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Thermally and electrochemically driven 80 tracer exchange experiments in H,/H, 80 atmosphere were
performed on SrTig ;Fep 303 — 5 and CeqgGdp 20, — 5 thin films on single crystalline YSZ substrates. Noble
metal current collectors were deposited on both films and electrochemically polarized during the exchange
experiment. The resulting tracer distribution was analyzed by spatially resolved secondary ion mass spectrometry.

Increased tracer fraction near the current collectors was found under cathodic polarization and decreased tracer
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fraction under anodic polarization. High cathodic bias leads to enhanced n-type electronic conductivity,
which increases the extent of the electrochemically active zone.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Mixed ionic and electronic conduction (MIEC) is widely investigated
for intermediate-temperature solid oxide fuel cell (SOFC) cathodes
[1-3] and there is also strongly growing interest in applying reduction
stable MIECs as SOFC anodes [4-10]. Studies on some perovskite-type
porous anodes demonstrated low area specific resistance and high
stability for redox cycling [4-7]. For ceria-based anode materials also
mechanistic investigations on geometrically well-defined thin films
have been performed [8-10]. However, details on the surface exchange
rate and ionic or electronic conductivity are still scarce for most oxide
electrodes in reducing atmosphere. Additional measurements, also
employing new analysis methods, are therefore of high relevance for a
better understanding of the properties of mixed conducting anodes
and the search for new materials.

It has been demonstrated that isotope exchange with subsequent
SIMS analysis is a very powerful tool to monitor the surface reaction ki-
netics and the bulk diffusion of oxygen in SOFC electrode and electrolyte
materials under both equilibrium and polarized conditions [11-18].
Moreover, because of the relatively high lateral and depth resolution
of SIMS, the electrochemically active regions of the electrodes can be
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visualized. This has already been shown for cathode materials [14,17],
while in reducing atmosphere imaging of oxygen incorporation zones
by voltage driven '80 tracer exchange is rarely employed.

In the present study, we analyze the distribution of 180 in polar-
ized and non-polarized thin films of SrTig ;Fe(305 _ 5 (STFO) and
CegGdp 20, — 5 (GDC) on yttria stabilized zirconia (YSZ) substrates.
By comparison of the tracer distribution after thermally driven oxygen
exchange and after experiments with cathodic and anodic bias, the
width of the electrochemically active region and the factors governing
the oxygen exchange could be visualized.

2. Experimental
2.1. Sample preparation

The GDC target (CepgGdg -0, — ) for pulsed laser deposition was pre-
pared from powder (Treibacher, Austria) by isostatical pressing and sub-
sequent sintering at 1550 °C for 5 h. The STFO (SrTig;Feg303 — 5) powder
was prepared by solid state reaction from SrCOs3 (99.99% pure, Sigma-
Aldrich), TiO, (99.99% pure, Sigma Aldrich), and Fe,03 (99.98% pure,
Sigma Aldrich). The educts were thoroughly mixed, calcined at 800 °C,
ground, again calcined at 1000 °C, and—after a further grinding step—
isostatically pressed and sintered at 1250 °C. The phase purity of both
targets was confirmed by X-ray diffraction. STFO and GDC thin films
were deposited on (100)-oriented yttria stabilized zirconia single crys-
tals (YSZ, 9.5 mol% Y,0s3 in ZrO,, supplier: CrysTec, Germany) by pulsed
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laser deposition (PLD) using a KrF excimer-laser (Lambda COMPexPro
201 F, 248 nm wavelength). The deposition of 200 nm thin films was
carried out in 4 x 10~2 mbar of pure oxygen with a pulse repetition
rate of 5 Hz and a nominal pulse energy of 400 mJ. The substrate temper-
ature during the deposition was controlled by a pyrometer (Heitronics,
Germany) and was 650 °C.

