Edoardo Charbon

Edoardo Charbon
Swiss Federal Institute of Technology in Lausanne | EPFL · Institute of Electrical and Microengineering

Ph.D.

About

327
Publications
61,319
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
6,344
Citations
Additional affiliations
October 2016 - July 2029
Swiss Federal Institute of Technology in Lausanne
Position
  • Professor (Full)
September 2008 - present
Delft University of Technology
Position
  • Professor (Full)

Publications

Publications (327)
Preprint
Full-text available
Temporal photon correlations have been a crucial resource for quantum and quantum-enabled optical science for over half a century. However, attaining non-classical information through these correlations has typically been limited to a single point (or at best, a few points) at-a-time. We perform here a massively multiplexed wide-field photon correl...
Article
Cross-talk is a well-known feature of single-photon avalanche detectors. It is especially important to account for this effect in applications involving temporal coincidences of two or more photons registered by the sensor since in this case the cross-talk may mimic the useful signal. In this work, we characterize the cross-talk of the LinoSPAD2 de...
Article
Correlation plenoptic imaging (CPI) is a novel technological imaging modality enabling to overcome drawbacks of standard plenoptic devices, while preserving their advantages. However, a major challenge in view of real-time application of CPI is related to the relevant amount of required frames and the consequent computational-intensive processing a...
Article
Full-text available
Spontaneous Raman microscopy is well-known for its remarkable chemical contrast yet suffers from slow acquisition speeds. Recently, the compressive Raman microspectroscopy framework has shown that a significant speed advantage is brought by leveraging shot-noise-limited detection using a single-photon avalanche diode (SPAD). However, current imagin...
Article
Full-text available
The acquisition of the time of flight (ToF) of photons has found numerous applications in the biomedical field. Over the last decades, a few strategies have been proposed to deconvolve the temporal instrument response function (IRF) that distorts the experimental time-resolved data. However, these methods require burdensome computational strategies...
Article
Full-text available
Designing SPADs with high sensitivity in a wide wavelength range is crucial since the applications utilizing SPAD-based sensors target different parts of the spectrum. Here, we introduce a novel technique to achieve a wider sensitivity spectrum through the insertion of a second multiplication region into the depletion region. Thanks to the proposed...
Article
Full-text available
To address many of the deficiencies in optical neuroimaging technologies, such as poor tempo-spatial resolution, low penetration depth, contact-based measurement, and time-consuming image reconstruction, a novel, noncontact, portable, time-resolved laser speckle contrast imaging (TR-LSCI) technique has been developed for continuous, fast, and high-...
Article
Full-text available
Quantum ghost imaging approaches have been proposed to enhance biological microscopy, for example, using 2D visible detectors to provide IR images or providing additional dimensions of spatial or spectral information. Toward the goal of making such imaging schemes practical, we compare image quality and depth-of-field between traditional images and...
Preprint
The acquisition of time-of-flight (ToF) for photons has found numerous applications in the biomedical field. Over the last decades, a few strategies have been proposed to deconvolve the temporal instrument response function (IRF) that distorts the experimental time-resolved data. However, these methods require burdensome computational strategies an...
Preprint
Fluorescence lifetime imaging microscopy (FLIM) is a powerful tool to discriminate fluorescent molecules or probe their nanoscale environment. Traditionally, FLIM uses time-correlated single-photon counting (TCSPC), which is precise but intrinsically low throughput due to its dependence on point detectors. Although time-gated cameras have demonstra...
Article
Full-text available
Position and time measurements of scintillation events encode information about the radiation source. Single photon avalanche diode (SPAD) arrays offer multiple-megapixel spatial resolution and tens of picoseconds temporal resolution for detecting single photons. Current lensless designs for measuring scintillation events use sensors that are lower...
Preprint
Quantum ghost imaging approaches have been proposed to enhance biological microscopy, for example using 2D visible detectors to provide IR images or providing additional dimensions of spatial or spectral information. Toward the goal of making such imaging schemes practical, we compare image quality and depth-of-field between traditional images and...
Preprint
Full-text available
Quantum ghost imaging approaches have been proposed to enhance biological microscopy, for example using 2D visible detectors to provide IR images or providing additional dimensions of spatial or spectral information. Toward the goal of making such imaging schemes practical, we compare image quality and depth-of-field between traditional images and...
Article
Full-text available
The eyes of arthropods, such as those found in bees and dragonflies, are sophisticated 3D vision tools that are composed of an array of directional microlenses. Despite the attempts in achieving artificial panoramic vision by mimicking arthropod eyes with curved microlens arrays, a wealth of issues related to optical aberrations and fabrication com...
Preprint
Full-text available
Correlation Plenoptic Imaging (CPI) is a novel technological imaging modality enabling to overcome drawbacks of standard plenoptic devices, while preserving their advantages. However, a major challenge in view of real-time application of CPI is related with the relevant amount of required frames and the consequent computational-intensive processing...
Preprint
