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Abstract
The influence of plasma inhomogeneity on the quasilinear dynamics of a
spatially limited electron beam is investigated. It is shown that the electron
beam propagates in a plasma of decreasing density as a beam–plasma structure
with a decreasing velocity. Plasma inhomogeneity leads to the beam–plasma
structure having energy losses.

1. Introduction

The electron beam in a plasma is one of the most colourful phenomena in plasma physics. The
problem of electron beam propagation in a plasma is an essential issue for astrophysical, as
well as laboratory, plasmas. One of the brightest appearances of low-density electron beams
in relatively cold and dense plasma are solar type-III bursts [1–3]. The electrons accelerated
during the solar flares travel in the solar corona and are a source of radio emission. The current
understanding of the problem assumes that propagating electron beams generate a high level of
Langmuir waves, which partly transform into observable radio emission at plasma and double
plasma frequencies via nonlinear plasma processes [1, 4]. The signatures of the beams present
radio emission with fast frequency drift. The frequency drift is associated with the decrease of
plasma density and consequently the local plasma frequency declines as the beam propagates
away from the Sun.

The characteristic parameters of the beams and the surrounding plasma have such values
that the treatment can be conducted in the framework of weak turbulence theory [5, 6].
The parameter that determines the rate of beam–plasma interaction is the quasilinear time
τ = n/ωpen

′, where n′ and n are the beam and plasma densities. The quasilinear time is much
smaller than the electron propagation time for typical parameters of the solar plasma and beams
generating type-III bursts, and therefore quasilinear relaxation is normally considered to be the
main process governing the beam dynamics [5–10]. The influence of plasma inhomogeneity
on beam dynamics has normally not been taken into account due to the smallness of the spatial
size of electron beams in comparison to the scale of plasma inhomogeneity [6, 10, 13, 14].
However, near the starting frequencies of the bursts, where the plasma gradient has a maximum,
the influence of plasma inhomogeneity is significant.
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Generally, the presence of a plasma gradient leads to two main physical effects. First, the
increment of beam–plasma instability (or quasilinear time) is dependent on distance, which
changes the rate of the interaction between the electron and plasma waves. Second, a given
Langmuir wave with wavenumber k(x) experiences a shift 	k(x) due to the course of its
propagation. The former effect plays the main role [15]. For a theoretical description of
laboratory experiments on beam transport [16–18] and some astrophysical applications [19] it
is necessary to solve a boundary problem on the stationary injection of the electron beam into
the plasma half-space. It has been shown [16, 17] that the decreasing plasma density leads
to the drift of Langmuir waves towards smaller phase velocities, while the growing plasma
density increases the phase velocity that leads to the appearance of accelerated particles. The
time of beam–plasma interaction generally increases due to plasma inhomogeneity due to
waves shifting out of resonance with the beam and therefore the influence of the plasma
inhomogeneity is considered to be a process suppressing quasilinear relaxation [18, 20]. In the
solar corona the plasma inhomogeneity plays a secondary role while quasilinear relaxation is a
dominant process. In order to understand observational properties (the starting frequencies of
the bursts, the frequency drift rate, the beam propagation over large distances), the dynamics
of a spatially limited electron beam should be considered. Moreover, we need to investigate
the long time (on the time scale t � d/v0, where d is the spatial size of the beam and v0 is the
beam velocity) dynamics of an electron cloud in the solar corona plasma.

Additional interest in this problem has been stimulated by the fact that an electron beam
with initial electron distribution function g0(v) can propagate in a plasma as a beam–plasma
structure without energy or particle losses [7, 11]. In a uniform plasma the structure propagates
with a constant velocity while the electrons form a plateau and generate a high level of Langmuir
waves at every spatial point [7, 9].

In this paper we demonstrate that the presence of a plasma inhomogeneity leads to the
beam–plasma structure having energy losses and to the decrease of the structure velocity. The
results obtained show that the plasma inhomogeneity is a physical process which plays an
important role in beam dynamics in the solar corona.

