
Edvin Listo Zec- RISE Research Institutes of Sweden
Edvin Listo Zec
- RISE Research Institutes of Sweden
About
24
Publications
2,480
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
178
Citations
Introduction
Skills and Expertise
Current institution
Publications
Publications (24)
Federated learning enables multiple actors to collaboratively train models without sharing private data. This unlocks the potential for scaling machine learning to diverse applications. Existing algorithms for this task are well-justified when clients and the intended target domain share the same distribution of features and labels, but this assump...
Decentralized Learning (DL) enables privacy-preserving collaboration among organizations or users to enhance the performance of local deep learning models. However, model aggregation becomes challenging when client data is heterogeneous, and identifying compatible collaborators without direct data exchange remains a pressing issue. In this paper, w...
Decentralized deep learning requires dealing with non-iid data across clients, which may also change over time due to temporal shifts. While non-iid data has been extensively studied in distributed settings, temporal shifts have received no attention. To the best of our knowledge, we are first with tackling the novel and challenging problem of dece...
The grammatical gender of Swedish nouns is a mystery. While there are few rules that can indicate the gender with some certainty, it does in general not depend on either meaning or the structure of the word. In this paper we demonstrate the surprising fact that grammatical gender for Swedish nouns can be predicted with high accuracy using a recurre...
Federated Learning (FL) is a promising framework for distributed learning when data is private and sensitive. However, the state-of-the-art solutions in this framework are not optimal when data is heterogeneous and non-IID. We propose a practical and robust approach to personalization in FL that adjusts to heterogeneous and non-IID data by balancin...
We study the problem of training personalized deep learning models in a decentralized peer-to-peer setting, focusing on the setting where data distributions differ between the clients and where different clients have different local learning tasks. We study both covariate and label shift, and our contribution is an algorithm which for each client f...
Telecom vendors and operators deliver services with strict requirements on performance, over complex and sometimes partly shared network infrastructures. A key enabler for network and service management in such environments is knowledge sharing, and the use of data-driven models for performance prediction, forecasting, and troubleshooting. In this...
In this paper, we propose a novel approach for privacy-preserving node selection in personalized decentralized learning, which we refer to as Private Personalized Decentralized Learning (PPDL). Our method mitigates the risk of inference attacks through the use of secure aggregation while simultaneously enabling efficient identification of collabora...
The circular economy promotes a transition away from linear modes of production and consumption to systems with circular material flows that can significantly improve resource productivity. However, transforming linear business models to circular business models posits a number of financial consequences for product companies as they need to secure...
Generative adversarial networks have proven to be a powerful tool for learning complex and high-dimensional data distributions, but issues such as mode collapse have been shown to make it difficult to train them. This is an even harder problem when the data is decentralized over several clients in a federated learning setup, as problems such as cli...
We study the problem of training personalized deep learning models in a decentralized peer-to-peer setting, focusing on the setting where data distributions differ between the clients and where different clients have different local learning tasks. We study both covariate and label shift, and our contribution is an algorithm which for each client f...
Federated Learning (FL) is a promising framework for distributed learning when data is private and sensitive. However, the state-of-the-art solutions in this framework are not optimal when data is heterogeneous and non-Independent and Identically Distributed (non-IID). We propose a practical and robust approach to personalization in FL that adjusts...
We tackle the non-convex problem of learning a personalized deep learning model in a decentralized setting. More specifically, we study decentralized federated learning, a peer-to-peer setting where data is distributed among many clients and where there is no central server to orchestrate the training. In real world scenarios, the data distribution...
Circular economy promotes a transition away from linear modes of production and consumption to systems with circular material flows that can significantly improve resource productivity. However, innovating linear business models to circular business models posit a number of financial consequences for product companies as they need to secure more ca...
Federated learning (FL) is a promising approach to distributed compute, as well as distributed data, and provides a level of privacy and compliance to legal frameworks. This makes FL attractive for both consumer and healthcare applications. However, few studies have examined FL in the context of larger language models and there is a lack of compreh...
Federated learning (FL) is a promising approach to distributed compute, as well as distributed data, and provides a level of privacy and compliance to legal frameworks. This makes FL attractive for both consumer and healthcare applications. While the area is actively being explored, few studies have examined FL in the context of larger language mod...
Federated learning has received attention for its efficiency and privacy benefits, in settings where data is distributed among devices. Although federated learning shows significant promise as a key approach when data cannot be shared or centralized, current incarnations show limited privacy properties and have shortcomings when applied to common r...
As more and more data is collected in various settings across organizations, companies, and countries, there has been an increase in the demand of user privacy. Developing privacy preserving methods for data analytics is thus an important area of research. In this work we present a model based on generative adversarial networks (GANs) that learns t...
The collection of large datasets allows for advanced analytics that can lead to improved quality of life and progress in applications such as machine cognition and medical analysis. However, recently there has been an increased pressure to guarantee the privacy of users when collecting data. In this work, we study how adversarial representation lea...