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ABSTRACT

In this paper, we apply and extend the theory of one-to-one
and many-to-one matching markets to the resource allocation
in wireless communications. We develop a general frame-
work to find stable matchings of users and resources based
on the channel and context aware preference lists of users
and resources. The score-based, maximum throughput, and
proportional fair scheduler do not lead necessarily to a stable
matching. We apply the user and resource proposing deferred
acceptance algorithm in order to find stable matchings and to
identify their properties. If the preference lists of users and
resources are strict and based on the same information, e.g.,
the channel state, the stable matching is always unique. The
optimality properties of stable matchings are characterized.
The framework is illustrated by an example ad-hoc commu-
nications scenario.

Index Terms— Resource management, Cross-layer de-
sign, Scheduling, Stable Matching

1. INTRODUCTION

Matchings occur in our everyday life. When there are non-
divisible goods and entities which have different interests in
these goods, there is a corresponding matching market. There
are one-sided or two-sided markets depending on each pref-
erence for potential goods of the other side. Matchings can
have different properties (Pareto optimality, maximum rank,
stability) which are of different importance in different appli-
cations.
One of the most popular matching problems is the stable

marriage problem if a set of men and a set of women de-
cide on who to get married with; that is the marriage match-
ing market. This is usually a two-sided one-to-one matching
problem. Both sides have different preference lists. In the
marriage market, these preferences are built on phenotypic
properties, e.g., hair color, weight, or face features. Since
society as well as the couples themselves have interest in en-
during marriages, the notion of stability is important here [1].

Part of this work has been performed in the framework of the European
research project SAPHYRE, which is partly funded by the European Union
under its FP7 ICT Objective 1.1 - The Network of the Future.

The first who studied stable matchings and showed that
there always exists at least one stable matching by a construc-
tive algorithm - the deferred acceptance algorithm - are Gale
and Shapley [1].
In the monograph [2], one-to-one and many-to-one sta-

ble matchings, their construction, properties and applications
to the labor market and college admissions are studied. Be-
cause of the many applications of matchings markets and their
importance, there is a large body of work on stable match-
ings in one-to-one and one-to-many matching markets. In [3],
the properties of the preference relations of colleges and stu-
dents are analyzed and equivalence shown between Pareto ef-
ficiency, group strategyproofness, consistency, and acyclical-
ity. An axiomatic framework for deferred acceptance is de-
veloped in [4]. An asymptotic analysis of incentive compat-
ibility and stability in (asymptotic) large two-sided matching
markets is performed in [5].
Due to the limited resources time, spectrum, and space,

resource allocation problems are extensively studied in com-
munications [6]. There is a large body of work available
and we can only list a few representative examples which
are related to the problems addressed here. Typical resource
allocation problems include power allocation, bit loading,
beamforming optimization, subcarrier selection, user group-
ing, and user selection. We focus on the problem of assigning
resources (e.g. time-frequency chunks) to users. This is
usually referred as user scheduling.
The downlink scheduling problem is difficult because it

is a combinatorial problem of matching users to subcarriers.
Even in its simplest case, i.e., a resource is matched exactly to
one user, it cannot be solved easily or in closed form but it is
has exponential complexity [7]. One-to-one stable matchings
and the deferred acceptance algorithm were recently applied
to cognitive radio systems in [8]. In multiple antenna sys-
tems multiple users are allocated to a single time-frequency
chunk and the resource allocation problem is even more com-
plex [9]. Often, resource allocation is formulated as an opti-
mization problem [10]. If channel state information as well
as service requirements (QoS) [11] are considered, a cross-
layer approach to resource allocation [12] is necessary to ex-
ploit the properties of the physical layer, channel and source
(video) coding [13].
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In this paper, we develop a novel framework for stable re-
source allocations in wireless networks. First, we present the
system model and provide basic definitions on one-to-many
matchings and stability. We show that three common chan-
nel aware schedulers, the maximum throughput scheduler, the
score-based scheduler, and the proportional fair scheduler, do
not result necessarily in a stable matching. Next, we de-
scribe the user and resource proposing deferred acceptance
algorithm and analyze the properties of the algorithm and its
outcome. A sufficient condition for uniqueness of the stable
matching is derived and weak Pareto optimality on any unsta-
ble matching is shown. The performance of the stable match-
ing is studied and it is shown that the resource proposing sta-
ble matching gives the maximum sum rate stable matching.
Finally, an application is an ad-hoc network without arbitra-
tor and coordination is studied. The transmitter proposing de-
ferred acceptance algorithm leads to a stable matching which
is agreed on by all transmitter and receiver nodes.