2. Quasilinear equations for inhomogeneous plasma

We consider an initial value problem of electron beam propagation in a plasma with longitudinal
inhomogeneity. The electron distribution function of the electron cloud at the initial time
moment t = 0,

f (v, x, t = 0) = g0(v) exp(−x2/d2) (1)

has a spatial length scale d . The initial distribution function that leads to the formation of a
beam-plasma structure [12] is

g0(v) =



2n′

v2
0

v v < v0

0 v > v0

(2)

where v0 is the maximum velocity of the beam. The initial spectral energy density is
homogeneous and of the thermal level

W(v, x, t = 0) ≈ T

2π2λ2
De

(3)

where T is the electron temperature of the surrounding plasma and λDe is the electron Debye
length. The one-dimensional character of beam propagation is supported by the strong



A fast electron cloud in a plasma of decreasing density 591

magnetic field along which electrons propagate [6]. However, the magnetic field is not strong
enough to change the dispersion properties of the Langmuir waves. The one-dimensional
character of beam propagation is also supported by the results of three-dimensional numerical
simulations [21].

We assume that the Langmuir wavelength variation at a given wavelength is a small fraction
of itself ∣∣∣∣dλ

dx

∣∣∣∣ � 1 (4)

or, in other words, we describe wave propagation in the geometrical optics (WKB)
approximation [22, 23]. Using the fact that the frequency of a Langmuir wave does not change
over its propagation in a plasma, we readily derive from (4)

v

|L| � 3ωpe(x)
(vTe

v

)2
(5)

where

L ≡ ωpe(x)

(
∂ωpe(x)

∂x

)−1

(6)

is the scale of the local inhomogeneity, ωpe is the local plasma frequency and vTe, v are the
electron thermal and wave phase velocities, respectively. Under these conditions the kinetics
of Langmuir wavepackets (quasiparticles) and electrons can be described by the following
system of equations [16]:

∂f

∂t
+ v

∂f

∂x
= 4π2e2

m2

∂

∂v

W

v

∂f

∂v
(7)

∂W

∂t
+

3v2
Te

v

∂W

∂x
+

v2

L

∂W

∂v
= πωpe

n
v2W

∂f

∂v
ωpe = kv (8)

where f (v, x, t) is the electron distribution function and W(v, x, t) is the spectral energy
density of Langmuir waves. W(v, x, t)plays the same role for waves as the electron distribution
function does for particles. The system (7) and (8) describes the resonant interaction ωpe = kv

of electrons and Langmuir waves. The last two terms on the left-hand side of (8) describe
the propagation of Langmuir waves and the corresponding shift in wavenumber. On the right-
hand side of equations (7) and (8) we have omitted spontaneous terms due to their smallness
in comparison with the induced terms [5].

The system of kinetic equations (7) and (8) is nonlinear with three characteristic time
scales. The first is the quasilinear time τ ≈ n/n′ωpe that is determined by the interaction
of particles and waves, the second scale is the characteristic time scale of the plasma
inhomogeneity L/v0 � τ and we are interested in the dynamics of the electron cloud at
the time scale t � d/v0.

2.1. Plasma density model

In order to obtain the density dependency of the solar corona we follow the heliospheric density
model [24]. On the one hand, this is quite a simple isothermal model. On the other hand,
it gives results which agree well with observations (see [24] for details). These two features
justify the choice of the model.

Following [24] the density profile n(r) is found by numerically integrating the equations
for a stationary spherical symmetric solution,

r2n(r)v(r) = C = constant (9)

v(r)2

v2
c

− ln

(
v(r)2

v2
c

)
= 4 ln

(
r

rc

)
+ 4

rc

r
− 3 (10)
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Figure 1. Solar plasma density profile; numerical solution of equations (9) and (10). The initial
position of the electron cloud (x = 0) is H = 50 000 km above the Sun.

where vc ≡ v(rc) = (kBT/µ̃mp)
1/2, rc = GMs/2v2

c , T is the electron temperature and Ms is
the mass of the Sun. The constant C appearing in (9) is fixed by satellite measurements near the
Earth’s orbit (at r = 1 AU n = 6.59 cm−3). Thus, following the authors of [24], the constant
C is determined to be C = 6.3 × 1034 s−1. For our calculations we take the temperature to be
106 K. To solve equations (9) and (10) numerically the rugula falsi method is used [25].