Full-text available
Event cameras capture the world at high time resolution and with minimal bandwidth requirements. However, event streams, which only encode changes in brightness, do not contain sufficient scene information to support a wide variety of downstream tasks. In this work, we design generalized event cameras that inherently preserve scene intensity in a b...
Preprint
Full-text available
Cross-talk is a well-known feature of single-photon avalanche detectors. It is especially important to account for this effect in applications involving coincidences of two or more photons registered by the sensor since in this case the cross-talk may mimic the useful signal. In this work, we characterize the cross-talk of the LinoSPAD2 detector, a...
Preprint
Full-text available
The Hanbury Brown-Twiss (HBT) effect holds a pivotal place in intensity interferometry and gave a seminal contribution to the development of quantum optics. To observe such an effect, both good spectral and timing resolutions are necessary. Most often, the HBT effect is observed for a single frequency at a time, due to limitations in dealing with m...
Preprint
Full-text available
Hydrogenated amorphous silicon based microchannel plates (AMCPs) provide unique advantages over conventional glass-based microchannel plates, offering enhanced flexibility in manufacturing and vertical integration with an electronic readout. A high single-channel gain of 1500 could be measured in the latest generation, making them an attractive cho...
Article
Full-text available
A significant number of cryogenic low-noise amplifiers (cryo-LNAs) are required for the readout of superconducting nanowire detector (SNWD) arrays. It is desirable to have compact cryo-LNAs in place so that the size of the readout circuitry for the SNWD array can be reduced. In this study, we first examined the bandwidth, linearity, and noise requi...
Conference Paper
Full-text available
Single-photon avalanche diodes (SPADs) are detectors capable of capturing single photons and of performing pho-ton counting. SPADs have an exceptional temporal resolution and are thus highly suitable for time-resolved imaging applications. Applications span from biomedical research to consumers with SPADs integrated in smartphones and mixed-reality...
Article
Full-text available
Reprogrammable integrated optics provides a natural platform for tunable quantum photonic circuits, but faces challenges when high dimensions and high connectivity are involved. Here, we implement high-dimensional linear transformations on spatial modes of photons using wavefront shaping together with mode mixing in a multimode fiber, and measure p...
Article
Full-text available
Scintillating fibre detectors combine sub-mm resolution particle tracking, precise measurements of the particle stopping power and sub-ns time resolution. Typically, fibres are read out with silicon photomultipliers (SiPM). Hence, if fibres with a few hundred $$\upmu $$ μ m diameter are used, either they are grouped together and coupled with a sing...
Article
Full-text available
Fluorescence lifetime imaging (FLI) has been receiving increased attention in recent years as a powerful diagnostic technique in biological and medical research. However, existing FLI systems often suffer from a tradeoff between processing speed, accuracy, and robustness. Inspired by the concept of Edge Artificial Intelligence (Edge AI), we propose...
Article
Full-text available
Significance Fluorescence guidance is used clinically by surgeons to visualize anatomical and/or physiological phenomena in the surgical field that are difficult or impossible to detect by the naked eye. Such phenomena include tissue perfusion or molecular phenotypic information about the disease being resected. Conventional fluorescence-guided sur...
Article
Full-text available
We introduce a new family of single-photon avalanche diodes (SPADs) with enhanced depletion regions in a 55-nm Bipolar-CMOS-DMOS (BCD) technology. We demonstrate how to systematically engineer doping profiles in the main junction and in deep p-well layers to achieve high sensitivity and low timing jitter. A family of sub 10 μm SPADs was designed an...
Conference Paper
We report a deep RNN model for temporal point spread function (TPSFs) deconvolution in multimodal imaging systems to extract true sample fluorescence decay rate. It’s performance has been validated in phantom and well-plate data.
Conference Paper
SPAD arrays have shown potential for improving SNR for diffuse correlation spectroscopy in low photon regimes. Here, we will explore different methods of integrating parallelized DCS signals in such regimes for deep blood flow extraction.
Article
Full-text available
We report on LinoSPAD2, a single-photon camera system, comprising a 512×1 single-photon avalanche diode (SPAD) front-end and one or two FPGA-based back-ends. Digital signals generated by the SPADs are processed by the FPGA in real time, whereas the FPGA offers full reconfigurability at a very high level of granularity both in time and space domains...
Article
The analysis of proteins in the gas phase benefits from detectors that exhibit high efficiency and precise spatial resolution. Although modern secondary electron multipliers already address numerous analytical requirements, additional methods are desired for macromolecules at energies lower than currently used in post-acceleration detection. Previo...
Preprint
Full-text available
To address many of the deficiencies in optical neuroimaging technologies such as poor spatial resolution, time-consuming reconstruction, low penetration depth, and contact-based measurement, a novel, noncontact, time-resolved laser speckle contrast imaging (TR-LSCI) technique has been developed for continuous, fast, and high-resolution 2D mapping o...
Preprint
Full-text available
Scintillating fibre detectors combine sub-mm resolution particle tracking, precise measurements of the particle stopping power and sub-ns time resolution. Typically, fibres are read out with silicon photomultipliers (SiPM). Hence, if fibres with a few hundred mm diameter are used, either they are grouped together and coupled with a single SiPM, los...