2. SYSTEMMODEL AND BASIC RESULTS

We consider a general scenario with K users, N resources
(undivisible) which can be exlusively allocated to any one
user. The set of users is denoted by K = {1, ...,K} and
the set of resources is denoted by N = {1, ..., N}. User k
can have up to qk resources. The resource allocation problem
is to match the users to the resources. This is a one-to-many
matching problem. These types of problems have a long his-
tory, since marriages (typically with quota qk = 1) and col-
lege admissions (qk > 1) are important and popular exam-
ples [2]. Regarding the college-student terminology, we iden-
tify the students with resources and the colleges with users
because one student can go only to one college as well as one
resource is allocated to a single user.
In wireless communications, this scenario oulined above

occurs in many different settings. It could correspond to the
allocation of sub-carriers in an OFDM downlink transmission
system. There the set of carriers is matched to a set of ac-
tive users in one cell or sector. Another example from wire-
less communications are ad-hoc networks. There, a set of
transmitter nodes want to transfer their information to a set of
receiver nodes. In order to enable communication a match-
ing of transmitter nodes to receiver nodes is found. Here, the
distributed nature of the matching problem requires special
attention.

2.1. Resource Allocation and Matching Market

Each user has preferences on the resources based on her local
information. In wireless communications, the local informa-
tion contains channel quality information and it is given in
terms of SINR values. Denote the channel quality of user
k ∈ K on resource n ∈ N as αk,n ≥ 0. Thus each user has
a preference relation �k over the subsets of resources. A re-

source n ∈ N is acceptable to user k if the SINR leads to a
user utility larger than zero, i.e., φ(αk,n) > 0. The mapping
φ : R

+
0 → R

+
0 maps the channel quality to a utility func-

tion taking the local context and information of the user into
account. For Shannon capacity it is φ(x) = log(1 + x) or
for finite modulation and coding schemes it is usually a step
function. This can lead to non-strict preferences.
Each resource has also preferences on the users based on

local information. In wireless communications, the local in-
formation could contain channel quality, buffer state, or any
context related information available for resource allocation.
Each resource n ∈ N has a preference relation Pn over the
set of users and being unused (n). A user k ∈ K is acceptable
to resource n ∈ N if kPnn.
A resource allocation problem is specified by the tuple

(N ,K,PN ,�K, q) (1)

consisting of the set of resources N , the set of users K, the
set of preference relations of the resources PN = {Pn}n∈N ,
the set of preference relations of the users �K= {�k}k∈K,
and the quota qk, 1 ≤ k ≤ K describing how many resources
a user k can have at most. Usually, there is not a single util-
ity function associated with one resource but rather there is
an overall utility function defined to describe the interest of
the system operator, e.g., the sum utility or proportional fair
utility. In economics, these functions which map the state to
a real value are called social welfare functions because they
rank the resulting (social) operating point from lowest to high-
est [14].

Definition 1 A matching μ is a function from the set N ∪ K
into the set of unordered families of elements of N ∪ K such
that:

1. |μ(n)| = 1 for every resource n ∈ N and μ(n) = n if
μ(n) /∈ K;

2. |μ(k)| = qk for every user k ∈ K and if the number
of resources in μ(k), say r is less than qk, then μ(k)
contains qk − r copies of k;

3. μ(n) ∈ K if and only if n ∈ μ(K).