The local density profile n(x) is presented in figure 1. The initial location of the electron
cloud (x = 0) is taken at the altitude H = 50 000 km above the Sun.

3. Homogeneously distributed beam and numerical solution of the kinetic equations

To construct a conservative finite-difference scheme with correct asymptotic behaviour, we
initially consider a simplified problem excluding propagation of particles and waves. The
main interaction in the system is the particle–wave interaction governed by the quasilinear
terms on the right-hand side of kinetic equations (7) and (8).

To exclude transport terms we consider the problem when the electron beam is
homogeneously distributed in space. The problem with a homogeneous surrounding plasma
has been investigated a few times [6, 32]. It is well known that the initially unstable electron
distribution function g0(v) (2) leads to a plateau formation in the electron distribution function

f (v, t ≈ τ) =



n′

v0
v < v0

0 v > v0

(11)

and the generation of Langmuir waves

W(v, t ≈ τ) =



mn′

v0ωpe

∫ v

0

(
1 − v0

n′ g0(v)

)
dv v < v0

0 v > v0

(12)

for the quasilinear time τ . In the case of inhomogeneous plasma we can also consider relaxation



A fast electron cloud in a plasma of decreasing density 593

of the homogeneously distributed beam. Thus, kinetic equations will take the form

∂f

∂t
= 4π2e2

m2

∂

∂v

W

v

∂f

∂v
(13)

∂W

∂t
− v2

L0

∂W

∂v
= πωpe

n
v2W

∂f

∂v
ωpe = kv (14)

where L0 = |L| is taken to be a positive constant. In equations (13) and (14) the terms
responsible for wave and particle transportation are omitted. It should be noted that our
assumption is physically incorrect. The change in spectrum of Langmuir waves is only due to
the spatial movement of the waves with the group velocity. However, from the mathematical
point of view it is well justified. The group velocity of Langmuir waves 3v2

Te/v is a small value
and the effects connected with spatial movement can be neglected.

Equations (13) and (14) describe two physical effects: quasilinear relaxation (with
characteristic time τ ) and the drift of Langmuir waves in velocity space (with characteristic
time τ2 = L0/v). For our parameters of the beam and plasma τ2 � τ . Therefore, the influence
of plasma inhomogeneity can be considered to be the evolution of the final stage of quasilinear
relaxation.

Thus, after the time of quasilinear relaxation a plateau is established for the electron
distribution function and high level of Langmuir waves are generated. Since the quasilinear
processes are fast, we have a plateau at every time moment

f (v, t > τ) =



n′

v0
v < v0

0 v > v0.
(15)

The wave spectrum changes with time and, using the fact that we have a plateau at every time
moment, equation (14) can be reduced to

∂W

∂t
− v2

L0

∂W

∂v
= 0. (16)

The spectral energy density generated during the relaxation stage (12) plays the role of the
initial condition for (16). Integrating equation (16), we obtain the solution for t � τ

W(v, t) =



m

ωpe
(1/v − t/L0)

−3
∫ 1/(1/v−t/L0)

0

[
n′

v0
− g0(v)

]
dv v < u(t)

0 v > u(t)

(17)

where

u(t) = v0

1 + v0t/L0
(18)

is the maximum velocity of Langmuir waves. Note that the electron distribution function is
time independent and presents a plateau (15).

For the solution of kinetic equations (13) and (14) we use the finite-difference method
[27, 28]. We introduce the grid points vi , for i = 1, . . . , N , with a uniform mesh width of
	v = vi+1 − vi . The discrete time tk is also uniformly spaced with a time step 	t . To
approximate the quasilinear terms we used the explicit scheme used in [14]. This scheme
demonstrates high accuracy of the upper border for plateau-like distributions. The term
connected with the shift of the wave spectrum plays the role of the transport term in the velocity
space. It is approximated by the ‘monotonic’ scheme [29–31]. This scheme is considered to
be the best in these kinds of problems [26].