2.2. Electrode design

Acceptor-doped mixed conductors are often very good electronic
p-type conductors in oxidizing atmosphere. For such materials, an elec-
tric contact with a metallic tip is typically sufficient for a homogeneous
polarization of a small thin film electrode [19]. In reducing atmosphere,
however, the p-type conductivity decreases by several orders of
magnitude. Despite acceptor doping SrTig,Fep303 _ 5 (STFO) and
Cep.gGdp 1019 (GDC) are even weak n-type conductors in reducing at-
mosphere at the 80 exchange temperature [20-23]. Due to the much
lower electronic conductivity compared to oxidizing conditions, the
electrochemically active region is expected to be limited to a small
area around the electric contact. In order to investigate the width of
this active region, rectangular (160 um x 400 pum) noble metal current
collectors were sputter deposited (MCS 020, BAL-TEC AG, Germany) in
two steps: on top of the YSZ substrate (prior to MIEC deposition) and
on top of the deposited MIEC layer. The sample design is sketched in
Fig. 1a; bottom and top current collectors and one large counter-
electrode were placed on one and the same sample. The bottom current
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Fig. 1. (a) Noble metal electrodes, which provide an electrical contact and block oxygen
diffusion were prepared below (EB geometry) and on top (ET geometry) of the GDC or
STFO layer. The oxygen diffusion pathways under equilibrium conditions are sketched
for ET and EB current collectors. Working and counter electrodes were contacted and po-
larized in the tracer exchange chamber. (b) Increased oxygen incorporation rate caused by
cathodic bias near an EB current collector; in some distance from the current collector
edge only thermally driven tracer exchange remains due to limited electronic conductivity
within the MIEC thin film.

collectors (5 nm Ti/100 nm Pt) were structured from a thin film by ion
beam etching, the top electrodes (5 nm Cr/100 nm Au) were produced
by a lift-off method. For the buried current collectors platinum was cho-
sen, since it is sufficiently stable during subsequent PLD deposition of
the oxide. For the top electrodes Au was used owing to its poor catalytic
activity to avoid three phase boundary activity. For the sake of clarity,
the electrode regions with contacting noble metal collectors are
named as electrodes with top current collectors (ET) and electrodes
with bottom current collectors (EB), and abbreviations ET and EB are
used throughout the text.

2.3. Procedure of the isotope exchange experiments

A mixture of hydrogen and 80 tracer enriched water was used to
carry out the experiments in a thermodynamically defined, reducing at-
mosphere. This atmosphere was produced by mixing diluted hydrogen
(2.5% Hy in Ar, Alphagaz ARCAL 10, Air Liquide) with a defined amount
of 180, (97% isotopic enrichment, 0.625% O, in the mixture) and feeding
this mixture through a platinum sponge at 500 °C to form a gas contain-
ing equal amounts of water and hydrogen. The formation of tracer-
enriched water with a tracer fraction of 60-70% was monitored by a
mass spectrometer (Pfeiffer, OmniStar GSD 320). Probably the (porous)
quartz supported Pt catalyst, which is present in the reaction chamber,
is a source of oxygen exchange and therefore reduces the tracer content
in the resulting atmosphere. In this reducing, tracer containing atmo-
sphere, the samples were heated from room temperature to 410 +
10 °C for 10 min and were subsequently quenched to freeze the distri-
bution of '80 (the corresponding oxygen partial pressure in the men-
tioned humid hydrogen atmosphere at 410 °C can be calculated to be
8.4 x 1073 bar [24]). The heating and cooling rate was 150 °C/min,
so the time of sample heating and cooling was short compared to the
exchange experiments. During the exchange process, on each sample
one ET and one EB current collector were simultaneously polarized
against the counter electrode—cf. Fig. 1a. Current flow and out of equi-
librium reaction for ET polarization are sketched in Fig. 1b in more
detail. In this manner, the tracer distribution can be monitored in the
MIEC above the electrolyte, above the EB current collectors and beneath
ET current collectors for the case of pure thermal diffusion as well as for
different dc polarization on the same sample.

The resulting 30 distribution in the thin films was subsequently in-
vestigated by means of time-of-flight secondary ion mass spectrometry
(ToF-SIMS). These measurements were done on a ToF-SIMS 5 machine
(ION-TOF GmbH, Germany) in collimated burst alignment (CBA) mode,
which allows accurate determination of '¥0 concentration in oxides [25,
26]. As primary ions Bi3 * were used (25 kV accelerating voltage). Neg-
ative secondary ions were analyzed in areas of 50 um x 50 um and
160 um x 160 pm, using a raster of 512 x 512 and 1024 x 1024 pixels,
respectively. For the sputtering of material Cs* ions (1 kV accelerating
voltage) were used with a sputter crater of 500 um x 500 um and a
sputtering ion current of 70 nA. The charging of the surface was com-
pensated with an electron flood gun and partly by additional argon
flooding if the electron flood gun was not sufficient. The isotope fraction
(f1s0) was obtained by normalizing integrated intensities (I) via figo =
Iiso/(I1so + I160)-

In Fig. 1a, the different locations of the SIMS analysis and the path-
ways of thermally driven gas exchange are sketched. The metal layers
are supposed to be sufficiently blocking for oxygen, which was experi-
mentally confirmed by measuring a tracer fraction close to natural
abundance beneath the EB current collector as well as beneath the ET
collectors (see Section 3). The remaining slight tracer enrichment be-
neath the Au current collectors (ET), which is nearly two orders of mag-
nitude lower than without a metal layer, may be due to some grain
boundary diffusion of oxygen through the metal layer [ 13]. Nonetheless,
the amount of tracer beneath the current collectors is sufficiently small
to assume blocking metal layers in the discussion. In order to compare
the lateral isotope distribution of different electrodes, the current
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collector and MIEC layer boundaries were aligned to the same position
in the images.