The notation μ(·) has different meanings depending on
the argument. If the argument is a user k, then μ(k) gives a
set of matched resources. If the argument is a resource n, then
μ(n) maps to the matched user. Usually, these matchings are
represented graphically, i.e.,

μ1 :
k1 k2 (n4)

n1 n3 k1 n2 n4
(2)

represents a matching at which user k1 with quota qk1
= 3 is

matched with two resources, n1 and n3, user k2 with quota
one is matched with one resource n2, and user k3 as well as
resource n4 is unmatched.
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Given a matching μ, the user utilities can be easily com-
puted for user k ∈ K as

uk(μ) =
∑

n∈μ(k)

φ(αk,n) (3)

and the system utility described above can be computed as

us(μ) = ψ(φ1(αμ(n1),n1
, μ), φ2(αμ(n2),n2

, μ), ...,

φN (αμ(nN ),nN
, μ)) (4)

where ψ : R
N → R+ maps from the individual resource

qualities to an overall performance measure, e.g., the for
the sum utility ψs(x) =

∑N
n=1 xn, for proportional fair

utility ψf (x) =
∏N

n=1 xn, or for max-min fair utility
ψm(x) = min(x1, ..., xN ). The per resource utility func-
tions φn(αk,n, μ) take into account local information of the
resources as well as the matching μ itself. Note that we do not
make further assumptions on the functions φn and ψ. This
is in contrast to monotonic increasing and concave utility
functions used e.g. in [15].
Another representation for the matching μ is by a binary

K×N matrixAwhere a zero at position i, j means that user i
and resource j are not matched whereas a one means that user
i and resource j are matched. Then, the constraints imply that
each row sum is either one or zero and the sum of column k is
smaller than or equal to qk. The matching matrix A1 for the
example of the matching μ1 from (2) is given by

A1 =

⎛
⎜⎜⎝
1 0 0
0 1 0
1 0 0
0 0 0

⎞
⎟⎟⎠ . (5)

The advantage of the matching matrix representation is that
the system utilities can be written compactly, e.g., the sum
Shannon capacity achieved with matching μ1 can be com-
puted as

us(μ1) = || log(1 +M �A1)||
2
F , (6)

where log is applied component-wise and the K ×N matrix
M contains the channel qualitiesMkn = αk,n and � is the
Schur-product.
The following definitions on stability of a matching μ can

be found in [2]. The matching μ is blocked by resource n and
user k if resource n strictly prefers k to μ(n) and either (i) k
strictly prefers n to some n′ ∈ μ(k) or (ii) |μ(k)| < qk and
n is acceptable to k. A matching is individually rational if
for each resource n ∈ N it holds μ(n)Pnn or μ(n) = n and
for each user k ∈ K it holds (i) |μ(k)| ≤ qk and (ii) n �k n
for every n ∈ μ(k). A matching is stable if it is individually
rational and not blocked. A resource allocation mechanism
is a systematic way of assigning resources to users. A stable
mechanism is a mechanism that yields a stable matching for
every resource allocation problem (N ,K, PN ,�K, q).

This notion of stability differs from the notion of stabil-
ity used in queuing systems. Here, stability implies that there
is not a single pair of resource and user which prefer being
matched to each other instead of matched to their current part-
ner. The interest in being matched is purely based on the pref-
erence relations of the users and resources. At first sight there
is no operational meaning of this notion of stability. Consider
the scenario in which the resources do not belong to one entity
(e.g. to one base station) but to different receivers, e.g., in an
ad-hoc network, who can autarkic decide with whom they will
be matched. Then an unstable matching would leave room for
some pairs to improve their situation by bilateral cooperation.

2.2. Basic Characterization of Matchings in Wireless
Communications

First, we describe three representative resource allocation al-
gorithms used in wireless communications, namely the max-
imum throughput allocation, the proportional fair allocation,
and the score-based scheduling. It turns out that none of them
necessarily leads to a stable matching.
The score-based scheduler is proposed in [16]. The idea

is that each user assigns a score to each resource and num-
bers the resources according to their scores. The scheduler
then allocates the user with the best score to each resource.
This scheduler is shown to have a good performance versus
fairness tradeoff.

Proposition 2 The score-based scheduling mechanism de-
scribed above does not necessarily lead to a stable matching.