The numerical solution of the equations (13) and (14) with the initial electron distribution
function (2) is presented in figure 2. Indeed, comparing the numerical results and the simplified
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Figure 2. Numerical solution of equations (13) and (14) at four time moments: t = 0, 0.1 s,
0.2 s, 0.5 s. The initial electron beam density n′ = 100 cm−3, the plasma inhomogeneity length
L0 = 5 × 109 cm and the plasma density n = 4.96 × 108 cm−3. Dashed curves correspond to the
simplified analytical solution (17).

solution (17) we have a good agreement. The electron distribution function and the spectral
energy density demonstrate the correct asymptotic behaviour at t � τ . The plateau for the
wide range of velocities is formed after the short time t = 0.1 s and remains almost unchanged
up to the end of the calculations. For the time t > 0.1 s the drift of the Langmuir wave
spectrum towards smaller phase velocities becomes observable. At t = 0.5 s the maximum
phase velocity is half of the initial beam velocity.

4. Propagation of the electron cloud in the inhomogeneous plasma

The results obtained in the previous section justify the choice of the finite-difference scheme
for quasilinear terms. The transport terms in kinetic equations (7) and (8) are approximated
using a monotonic scheme [29–31]. The additional resolution requirement emerges when
combining quasilinear relaxation with particle propagation. For a grid spacing in velocity
space 	v, a spatial separation of size 	vt occurs in the numerical solution after a time
t . Therefore, to ensure that the continuous distribution does not become spiky, we require
	vt < 	x, where we have introduced a uniform mesh in coordinate space 	x = xj+1 − xj

for j = 1, . . . ,M .
Generally, as in the case of homogeneous plasma, the propagation of the electron cloud

in the inhomogeneous solar-like plasma (figure 1) leads to the formation of a beam–plasma
structure. The electron distribution function and the spectral energy density of Langmuir
waves are presented in figures 3 and 4. In these figures the electron distribution function and
the spectral energy density of Langmuir waves are presented as contour plots in the (x, v)
plane at various time moments. At every spatial point the electron distribution function is a
plateau from almost zero velocity up to some maximum velocity. This maximum velocity is
not a constant value as it takes place in a uniform plasma (figure 5), but a decreasing function
of distance. This is a direct result of the plasma inhomogeneity.
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Figure 3. The electron distribution function f (v, x)v0/n
′ (left) and the spectral energy density of

Langmuir waves W(v, x)ωpe/mn′v3
0 (right) at t = 0.1 s. Numerical solution of kinetic equations

d = 109 cm, n′ = 100 cm−3, v0 = 2 × 1010 cm s−1.

At the initial time moment t = 0 we have no Langmuir waves generated. The plateau
of the electron distribution function and the high level of plasma waves appear as a result of
quasilinear relaxation at the time moment t = 0.1 s (figure 3). For the time of quasilinear
relaxation, the electrons have not moved far from the region of their initial location. The
plasma inhomogeneity has also demonstrated no influence on the beam or Langmuir wave
evolution for this time. At this stage the numerical solution agrees well with the analytical
solution for homogeneous plasma (see [10]). The electron distribution function

f (v, x, t) =



n′

v0
exp

(
− (x − v0t/2)2

d2

)
v < v0

0 v > v0

(19)

and the spectral energy density of Langmuir waves

W(v, x, t) =



mn′

v0ωpe
v4

[
1 − v

v0

]
exp

(
− (x − v0t/2)2

d2

)
v < v0

0 v > v0

(20)

for a uniform plasma can be applied for t < τ2. Indeed, electrons form a plateau in the
electron distribution function and the spectrum of plasma waves has a maximum close to
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Figure 4. The same as in figure 3 but at the time moment t = 2.0 s.

0.75v0 (figure 6). Differentiating the solution for the homogeneous plasma (20) with respect
to v, we readily obtain the maximum at 0.8v0.