3. Results and discussion
3.1. Thermal diffusion profiles

Distribution images of '20 as well as lateral profiles of the 80 frac-
tion obtained under equilibrium conditions (EB geometry) are depicted
in Figs. 2 and 3 for STFO and GDC, respectively (in the lateral profiles the
zero-bias curves are given in red color). The zero-bias profiles of both
materials exhibit laterally almost constant tracer fractions for the free
MIEC part and an increase to a higher value close to the EB current col-
lector edge. The high tracer content above the EB current collectors can
be explained by the oxide ion blocking character of the Pt layer, which
impedes the diffusion of ¥ 0%~ ions into the YSZ electrolyte. Therefore,
the tracer is simply piled up above Pt, leading to the high tracer fraction
observed. Strongly different surface exchange coefficients k* caused by
different microstructures of the MIEC parts on Pt and YSZ can be ruled
out by previous electrochemical experiments [10,20,27]. It should fur-
ther be noted, that the depth profiles reveal constant tracer fraction
within the MIEC film, thus indicating surface kinetics to be almost exclu-
sively rate limiting for the thermal exchange of oxygen in both materials
(cf. Fig. 3b for GDC; the small concentration step at the MIEC/YSZ inter-
face indicates an additional small resistance).

Interestingly, for both MIEC materials the zero-bias lateral tracer dis-
tribution exhibits a certain slope rather than an ideal step close to the
edge of the EB current collectors. This lateral profile can be explained
by in-plane diffusion of oxygen in the MIEC film from the region with
high tracer fraction (above Pt) to the MIEC on YSZ and then into the
electrolyte—see Fig. 1a, EB. Hence, the width of this slope should corre-
late with the diffusion length of oxygen ions. By comparison of Figs. 2b
and 3c it becomes obvious that the thermal profile of STFO is steeper
than that of the GDC film, which is expected due to the higher ionic con-
dUCtiVity in GDC (O-GDC = 33 x 1074 S CIT17l [21 ], OsTtrO0 =
55x 107%S cm™!' [20] at 410 °C).
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Fig. 2. (a) Isotope distribution images measured by ToF-SIMS and (b) lateral tracer fraction
profiles of an STFO thin film near to the edge of an electrode with EB geometry for thermally
and bias driven '®0 incorporation.

3.2. Effect of cathodic bias

The incorporation of 80 into the region close to the EB current col-
lector changes upon polarization (see Figs. 2 and 3). Close to the current
collector, tracer incorporation is enhanced with cathodic bias and the in-
crease of the tracer fraction in the active zone is partly (or even mostly)
due to the (electro-) chemically driven current. At a sufficient distance
from the electrode, however, the surface exchange rate of %0 again
approaches its equilibrium value. This can be easily understood by the
following consideration: On the one hand, the cathodic voltage causes
an increased 80 incorporation rate into the MIEC. On the other hand,
the electronic sheet resistance in the MIEC becomes more important
for longer distances from the current collector and hence causes a
decay of the voltage driven '80 incorporation rate (this is sketched in
Fig. 1b).

Also on top of the Pt current collector, the tracer fraction was found
to be virtually unaffected by the applied bias (the slight differences in
the tracer fraction on top of the Pt electrodes can probably be attributed
to a small inhomogeneity of the surface exchange coefficient e.g. due to
a slight temperature inhomogeneity). This is due to the fact that oxygen
ions incorporated above the current collector need to diffuse from the
reaction site, which is remote from the current collector edges, into
the electrolyte. Because of the high in-plane transport resistance of the
oxygen ions [20,21], the MIEC above the current collector remains un-
polarized and the tracer fraction is independent of the applied bias. Ac-
cordingly, this region is not electrochemically active despite having the
highest tracer fraction.