Proof Since this proof is by contradiction, it also illus-
trates how the score-based scheduler works. Consider a sce-
nario with two users {A,B} and three resources {1, 2, 3}. Let

the channel matrixM be given byM =

(
2 1 0
4 5 1

)T

. The

score matrix is then given by S =

(
0 1 3
1 0 2

)T

where 3

means that resource 3 is not acceptable to user 1. The result-
ing score based matching μs is given by μs(1) = A,μs(2) =
B,μs(3) = B or μs(A) = {1} and μs(B) = {2, 3}. This
matching μs is blocked by resourse 1 and user B because re-
source 1 stricly prefers userB to μ(1) = A and userB stricly
prefers resource 1 to 3 ∈ μs(B). �
The maximum sum-utility matching is defined as the so-

lution to the following combinatorial programming problem:

us(μr) = max
μ

N∑
n=1

φ(αμ(k),n) s.t. μ is a matching. (7)

The constraint that μ is a matching contains also that the
user’s quotas qk must be fulfilled. For a large number of re-
sources and users, this problem is difficult to solve.

Proposition 3 The sum-utility maximal matching μr is not
necessarily stable.



Proof Consider the following counter example M =(
5 4 3
4 2 0

)T

. The maximum sum-utility is achieved by the

matching μr(1) = A,μr(2) = B,μr(3) = A. However,
this matching is blocked by resource 2 and user A because
resource 2 strictly prefers user A to μ(2) = B and user A
strictly prefers resource 2 to 3 ∈ μ(A). �
The proportional fair matching is defined as the solution

to the following problem similar to (7):

up(μp) = max
μ

N∏
n=1

φ(αμ(k),n) s.t. μ is a matching. (8)

Again, this is a computational complex combinatorial prob-
lem which is difficult to solve for a large number of users and
resources.

Proposition 4 The proportional fair matching μp is not al-
ways stable.

Proof Consider the same channel matrix as above, i.e.,

M =

(
5 4 3
4 2 0

)T

. The solution to (8) forM is given by

the matching μp(1) = B, μp(2) = A, and μp(3) = A. This
matching is blocked by resource 1 and user 1. �
In conclusion, the three counter examples indicate that the

usual scheduling algorithms used in wireless communications
do not lead to stable matchings. The interpretation is that in
these instable cases, there is a resource-user pair which would
like to change their matchings. If the resources are adminis-
trated non-centrally or they operate on their own will, this
resource-user pair could simply destroy the outcome of the
scheduling algorithm by swapping their allocated match with
each other.

3. STABLE MATCHINGS AND THEIR PROPERTIES

3.1. Deferred Acceptance Algorithms

The question whether there exists always a stable matchings
was first answered positive and constructively in [1] by de-
scribing the algorithm which computes one stable matching:
Every resource allocation problem has at least one stable
matching because the so-called deferred acceptance algo-
rithm finds one of these stable matchings [1]. There are
two variants available: the resource proposing and the user
proposing algorithm. We describe both algorithms in the
following pseudo code adapted to the resource allocation
problem at hand. For a textual description, the interested
reader is referred to [2]. In the algorithm, note the double
meaning of Wt. If the argument is a user k, it returns the
set of resources rejected by this user. If the argument is a re-
source n, it returns the set of users who have rejected resource
n.

Result: Find stable matching for resource allocation
problem (N ,K,PN ,�K, q)

Input: PN ,�K

Init: Initialize the ordered set of temporarily accepted
resources At(k) for step t and the set of users who
rejected resource n in step t,Wt(n) ;
Step t = 1: Resource n ∈ N applies for user k ∈ K
with k = argmaxk′∈K φ(αk′,n). Denote the resources
who apply for user k as nk1 , ..., nkm. User k keeps the
first qk best ranked resources, i.e.,
A1(k) = {nk1 , ..., n

