About
43
Publications
5,716
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
420
Citations
Introduction
My research is on multi-robot systems (MRS), with a flavour of bio-inspired swarm robotics and swarm intelligence. More recently I have been working on human-robot interaction (HRI) with a focus on MRS.
I am originally a physics graduate and have a long-standing interest in social behaviour. I studied economics and worked in financial regulation before obtaining a PhD in complexity science focused on collective animal behaviour.
Current institution
Publications
Publications (43)
The real world is highly variable and unpredictable, and so fine-tuned robot controllers that successfully result in group-level “emergence” of swarm capabilities indoors may quickly become inadequate outside. One response to unpredictability could be greater robot complexity and cost, but this seems counter to the “swarm philosophy” of deploying (...
A key challenge for any animal (or sampling technique) is to avoid wasting time by searching for resources (information) in places already found to be unprofitable. In biology, this challenge is particularly strong when the organism is a central place forager-returning to a nest between foraging bouts-because it is destined repeatedly to cover much...
Defining and measuring trust in dynamic, multiagent teams is important in a range of contexts, particularly in defense and security domains. Team members should be trusted to work towards agreed goals and in accordance with shared values. In this paper, our concern is with the definition of goals and values such that it is possible to define ‘trust...
Integrating robots into teams of humans is anticipated to bring significant capability improvements for tasks such as searching potentially hazardous buildings. Trust between humans and robots is recognized as a key enabler for human-robot teaming (HRT) activity: if trust during a mission falls below sufficient levels for cooperative tasks to be co...
The problem of decentralized multi-robot patrol has previously been approached primarily with hand-designed strategies for minimization of 'idlenes' over the vertices of a graph-structured environment. Here we present two lightweight neural network-based strategies to tackle this problem, and show that they significantly outperform existing strateg...
Robot swarms have the potential to help groups of people with social tasks, given their ability to scale to large numbers of robots and users. Developing multi-human-swarm interaction is therefore crucial to support multiple people interacting with the swarm simultaneously - which is an area that is scarcely researched, unlike single-human, single-...
For humans and robots to form an effective human-robot team (HRT) there must be sufficient trust between team members throughout a mission. We analyze data from an HRT experiment focused on trust dynamics in teams of one human and two robots, where trust was manipulated by robots becoming temporarily unresponsive. Whole-body movement tracking was a...
Measuring the electric field is a central goal in electrostatics research, such as the study of electrostatics in atmospheric processes. It serves as a key indicator for various atmospheric phenomena, including the presence of lightning, dust or charged clouds. Traditionally, electric field measurements have been conducted from static platforms, wi...
Defining and measuring trust in dynamic, multiagent teams is important in a range of contexts, particularly in defense and security domains. Team members should be trusted to work towards agreed goals and in accordance with shared values. In this paper, our concern is with the definition of goals and values such that it is possible to define 'trust...
A major, ongoing social transition is the inclusion of autonomous agents into human organizations. For example, in defence and security applications, robots may be used alongside human operatives to reduce risk or add capability. But a key barrier to the transition to successful human-autonomous agent collectives is the need for sufficient trust be...
A major, ongoing social transition is the inclusion of autonomous agents into human organizations. For example, in defence and security applications, robots may be used alongside human operatives to reduce risk or add capability. But a key barrier to the transition to successful human-autonomous agent collectives is the need for sufficient trust be...
Superorganisms such as ant or honeybee colonies exhibit extraordinary collective intelligence, such as an ability to identify and choose the best available nest site in an uncertain world. This collective cognition is inextricably reliant on the embodiment of individual agents, specifically their movement through space. We have recently developed m...
Social insects are biological benchmarks of self-organization and decentralized control. Their integrated yet accessible nature makes them ideal models for the investigation of complex social network interactions, and the mechanisms that shape emergent group capabilities. Increasingly, interindividual heterogeneity, and the functional role that it...
As robot swarms move from the laboratory to real-world applications, a routine checklist of questions could help ensure their safe operation.
Area coverage and collective exploration are key challenges for swarm robotics. Previous research in this field has drawn inspiration from ant colonies, with real, or more commonly virtual, pheromones deposited into a shared environment to coordinate behaviour through stigmergy. Repellent pheromones can facilitate rapid dispersal of robotic agents,...
At a macroscopic level, part of the ant colony life cycle is simple: a colony collects resources; these resources are converted into more ants, and these ants in turn collect more resources. Because more ants collect more resources, this is a multiplicative process, and the expected logarithm of the amount of resources determines how successful the...
Groups of social predators capture large prey items collectively, and their social interaction patterns may impact how quickly they can respond to time-sensitive predation opportunities. We investigated whether various organizational levels of resting interactions (individual, sub-group, group), observed at different intervals leading up to a colle...
Groups of social predators capture large prey items collectively, and their social interaction patterns may impact how quickly they can respond to time-sensitive predation opportunities. We investigated whether various organizational levels of resting interactions (individual, sub-group, group), observed at different intervals leading up to a colle...
A key challenge for any animal is to avoid wasting time by searching for resources in places it has already found to be unprofitable. This challenge is particularly strong when the organism is a central place forager - returning to a nest between foraging bouts - because it is destined repeatedly to cover much the same ground. Furthermore, this pro...
At a macroscopic level, part of the ant colony life-cycle is simple: a colony collects resources; these resources are converted into more ants, and these ants in turn collect more resources. Because more ants collect more resources, this is a multiplicative process, and the expected logarithm of the amount of resources determines how successful the...
Superorganisms such as social insect colonies are very successful relative to their non-social counterparts. Powerful emergent information processing capabilities would seem to contribute to their abundance, as they explore and exploit their environment collectively. In this series of three papers, we develop a Bayesian model of collective informat...
The behavioural composition of a group and the dynamics of social interactions can both influence how social animals work collectively. For example, individuals exhibiting certain behavioural tendencies may have a disproportionately large impact on the group, and so are referred to as keystone individuals, while interactions between individuals can...
Workers of the house-hunting ant Temnothorax albipennis rely on visual edge following and landmark recognition to navigate their rocky environment, and they also exhibit a leftward turning bias when exploring unknown nest sites. We used electron microscopy to count the number of ommatidia composing the compound eyes of workers, males and queens, to...
Visual landmarks are important navigational aids to many animals, and when more than one is available their juxtaposition can convey valuable new information to a navigator about progress toward a goal, depending on the landmarks' comparative distinctiveness. We investigated the effect of presenting rock ant colonies (Temnothorax albipennis) with i...
Social insect societies are long-standing models for understanding social behaviour and evolution. Unlike other advanced biological societies (such as the multicellular body), the component parts of social insect societies can be easily deconstructed and manipulated. Recent methodological and theoretical innovations have exploited this trait to add...
To find useful work to do for their colony, individual eusocial
animals have to move, somehow staying attentive to relevant
social information. Recent research on individual Temnothorax
albipennis ants moving inside their colony’s nest found a
power-law relationship between a movement’s duration and
its average speed; and a universal speed profile...
Behavioural lateralization in invertebrates is an important field of study because it may provide insights into the early origins of lateralization seen in a diversity of organisms. Here, we present evidence for a leftward turning bias in Temnothorax albipennis ants exploring nest cavities and in branching mazes, where the bias is initially obscure...
In this paper we pursue a novel transdisciplinary approach to the question of cultural dynamics, focussing particularly on the transmission of cultural traits across socio-physical space. Using ideas from statistical physics, we start from known archaeological sites to create networks representing possible macroscopic interactions of the prehistori...