GDC exhibits a larger active zone than STFO upon cathodic bias,
which is most probably caused by its higher electronic conductivity
(24 05x10"*Scm™ ! for GDC[21] and 1.5 £ 0.5 x 107> Scm ™!
for STFO [20] at 410 °C without bias). At higher cathodic bias
(—500 mV) the electrochemically active zone of GDC becomes very
broad, see Fig. 3d. (The lower isotope fraction measured in the larger
measurement area of 150 pm x 150 pm—shown in Fig. 3¢, d—might
be caused by longer measurement time together with flooding by Ar
gas. Since Ar contains some oxygen residuals this could lead to certain
160 coverage on the surface.) At the investigated p(0,) of
8.4 x 1073 bar the well investigated defect model of GDC implies a
large, nearly constant number of oxygen vacancies but an electron con-
centration and thus an electronic conductivity proportional to
p(05)~ 14 [1,21]. According to Nernst's equation, a cathodic bias is
equivalent to a decrease in oxygen partial pressure and therefore
leads to enhanced electronic conductivity in the polarized region,
which strongly increases the extent of the electrochemically active
zone. Thus, the lateral broadening for increasing voltage can be ex-
plained by a polarization driven increase in electronic conductivity.
Similar results were obtained for Pt electrodes on YSZ, where a broad-
ening of the active zone for a very high cathodic bias was shown in ox-
ygen atmosphere [14]. There, YSZ was transferred into a mixed
conductor in the close vicinity of a Pt electrode by applying strong ca-
thodic polarizations and an oxygen incorporation mechanism including
lateral electron transport in YSZ (similar to the situation on GDC here)
could be verified by electrochemical and tracer based methods.

For an in-depth understanding of the exact mechanism on the GDC
anodes in the present study an exact quantification of the oxygen chem-
ical potential is necessary, which is rather non-trivial. First, we do not
know the exact ohmic polarization of the electrolyte. Due to
frequency-dependent current paths, the high-frequency intercept in
impedance spectra does not represent the electrolyte resistance in dc
conditions. Second, the decay of this non-equilibrium chemical poten-
tial is non-linear and complicated to calculate.

3.3. Comparison of polarity and electrode placement

Enhanced incorporation of 80 tracer upon application of cathodic
bias could be successfully demonstrated and visualized. Under anodic
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Fig. 3. (a) Isotope distribution image with lateral tracer fraction profiles in a GDC thin film near to an EB current collector and the corresponding profiles for three different bias values (c
and d). Cathodic bias (—200 mV: blue curve; —500 mV: green curve) locally increases the electronic conductivity and thus the width of the electrochemically active zone. (b) The depth
profiles of isotope concentration were checked in the MIEC film on top of the EB current collector (red triangles) and on top of YSZ (green circles).
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Fig. 4. Isotope distribution images and lateral tracer fraction profiles of cathodically (—500 mV) and anodically (+ 500 mV) polarized noble metal electrodes with (a) EB and (b) ET
geometry on the STFO layer.
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bias, oxygen release (formation of H,0) is promoted and the oxygen
incorporation from the tracer gas is reduced in the electrochemically ac-
tive region. This leads to reduced tracer fraction near the current collec-
tor edges, while locations far from the current collector edges exhibit
tracer concentrations corresponding to the equilibrium exchange rate.
Fig. 4 compares the tracer profiles for +500 mV and —500 mV in the
ET and EB geometries for STFO. As it was discussed before, the EB geom-
etry leads to an increased isotope concentration on the EB current
collector, irrespective of the polarization (Fig. 4a). (The somewhat dif-
ferent isotope concentrations on the current collector are most probably
again due to Ar flooding during SIMS measurements and the different
analysis area as already discussed above; —500 mV was analyzed in
150 pm x 150 pm area and + 500 mV in 50 um x 50 pm area.)

However, comparing the lateral isotope distribution close to the cur-
rent collector edge clearly indicates reduced '®0 incorporation with
anodic bias (Fig. 4a, EB geometry). For the SIMS measurements with
ET geometry the gold current collector was chemically removed after
180 exchange. As one can see from Fig. 4b the lateral isotope concentra-
tion beneath the ET current collector decays virtually to the natural
abundance value. The decay length reflects the in-plane thermal diffu-
sion from the free surface of the MIEC to the MIEC part, which is
below the gold layer. Next to the MIEC/current collector edge a cathodic
polarization again causes an enhanced 80 fraction in a certain width.
Under anodic polarization, slightly less 80 incorporation is found near
the ET current collector. This effect appears less pronounced than in the
EB geometry case, due to the impact of the ET current collector discussed
above.