k
qk
} with nkl Pkn

k
l+1 for

l = 1...,m− 1. Update the set of rejected resources
W1(k) = {nkqk+1, ..., n

k
m} and the set of rejected users

W1(n) = {k ∈ K : n ∈ W1(k)} ;
Step t: All resources not yet assigned
n ∈ N \

⋃
k∈K At−1(k) apply for their next best user,

i.e., k argmaxk′∈K\Wt−1(n) φ(αk′,n). Denote the
resources who apply for user k as ñk1 , ..., ñkm′ . User k
keeps the first qk best ranked resources from
S = {nk1 , ..., n

k
m} = At−1(k) ∪ {ñk1 , ..., ñ

k
m′} and

updates At(k) = {nk1 , ..., n
k
qk
} with ordered elements

nkl Pkn
k
l+1 for l = 1, ...,m− 1 ;

Output: Stable matching μrp

Algorithm 1: Resource Proposing Deferred Accep-
tance Algorithm

The algorithm terminates either when all resources are
matched to users or every unmatched resource has been re-
jected by every acceptable user. Therefore, the algorithm ter-
minates after a finite number of steps. The resource proposing
deferred acceptance algorithms results in a stable matching.
In order to continue the examples from above, the re-

source proposing deferred acceptance algorithm leads for the

matrixM =

(
2 1 0
4 5 1

)T

to the following matchings: q =

1;μrp(A) = 2, μrp(B) = 1, q = 2;μrp(A) = ∅, μrp(B) =
{1, 2}, q = 3;μrp(A) = ∅, μrp(B) = {1, 2, 3}.
In contrast to the resource proposing acceptance algo-

rithm the user proposing algorithm differs since one user k
can have up to qk resources allocated. Therefore, for each
user k a number qk of virtual users with identical prefer-

ences are created. This results in KC =
K∑

k=1

qk users and a

one-to-one matching problem (N ,Kc,PN ,�Kc
). Then, the

user-proposing acceptance algorithm can be defined similarly
as the resource proposing variant.

The example with MT =

(
2 1 0
4 5 1

)
gives for q = 2

a virtual matrixM ′ =

⎛
⎝2 2 4 4
1 1 5 5
0 0 1 1

⎞
⎠ and the user propos-

ing deferred acceptance algorithm results in μup(A) = ∅ and



μup(B) = {1, 2} which corresponds to the resource propos-
ing stable mechanism. This does not happen by chance as
shown below in Theorem 5.
In general, the outcomes of the two algorithms are not

equal. In fact, there are multiple stable matchings possible
and the two algorithms give the extreme points of the set
of stable matchings. A characterization of the set of stable
matchings can be found in [2, Section 3.1]. The user propos-
ing algorithm gives the user optimal stable matching μU , i.e.,
this is the matching which is preferred by all users to any other
stable matching. The resource proposing algorithm gives the
resource optimal stable matching μR. All other matchings lie
between these two, in the following sense μU �R μ �R μR

and vice versa μU ≺U μ ≺U μR.
As a final corollary, we observe that the resource optimal

stable matching is not necessarily sum-utility optimal.

3.2. Uniqueness of Stable Matching

It depends on the user and resource preferences whether there
are multiple stable matchings or not. Since the structure of our
preferences and underlying utility functions does not fulfill
the non crossing condition (NCC), we obtain multiple stable
matchings in general [17].
We dicuss two cases. In the first case, there will be mul-

tiple stable matchings and in the second case, we provide a
sufficient condition for the uniqueness of the stable match-
ing. Both cases are motivated by two wireless communica-
tions scenarios.
First, we consider a interference scenario in which the lo-

cal information of the users and the resources lead to multiple
stable matchings: Let the users have access to their channel
quality αk,n, e.g., by pilot based channel estimation. Their
preferences are thus based purely on αk,n. The resources have
additional context information, namely the complete SINR in-
cluding transmit power constraint with spectral shaping mask
constraints pk,n and interference level zn. Their preferences
are based on the SINR of user k on resource n given by

SINRk,n =
αk,npk,n
σ2 + zn

. (9)

For an anecdotal example, assume four users and four re-
sources. Let qk = 1 for all users, σ2 = 1 and the channel gain
matrixM be given below in (10). Let the interference vec-
tor z = [z1, z2, z3, z4] = [1, 1, 1, 1] and the transmit power
spectral mask constraints given below in (10).