The characteristic time of Langmuir wave drift in velocity space towards small phase
velocities τ2 is about 0.1 s. Therefore, the impact of plasma inhomogeneity is observable at
t > τ2. At distances far from the initial location of the electrons the influence of plasma
inhomogeneity becomes significant. In figure 4 we see that there are no plasma waves with
phase velocity of more than ≈ 0.7v0.

4.1. Electron distribution function and the spectrum of Langmuir waves

The evolution of the electron distribution function and the spectral energy density qualitatively
follows the simplified solution of the previous section. At every spatial point we observe two
physical processes. The first process is the spatial movement of the beam–plasma structure as a
whole and the second is the shift of the Langmuir wave spectrum due to plasma inhomogeneity.

Let us consider the time evolution of plasma waves and the electron distribution function
at a given point x = 11d (figure 6). In contrast to the previous section we have a finite size
electron cloud. Therefore, the first electrons arrive at this point at t = 0.5 s. The electrons
which have arrived form a plateau in the electron distribution function and excite Langmuir
waves (see figure 6). At the front of the stream the electrons which have arrived have a positive
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Figure 5. The electron distribution function (left) and the spectral energy density of Langmuir
waves (right) at t = 2.0 s in the case of homogeneous plasma n = 4.96 × 108 cm−3. Numerical
solution of kinetic equations d = 109 cm, n′ = 100 cm−3, v0 = 2 × 1010 cm s−1.

derivative ∂f/∂v (see [9] for details) that supplies the growth of Langmuir waves. At the
time moments t = 1.0 s and t = 1.2 s the plateau height and the level of plasma waves
continue to grow. Approximately at the moment t = 1.2 s the maximum electron density
as well as the maximum wave energy density are achieved. From this moment onwards,
electrons mainly with ∂f/∂v < 0 arrive at the point. The plateau height declines and, due
to the negative ∂f/∂v of the arriving electrons, the level of plasma waves also decreases
(t = 1.6 s in figure 6). However, since the time size of the beam–plasma structure is more
than the characteristic time of the Langmuir spectrum change, Langmuir waves drift towards
smaller phase velocities. Some electrons have corresponding Langmuir waves with v < u,
but the electrons with velocities v > u have no resonance waves. The electrons accompanied
by waves propagate as a beam–plasma structure with velocity u/2, while the latter propagate
freely with velocity v. Indeed, we see in figure 6 that electrons with v > u leave the given point,
which leads to the absence of electrons with v > u. Therefore, the maximum plateau velocity
following the Langmuir wave maximum phase velocity decreases with time. Moreover, the
fast electrons at the edge of the plateau not accompanied by Langmuir waves with the same
phase velocities freely overlap the electrons involved in quasilinear relaxation and relax further
from the structure maximum. This effect increases the spatial size of the structure and makes
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Figure 6. The electron distribution function and the spectral energy density of Langmuir waves
at x = 11d for various time moments. Numerical solution of the kinetic equations d = 109 cm,
n′ = 100 cm−3, v0 = 2 × 1010 cm s−1.

the front longer than the back (figure 4). Note that in the case of homogeneous plasma the
structure is symmetrical (figure 5).

4.2. The velocity of a beam–plasma structure

We see that the plasma inhomogeneity changes the spectrum of plasma waves and the electron
distribution function. The maximum velocity of the plateau and Langmuir waves decreases
with time. The electrons with v < u propagate as a single structure accompanied by Langmuir
waves. The speed of the structure can be approximated as ≈u/2, where u is the maximum
velocity of the plateau near the maximum of the electron density. The drift of Langmuir
waves occurs at every spatial point and leads to a decrease of the velocity of the beam–plasma
structure. In the case of uniform plasma the maximum velocity of Langmuir waves and the
plateau remains unchanged (figure 8). For a uniform plasma the velocity of the structure is a
constant ≈v0/2, while it is a decreasing function for an inhomogeneous plasma (figure 7).