4. Conclusions

Thin MIEC layers of GDC and STFO on single-crystalline YSZ sub-
strates were exposed to H,/H380 atmosphere for thermally and electro-
chemically driven tracer exchange experiments. Rectangular noble
metal thin film current collectors were deposited on top and beneath
the MIEC layer and used for polarization. The lateral distribution of the
tracer revealed several interesting features: (i) In case of thermal tracer
exchange, an enhanced tracer fraction is found on top of the metallic
current collector due to its ionically blocking nature. At the edges of
the current collector, the concentration of 80 decreases with a finite
step width that is correlated with in-plane diffusion of oxygen ions.
(ii) Due to the low electronic conductivity of STFO and GDC, the MIEC
area that is influenced by an applied bias is restricted to a region close
to the current collector. The width of this active region depends on the

bias. It amounts to only 10-15 pm for STFO but more than 100 pm for
GDC at a cathodic bias of — 500 mV. (iii) Not only enhanced tracer incor-
poration due to cathodic bias but also reduced incorporation due to
anodic bias could be experimentally resolved in the active region.

Acknowledgments

The financial support of the Austrian Science Fund (FWF) via pro-
jects F4509 (SFB FOXSI) and W1243 is gratefully acknowledged. The
authors also would like to thank S. Kogler and T. Huber for their
assistance in establishing the isotope enriched water production setup.

References

[1] S.W. Kim, Y. Lee, G.M. Choi, Solid State Ionics 262 (2014) 411.
[2] S. Cho, Y. Kim, ]. Kim, A. Manthiram, H. Wang, Electrochim. Acta 56 (2011) 5472.
[3] J. Jiang, W. Shen, ].L. Hertz, Solid State lonics 249-250 (2013) 139.
[4] S. Cho, D.E. Fowler, E.C. Miller, J.S. Cronin, K.R. Poeppelmeier, S.A. Barnett, Energy
Environ. Sci. 6 (2013) 1850.
[5] XJ. Chen, Q.L. Liu, S.H. Chan, N.P. Brandon, K.A. Khor, Fuel Cells Bull. 6 (2007) 12.
[6] S.Tao, J.T.S. Irvine, J. Electrochem. Soc. 151 (2004) A252.
[7] S.Tao, ].T.S. Irvine, Nat. Mater. 2 (2003) 320.
[8] S.C. DeCaluwe, M.E. Grass, C. Zhang, F.E. Gabaly, H. Bluhm, Z. Liu, G.S. Jackson, A.H.
McDaniel, K.F. McCarty, R.L. Farrow, J. Phys. Chem. C 114 (2010) 19853.
[9] W.C. Chueh, A.H. McDaniel, M.E. Grass, Y. Hao, N. Jabeen, Z. Liu, S.M. Haile, K.F.
McCarty, H. Bluhm, F. El Gabaly, Chem. Mater. 24 (2012) 1876.
[10] W.C. Chueh, Y. Hao, W. Jung, S.M. Haile, Nat. Mater. 11 (2012) 155.
[11] S.Swaroop, M. Kilo, A.E. Kossoy, 1. Lubomirsky, L. Riess, Solid State lonics 179 (2008)
1205.
[12] S.Fearn, J.CH. Rossiny, J.A. Kilner, ].R.G. Evans, Solid State Ionics 211 (2012) 51.
[13] AK. Opitz, A. Lutz, M. Kubicek, F. Kubel, H. Hutter, J. Fleig, Electrochim. Acta 56
(2011) 9727.
[14] AK. Opitz, M. Kubicek, Stefanie Huber, Tobias Huber, Gerald Holzlechner, Herbert
Hutter, Jiirgen Fleig, J. Mater. Res. 28 (2013) 2085.
[15] H. Kishimoto, N. Sakai, K. Yamaji, T. Horita, M.E. Brito, H. Yokokawa, K. Amezawa, Y.
Uchimoto, Solid State Ionics 179 (2008) 1343.
[16] H. Yokokawa, Solid State Ionics 225 (2012) 6.
[17] T.Horita, K. Yamaji, N. Sakai, H. Yokokawa, T. Kawada, T. Kato, Solid State Ionics 127
(2000) 55.
[18] A. Atkinson, RJ. Chater, R. Rudkin, Solid State Ionics 139 (2001) 233.
[19] ES.Baumann, ]. Fleig, H.U. Habermeier, J. Maier, Solid State lonics 177 (2006) 1071.
[20] A.Nenning, AK. Opitz, T. Huber, ]. Fleig, Phys. Chem. Chem. Phys. 16 (2014) 22321.
[21] W.C. Chueh, W. Lai, S.M. Haile, Solid State Ionics 179 (2008) 1036.
[22] A. Rothschild, W. Menesklou, E. Ivers-Tiffée, ]. Chem. Mater. 16 (2006) 3651.
[23] S. Steinvik, R. Bugge, ]. Gjennes, ]. Taftg, T. Norby, J. Phys. Chem. Solids 58 (1997)
969.
[24] D.R.Lide, W.M. Haynes, CRC Handbook of Chemistry and Physics, 90th edition, 2010.
[25] G. Holzlechner, M. Kubicek, H. Hutter, J. Fleig, J. Anal. At. Spectrom. 28 (2013) 1080.
[26] M. Kubicek, G. Holzlechner, AK. Opitz, S. Larisegger, H. Hutter, ]. Fleig, Appl. Surf. Sci.
289 (2014) 407.
[27] Peter Velicsanyi, Master's thesis, Vienna University of Technology, 2014.