M =

⎡
⎢⎢⎣
4 3 2 1
3 4 1 2
2 1 4 3
1 2 3 4

⎤
⎥⎥⎦ , P =

⎡
⎢⎢⎣
1/4 2/3 3/2 4
2/3 1/4 4 3/2
3/2 4 1/4 2/3
4 3/2 2/3 1/4

⎤
⎥⎥⎦ . (10)

μ1 μ2 μ3 μ4 μ5 μ6 μ7 μ8 μ9 μ10

R1 1 2 1 2 3 2 3 4 3 4
R2 2 1 2 1 1 4 4 3 4 3
R3 3 3 4 3 4 1 1 1 2 2
R4 4 4 3 4 2 3 2 2 1 1

Table 1. Ten stable matchings for the resource allocation
problem example.

The resulting SINR matrix is given by

SINR = P �M =

⎡
⎢⎢⎣
1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

⎤
⎥⎥⎦ . (11)

Note that this example leads exactly to the preferences in [2,
Example 2.17] provided by Knuth. Therefore, there are ten
stable matchings where the resources 1, 2, 3, 4 are matched to
the users according to the Table 1.
Next, let us consider the case where there are neither in-

tercell interference nor spectral mask constraints. Then, both
preference relations are based on the same channel gain ma-
trixM containing αk,n. The utility of the user k on resource
n is simply φ(αk,n) and the same for the utility of resource
n for user k. in this case, there is a unique stable matching,
even though the (sufficient) NCC is not satisfied.

Theorem 5 If the preferences of the users and resources are
strict and depend on the same common coefficients αk,n, then
there is only one stable matching μ∗.

3.3. Pareto Optimality of Stable Resource Matchings

Definition 6 A matching μ is weak Pareto Optimal (PO) if
there is no other matching ν with u(ν) ≥ u(μ) where the
inequality is component-wise and strict for one user.

Remember that the utility of user k is given by

uk(μ) =
∑

n∈μ(k)

φ(αk,n)︸ ︷︷ ︸
�(k,n)

(12)

where φ(αk,n) describes the utility of user k on resource n.
In [2, Theorem 2.27] it is shown that in one-to-one sta-

ble matchings for the marriage market the man-optimal stable
matching is weak PO for the men, i.e., there is no individu-
ally rational matching (stable or not) which is preferred by all
men. Unfortunately, the strong PO does not hold, i.e., there
are individual men in the man-optimal stable matching who
prefer another matching.

Proposition 7 Any stable resource-user matching μ is weak
PO to an unstable matching ν.



Proof Assume the contrary, i.e., that there is a unstable
ν which is PO to a stable μ. There are two possibilities: ei-
ther ν is unstable because of lack of individually rationality
or because it is blocked.
The first case is easy. Assume that resource l is not indi-

vidual rational, then the utility of resource l can be improved
by removing user ν(l) and matching another user, say j =
μ(l). This increases the utility of user j and uj(ν) < uj(μ).
The second case is more difficult: Assume that the unsta-

ble ν is blocked by resource n and user k. This is so if re-
source n strictly prefers user k to ν(n) and either (i) k stricly
prefers n to some n′ ∈ ν(k) or (ii) |ν(k)| < qk and n is ac-
ceptable to k. For case (i), we construct a stable matching μ
by interchanging resource n and n′ for user k, i.e.,

μ(k) = (ν(k) \ n′) ∪ n.

This leads to the new utility of user k

uk(μ) =
∑

m∈μ(k)

�(k,m) = �(k, n) +
∑

m∈μ(k),n�=m

�(k,m)

> �(k, n′) +
∑

m∈ν(k),m �=n

�(k,m)

=
∑

m∈ν(k)

�(k,m) = uk(ν). (13)

The inequality in (13) holds because user k strictly prefers
resource n to n′. Since all other utilities are left unchanged
this shows for case (i) that u(μ) ≥ u(ν). For case (ii), let
k′ = ν(n) with utility �(k′, n). This implies

uk(μ) =
∑

m∈ν(k)

�(k,m) + �(k, n) >
∑

m∈ν(k)

�(k,m) = uk(ν)

and

uk′(μ) =
∑

m∈ν(k′)

�(k′,m)− �(k′, n)

<
∑

m∈ν(k′)

�(k′,m) = uk′(ν).