4.3. Energy density of the particles and waves

As we see, negligible spatial movement of the waves causes a significant shift of their spectrum
towards smaller phase velocities. As a result, a portion of the Langmuir waves appear to be
out of resonance with the particles. The back of the structure has more low-velocity plasmons
that can be absorbed by the electrons, and the fastest electrons have no Langmuir waves with
the corresponding phase velocity to absorb. Therefore, part of the beam–plasma structure
energy is lost by the structure in the form of low-velocity Langmuir waves (compare with the
homogeneous plasma in figure 5). In the case of a homogeneous plasma the spectrum of the
Langmuir waves generated at the front is the same spectrum which will be absorbed at the
back [7, 9].
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Figure 7. The velocity of the beam–plasma structure for inhomogeneous (circles) and
homogeneous n = 4.96 × 108 cm−3 (crosses) plasmas. All beam parameters are as in figures 3–6.

Figure 8. The energy density distribution of electrons and Langmuir waves at t = 0.1 s and
t = 2 s for inhomogeneous plasma (full curves). Numerical solution of kinetic equations
d = 109 cm, n′ = 100 cm−3, v0 = 2 × 1010 cm s−1. Numerical solution for homogeneous
plasma n = 4.96 × 108 cm−3 (dashed curves).

The distributions of the energy density of the electrons

Ee(x, t) = m

2

∫ v0

0
v2f (v, x, t) dv (21)

and the Langmuir waves

Ew(x, t) =
∫ ∞

0
W dk = ωpe

∫ v0

0

W(v, x, t)

v2
dv (22)

are presented in figure 8 at various time moments. Fast quasilinear relaxation results in the



600 E P Kontar

fact that approximately one third of the initial beam energy is transformed into wave energy
by t = 0.1 s (figure 8). This result is in a good agreement with the solution in a homogeneous
plasma. Integrating solutions (19) and (20), we obtain the same result.

The decrease of the number of waves in resonance with the beam electrons leads to energy
losses. In figure 8 we see a non-zero level of Langmuir waves in the region where the structure
has passed. Despite the fact of considerable energy loss, the beam remains the source of the
growing plasma level (see figure 6). The growth of the spectral energy density is supplied by
the declining local plasma frequency.

5. Summary

Finally, we have to mention one question concerning the applicability of the kinetic
equations (7) and (8). The right-hand side part of equation (8) is a Liouville equation
demonstrating the conservation of the number of Langmuir waves

N(v, x, t) = W(v, x, t)/h̄ω

where h̄ω is the energy of a quasiparticle. This equation is derived assuming that h̄ω is a
constant value

ω(k, x) = ωpe(1 + 	n/2n + 3k2v2
Te/2ωpe)

or, in other words, the change of plasma density should be a small fraction of itself [15, 22].
In our investigation we apply equation (8) to consider a wide range of plasma frequencies. To
answer this question we have to mention the fact that the Langmuir waves are slow (vgr � v)
and therefore a given plasmon can pass the distance vgrt at which the plasma density only
changes slightly. Indeed, the numerical results show that the Langmuir waves do not propagate
far from the point where they were excited. The Langmuir waves generated near x ≈ 0 remain
close to this point at t = 2 s.

The results obtained demonstrate that plasma inhomogeneity has a rather strong influence
on beam dynamics. The main factor determining the influence of the plasma inhomogeneity is
the shift of the Langmuir wave phase velocity due to its spatial movement. As a result a portion
of the Langmuir waves generated by the beam becomes out of resonance with the electrons.
The dependency of the quasilinear time on distance has a weaker influence.

The plasma inhomogeneity plays the role of a dissipative medium for electron beam
propagation. Numerical solution shows that the propagation of the electron beam leads to
the formation of a beam–plasma structure with the velocity decreasing with distance. The
beam–plasma structure propagates whilst losing its energy in the form of Langmuir waves.
The initial kinetic energy of the beam is transformed into the energy of Langmuir oscillations.

The results obtained may allow us to quantitatively connect the observable properties of
bursts (frequency drift rate and starting frequency) with the basic plasma and beam parameters
(plasma density, density gradient, beam density and beam velocity). Observations [4] show
us that the source velocity of type III bursts or the velocity of the beam–plasma structure
that we are considering is a slowly decreasing function. Our results show that the plasma
inhomogeneity can be the physical process which leads to the velocity decrease.
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