Article
Full-text available
Quantum random number generators (QRNGs) are a burgeoning technology used for a variety of applications, including modern security and encryption systems. Typical methods exploit an entropy source combined with an extraction or bit generation circuit in order to produce a random string. In integrated designs, there is often little modeling or analy...
Preprint
Full-text available
Reinterpretable cameras are defined by their post-processing capabilities that exceed traditional imaging. We present "SoDaCam" that provides reinterpretable cameras at the granularity of photons, from photon-cubes acquired by single-photon devices. Photon-cubes represent the spatio-temporal detections of photons as a sequence of binary frames, at...
Article
Megapixel single-photon avalanche diode (SPAD) arrays have been developed recently, opening up the possibility of deploying SPADs as generalpurpose passive cameras for photography and computer vision. However, most previous work on SPADs has been limited to monochrome imaging. We propose a computational photography technique that reconstructs high-...
Article
Full-text available
This article presents a two-times interleaved, loop-unrolled SAR analog-to-digital converter (ADC) operational from 300 down to 4.2 K. The 6–8-bit resolution and the sampling speed up to 1 GS/s are targeted at digitizing the multi-channel frequency-multiplexed input in a spin-qubit reflectometry readout for quantum computing. To optimize the circui...
Preprint
Full-text available
Fluorescence lifetime imaging (FLI) has been receiving increased attention in recent years as a powerful imaging technique in biological and medical research. However, existing FLI systems often suffer from a tradeoff between processing speed, accuracy, and robustness. In this paper, we propose a SPAD TCSPC system coupled to a recurrent neural netw...
Article
Full-text available
The overall sensitivity of frontside-illuminated, silicon single-photon avalanche diode (SPAD) arrays has often suffered from fill factor limitations. The fill factor loss can however be recovered by employing microlenses, whereby the challenges specific to SPAD arrays are represented by large pixel pitch (> 10 µm), low native fill factor (as low a...
Article
Full-text available
Quantum computation is one of the most challenging quantum technologies that promise to revolutionize data computation in the long-term by outperforming the classical supercomputers in specific applications. Errors will hamper this quantum revolution if not sufficiently limited and corrected by quantum error correction codes thus avoiding quantum a...
Preprint
Full-text available
Reprogrammable linear optical circuits are essential elements of photonic quantum technology implementations. Integrated optics provides a natural platform for tunable photonic circuits, but faces challenges when high dimensions and high connectivity are involved. Here, we implement high-dimensional linear transformations on spatial modes of photon...
Article
Full-text available
Fluorescence lifetime imaging microscopy (FLIM) is a powerful imaging technique that enables the visualization of biological samples at the molecular level by measuring the fluorescence decay rate of fluorescent probes. This provides critical information about molecular interactions, environmental changes, and localization within biological systems...
Preprint
Full-text available
We present a single-photon-sensitive spectrometer, based on a linear array of 512 single-photon avalanche diodes, with 0.04 nm spectral and 40 ps temporal resolutions. We employ a fast data-driven operation that allows direct measurement of time and frequency for simultaneous single photons. Combining excellent temporal and spectral resolution, our...
Article
Full-text available
This paper presents a single-photon avalanche diode (SPAD) in 55 nm bipolar-CMOS-DMOS (BCD) technology. In order to realize a SPAD having sub-20 V breakdown voltage for mobile applications while preventing high tunneling noise, a high-voltage N-well available in BCD is utilized to implement the avalanche multiplication region. The resulting SPAD ha...
Preprint
Full-text available
The overall sensitivity of frontside-illuminated, silicon single-photon avalanche diode (SPAD) arrays has often suffered from fill factor limitations. The fill factor loss can however be recovered by employing microlenses, whereby the challenges specific to SPAD arrays are represented by large pixel pitch (> 10 µm), low native fill factor (as low a...
Preprint
Full-text available
The overall sensitivity of frontside-illuminated, silicon single-photon avalanche diode (SPAD) arrays has often suffered from fill factor limitations. The fill factor loss can however be recovered by employing microlenses, whereby the challenges specific to SPAD arrays are represented by large pixel pitch (> 10 µm), low native fill factor (as low a...
Preprint
Full-text available
The overall sensitivity of frontside-illuminated, silicon single-photon avalanche diode (SPAD) arrays has often suffered from fill factor limitations. The fill factor loss can however be recovered by employing microlenses, whereby the challenges specific to SPAD arrays are represented by large pixel pitch (> 10 µm), low native fill factor (as low a...
Preprint
Full-text available
Smarty is a fully-reconfigurable on-chip feed-forward artificial neural network (ANN) with ten integrated time-to-digital converters (TDCs) designed in a 16 nm FinFET CMOS technology node. The integration of TDCs together with an ANN aims to reduce system complexity and minimize data throughput requirements in positron emission tomography (PET) app...
Article
As big strides were being made in many science fields in the 1970s and 80s, faster computation for solving problems in molecular biology, semiconductor technology, aeronautics, particle physics, etc., was at the forefront of research. Parallel and super-computers were introduced, which enabled problems of a higher level of complexity to be solved....