From these two inequalities follow that neither u(μ) ≥ u(ν)
nor u(μ) ≥ u(ν). This completes the proof. �

4. PERFORMANCE OF RESOURCE-USER STABLE
MATCHINGS

In this section, we apply the resource proposing and user
proposing deferred acceptance algorithm in the wireless com-
munications context. Since we assume a special structure of
the underlying preference relations, these results cannot be
applied to general markets.
Define the set of preliminary accepted resources in step

t by user k by At(k). The set of all preliminary accepted

resources in step t is thus At =
⋃

k∈K At(k). Define the
set of all users who were rejected by resource n in step t as
Wt(n). The set of resources which apply for user k in step t
is given by

Vt(k) =

{
n ∈ N \ At : k = arg max

k′∈K\Wt(n)
�k′,n

}
. (14)

Each user k solves in step t the following optimization prob-
lem

At+1(k) = arg max
S⊆At(k)∪Vt(k),|S|≤qk

∑
n∈S

�k,n. (15)

From Proposition 3 follows that there are (strong) PO
matchings that are not stable, e.g., the maximum sum utility
matching. If we restrict the outcome of the resource alloca-
tion problem to the set of stable matchings, then an important
question is how to find the sum utility maximal stable match-
ing.

Proposition 8 The resource-proposing deferred acceptance
algorithm yields the stable matching with maximum sum-
utility.

Remark: The reason for this behavior lies in the prefer-
ences of users and resources. These are coupled by their re-
spective utility functions. In general many-to-one matchings,
this result does not hold. Note further, that this result does not
follow from the weak PO because some resources may prefer
another stable matching.
Proof In step 1 of the algorithm, the resources apply for

their best users, i.e., resource n applies for argmaxk �(k, n).
The users decide on the set of resources they keep. User k
keeps the set of maximum size qk which gives highest sum-
utility. Therefore, the sum-utility is maximized in the first
step.
For step t of the algorithm, we can rewrite (15) for user k

as

At+1(k) = arg max
S⊆Vt(k)∪Vt−1(k)∪...∪V0(k),|S|≤qk

∑
n∈S

�k,n, (16)

because the proposals which were rejected in former steps
t − 1, ..., 0 will be also again rejected in step t. Therefore,
the set is not changed if we add these sets to Vt(k). The sum
utility after step t+ 1 is given by

uts =
K∑

k=1

∑
n∈At+1(k)

�k,n.

If t is increased to some T for which VT (k) = ∅, it can be
observed that the set of all resources that have applied for user
k is given by

V∞(k) = V0(k) ∪ V1(k) ∪ ... ∪ VT−2(k) ∪ VT−1(k). (17)



User k chooses the best set of maximal qk resources from
V∞(k), i.e., define

A∞(k) = arg max
S⊆V∞(k),|S|≤qk

∑
n∈S

�k,n.

This clearly maximizes the sum-utility. Note, that by con-
struction, the best qk resources in V∞(k) contain disjunct re-
source sets, i.e.,

A∞(1) ∩ A∞(2) ∩ ... ∩ A∞(K) = ∅. (18)

To finish the proof, the question remains whether it is possible
to construct these sets V∞(1), ...,V∞(K) better in terms of
sum-utility. Assume, that we can get a better sum-utility by
swapping one resource n′ from someA∞(k) toA∞(k′). This
implies that at some time t, the resource n′ has not applied for
k but for k′. But the resources have applied for the best user
in each step, thus �k,n′ ≥ �k′,n′ . Therefore, this swap gives
lower sum-utility which is a contradiction and concludes the
proof. �

4.1. Performance Improvement with Non-Strict Prefer-
ences

Finite modulation and coding schemes lead to weak user pref-
erences. Consider the scenario in which one user has three ac-
ceptable resources each which identical achievable rates (e.g.
4-QAM and 1/3 codec). The question is how to assign the
’best’ resource to the user. One naive approach is to ran-
domly choose between equal prioritized resources. However,
this could lead to very inefficient matchings. There might
even be matchings resulting which are not Pareto efficient for
the resources. Using the framework of [18], it is possible to
improve the utility of all resources by a rotation algorithm.
In order to improve the matching, [18] proposes a stable

improvement cycle algorithm based on the construction of a
directed graph Γ where for each pair of users k1 and k2 there
is an edge k1 → k2 if and only if there is a resource i which
is matched to k1 under μ and i belongs to the set of highest
priority resources of user k2.

5. APPLICATION

Let us consider a wireless ad-hoc networks in which there
are a total of K nodes which deconstruct into two disjunct
sets, a set of transmitters nodes T and a set of receiver nodes
R = {1, ...,K} \ T . The channel conditions depend only
on the location (distance) and are given by αkl(S(t)) with
node location vector S(t) = [S1(t), ..., SK(t)] and k ∈ T
and l ∈ R.
One suboptimal scheduling policy is to randomly select

transmit/receive node pairs. Another approach is to allow
nodes to send transmission requests and allow an arbitrator
to determine which requests are granted [12]. Several such
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Fig. 1. Example 4 × 4 ad-hoc network with random (blue,
dash-dotted), stable (black, dashed), and best unstable (red,
solid) matching.

rounds of arbitration can take place to improve the scheduling
decision. If such an arbitrator is not available, the transmitter-
or receiver proposing deferred acceptance algorithm is a
good candidate to find a stable matching. The transmitters
announce their transmission requests to the receivers which
in turn reject or accept temporarily the offers. The resulting
matching will be stable such that all transmitters and receivers
voluntarily accept the outcome. However, there is a price to
be paid compared to the best unstable matching.
Consider the following example with eight nodes, four

transmitting and four receiving, all dropped uniformly and in-
dependently over a 1x1 planar area. The channel gains αkl are
computed as the inverse Euclidean distance between transmit
and receive node. Figure 1 shows the node locations of the
transmitters (cross) and the receivers (plus) as well as the ran-
dom, stable, and best unstable matching.
The channel gain matrix for the example in Figure 1 is

given by

MT =

⎛
⎜⎜⎝
7.0544 3.0593 1.4032 2.3427
9.6052 21.1034 1.5761 0.9384
2.9795 1.5203 1.3982 7.7266
3.1126 1.8238 6.5012 8.8563

⎞
⎟⎟⎠ (19)

The gain matrix is related to the channel gains [M ]kl = αkl

defined above. In Figure 1, the numbers at the transmitter
nodes show the best unstable matching and the numbers at
the receiver nodes show the stable matching. The resulting
matchings are given below. The random matching is

μrandom :
1 2 3 4
3 2 1 4 (20)

with resulting sum rate Rrand = 5.76 bits per channel use at



Tx1 2 1 4 3
Tx2 2 1 4 3
Tx3 4 2 1 3
Tx4 4 3 1 2

Rx1 1 2 4 3
Rx2 2 1 3 4
Rx3 4 1 2 3
Rx4 4 3 1 2

Table 2. Preference lists of transmitter 3 and 4 and receivers
3 and 4 for the channel gain matrixM in (19).

10 dB SNR. The stable matching is

μstable :
1 2 3 4
1 2 3 4 (21)

with resulting sum rate Rstab = 6.07 bits per channel use at
10 dB SNR. The best unstable matching is

μbest :
1 2 3 4
1 2 4 3 (22)

with resulting sum rate Rbest = 6.56 bits per channel use at
10 dB SNR. The preference lists are collected in table 2.
Let us briefly repeat why μbest is an unstable matching.

This can be observed studying the preference lists of the trans-
mitters and the receivers, in particular the preference list of
transmitters three and four and receivers three and four in ta-
ble 2. For μbest the fourth transmit and fourth receive node
are better off if they were matched and thus they block the
matching.
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