, resulting in the modulation of biological events and opening novel pharmaceutical approaches to diverse diseases by targeting shedding. Our focus has been on understanding the shedding of angiotensin-converting enzyme (ACE), an enzyme that plays a pivotal role...
Angiotensin-converting enzyme (ACE) is a zinc metallopeptidase containing two homologous domains. While the C-domain plays a major role in blood pressure regulation, the N-domain hydrolyzes the antifibrotic agent N-acetyl-Ser-Asp-Lys-Pro. Thus, N-domain selective (N-selective) inhibitors could be useful in the treatment of conditions relating to ex...
Cardiovascular disease (CVD) is responsible for ∼27% of deaths worldwide, with 80% of these occuring in developing countries. Hypertension is one of the most important treatable factors in the prevention of CVD. Angiotensin-I converting enzyme (ACE) is a two-domain dipeptidylcarboxypeptidase that is a key regulator of blood pressure as a result of...
Matrix metalloproteinases (MMPs) cleave and degrade most components of the extracellular matrix, and unregulated MMP activity has been correlated to cancer and metastasis. Hence there is a burgeoning need to develop inhibitors that bind selectively to structurally similar MMPs. The inhibition profiles of peptidomimetics containing C(α) substituents...
Angiotensin I-converting enzyme (ACE) metabolizes a range of peptidic substrates and plays a key role in blood pressure regulation and vascular remodeling. Thus, elevated ACE levels may be associated with an increased risk for different cardiovascular or respiratory diseases. Previously, a striking familial elevation in blood ACE was explained by m...
Abstract Matrix metalloproteinases cleave and degrade most components of the extracellular matrix and unregulated MMP activity has been correlated to cancer and metastasis. Hence there is a burgeoning need to develop inhibitors that bind selectively to structurally similar MMPs. The inhibition profiles of peptidomimetics containing Cαsubstituents a...
Human somatic angiotensin I-converting enzyme (ACE), a zinc-dependent dipeptidyl carboxypeptidase, is central to the regulation of the renin–angiotensin aldosterone system. It is a well-known target for combating hypertension and related cardiovascular diseases. In a recent study by Bhuyan and Mugesh [Org. Biomol. Chem. (2011) 9, 1356–1365], it was...
Human ACE (angiotensin-I-converting enzyme) has long been regarded as an excellent target for the treatment of hypertension and related cardiovascular diseases. Highly potent inhibitors have been developed and are extensively used in the clinic. To develop inhibitors with higher therapeutic efficacy and reduced side effects, recent efforts have bee...
Angiotensin-I-converting enzyme (ACE) plays a critical role in the regulation of blood pressure through its central role in
the renin-angiotensin and kallikrein-kinin systems. ACE contains two domains, the N and C domains, both of which are heavily
glycosylated. Structural studies of ACE have been fraught with severe difficulties because of surface...
Angiotensin-I converting enzyme (ACE, a zinc dependent dipeptidyl carboxypeptidase) is a major target of drugs due to its role in the modulation of blood pressure and cardiovascular disorders. Here we present a crystal structure of AnCE (an ACE homologue from Drosophila melanogaster with a single enzymatic domain) in complex with a natural product-...
Angiotensin I-converting enzyme (ACE), one of the central components of the renin-angiotensin system, is a key therapeutic target for the treatment of hypertension and cardiovascular disorders. Human somatic ACE (sACE) has two homologous domains (N and C). The N- and C-domain catalytic sites have different activities toward various substrates. More...
Angiotensin I-converting enzyme (ACE) plays a key role in the renin-angiotesin aldosterone cascade. We analysed the secondary structure and structural organization of a purified 65kDa N-domain ACE (nACE) from Wistar rat mesangial cells, a 90 kDa nACE from spontaneously hypertensive rats and a 130 kDa somatic ACE. The C-terminal alignment of the 65...