http://refhub.elsevier.com/S0167-2738(14)00440-8/rf0005
http://refhub.elsevier.com/S0167-2738(14)00440-8/rf0010
http://refhub.elsevier.com/S0167-2738(14)00440-8/rf0015
http://refhub.elsevier.com/S0167-2738(14)00440-8/rf0020
http://refhub.elsevier.com/S0167-2738(14)00440-8/rf0020
http://refhub.elsevier.com/S0167-2738(14)00440-8/rf0025
http://refhub.elsevier.com/S0167-2738(14)00440-8/rf0030
http://refhub.elsevier.com/S0167-2738(14)00440-8/rf0035
http://refhub.elsevier.com/S0167-2738(14)00440-8/rf0040
http://refhub.elsevier.com/S0167-2738(14)00440-8/rf0040
http://refhub.elsevier.com/S0167-2738(14)00440-8/rf0045
http://refhub.elsevier.com/S0167-2738(14)00440-8/rf0045
http://refhub.elsevier.com/S0167-2738(14)00440-8/rf0050
http://refhub.elsevier.com/S0167-2738(14)00440-8/rf0055
http://refhub.elsevier.com/S0167-2738(14)00440-8/rf0055
http://refhub.elsevier.com/S0167-2738(14)00440-8/rf0060
http://refhub.elsevier.com/S0167-2738(14)00440-8/rf0065
http://refhub.elsevier.com/S0167-2738(14)00440-8/rf0065
http://refhub.elsevier.com/S0167-2738(14)00440-8/rf0070
http://refhub.elsevier.com/S0167-2738(14)00440-8/rf0070
http://refhub.elsevier.com/S0167-2738(14)00440-8/rf0075
http://refhub.elsevier.com/S0167-2738(14)00440-8/rf0075
http://refhub.elsevier.com/S0167-2738(14)00440-8/rf0080
http://refhub.elsevier.com/S0167-2738(14)00440-8/rf0085
http://refhub.elsevier.com/S0167-2738(14)00440-8/rf0085
http://refhub.elsevier.com/S0167-2738(14)00440-8/rf0090
http://refhub.elsevier.com/S0167-2738(14)00440-8/rf0095
http://refhub.elsevier.com/S0167-2738(14)00440-8/rf0100
http://refhub.elsevier.com/S0167-2738(14)00440-8/rf0105
http://refhub.elsevier.com/S0167-2738(14)00440-8/rf0110
http://refhub.elsevier.com/S0167-2738(14)00440-8/rf0115
http://refhub.elsevier.com/S0167-2738(14)00440-8/rf0115
http://refhub.elsevier.com/S0167-2738(14)00440-8/rf0125
http://refhub.elsevier.com/S0167-2738(14)00440-8/rf0130
http://refhub.elsevier.com/S0167-2738(14)00440-8/rf0120
http://refhub.elsevier.com/S0167-2738(14)00440-8/rf0120

	Mapping electrochemically driven gas exchange of mixed conducting SrTi0.7Fe0.3O3−δ and Ce0.8Gd0.2O1.9 thin films by 18O tra...
	1. Introduction
	2. Experimental
	2.1. Sample preparation
	2.2. Electrode design
	2.3. Procedure of the isotope exchange experiments

	3. Results and discussion
	3.1. Thermal diffusion profiles
	3.2. Effect of cathodic bias
	3.3. Comparison of polarity and electrode placement

	4. Conclusions
	Acknowledgments
	References


